1
|
Bhat S, Rishi P, Chadha VD. Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Res 2022; 318:198853. [PMID: 35777502 PMCID: PMC9236910 DOI: 10.1016/j.virusres.2022.198853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) has inflicted a global health challenge. Although the overwhelming escalation of mortality seen during the initial phase of the pandemic has reduced, emerging variants of SARS-CoV-2 continue to impact communities worldwide. Several studies have highlighted the association of gene specific epigenetic modifications in host cells with the pathogenesis and severity of the disease. Therefore, alongside the investigations into the virology and pathogenesis of SARS-CoV-2 infection, understanding the epigenetic mechanisms related to the disease is crucial for the rational design of effective targeted therapies. Here, we discuss the interaction of SARS-CoV-2 with the various epigenetic regulators and their subsequent contribution to the risk of disease severity and dysfunctional immune responses. Finally, we also highlight the use of epigenetically targeted drugs for the potential therapeutic interventions capable of eliminating viral infection and/or build effective immunity against it.
Collapse
Affiliation(s)
- Swati Bhat
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Praveen Rishi
- Department of Microbiology, South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Vijayta D Chadha
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
2
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
3
|
Burlein C, Bahnck C, Bhatt T, Murphy D, Lemaire P, Carroll S, Miller MD, Lai MT. Development of a sensitive amplified luminescent proximity homogeneous assay to monitor the interactions between pTEFb and Tat. Anal Biochem 2014; 465:164-71. [PMID: 25132562 DOI: 10.1016/j.ab.2014.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022]
Abstract
The viral transactivator protein (Tat) plays an essential role in the replication of human immunodeficiency type 1 virus (HIV-1) by recruiting the host positive transcription elongation factor (pTEFb) to the RNA polymerase II transcription machinery to enable an efficient HIV-1 RNA elongation process. Blockade of the interaction between Tat and pTEFb represents a novel strategy for developing a new class of antiviral agents. In this study, we developed a homogeneous assay in AlphaLISA (amplified luminescent proximity homogeneous assay) format using His-tagged pTEFb and biotinylated Tat to monitor the interaction between Tat and pTEFb. On optimizing the assay conditions, the signal-to-background ratio was found to be greater than 10-fold. The assay was validated with untagged Tat and peptides known to compete with Tat for pTEFb binding. The Z' of the assay is greater than 0.5, indicating that the assay is robust and can be easily adapted to a high-throughput screening format. Furthermore, the affinity between Tat and pTEFb was determined to be approximately 20 pM, and only 7% of purified Tat was found to be active in forming tertiary complex with pTEFb. Development of this assay should facilitate the discovery of a new class of antiviral agents providing HIV-1 patients with broader treatment choices.
Collapse
Affiliation(s)
- Christine Burlein
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Carolyn Bahnck
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Triveni Bhatt
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Dennis Murphy
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Peter Lemaire
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Steve Carroll
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Michael D Miller
- Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA
| | - Ming-Tain Lai
- Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA.
| |
Collapse
|
4
|
Khare P, Gupta AK, Gajula PK, Sunkari KY, Jaiswal AK, Das S, Bajpai P, Chakraborty TK, Dube A, Saxena AK. Identification of novel S-adenosyl-L-homocysteine hydrolase inhibitors through homology-model-based virtual screening, synthesis, and biological evaluation. J Chem Inf Model 2012; 52:777-91. [PMID: 22324915 DOI: 10.1021/ci2005862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study describes a successful application of computational approaches to identify novel Leishmania donovani (Ld) AdoHcyase inhibitors utilizing the differences for Ld AdoHcyase NAD(+) binding between human and Ld parasite. The development and validation of the three-dimensional (3D) structures of Ld AdoHcyase using the L. major AdoHcyase as template has been carried out. At the same time, cloning of the Ld AdoHcyase gene from clinical strains, its overexpression and purification have been performed. Further, the model was used in combined docking and molecular dynamics studies to validate the binding site of NAD in Ld. The hierarchical structure based virtual screening followed by the synthesis of five active hits and enzyme inhibition assay has resulted in the identification of novel Ld AdoHcyase inhibitors. The most potent inhibitor, compound 5, may serve as a "lead" for developing more potent Ld AdoHcy hydrolase inhibitors as potential antileishmanial agents.
Collapse
Affiliation(s)
- Prashant Khare
- Parasitology Division, C.S.I.R.-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zimmermann SC, Sadler JM, Andrei G, Snoeck R, Balzarini J, Seley-Radtke KL. Carbocyclic 5'-nor "reverse" fleximers. Design, synthesis, and preliminary biological activity. MEDCHEMCOMM 2011; 2. [PMID: 24312722 DOI: 10.1039/c1md00094b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 5'-nor carbocyclic "reverse" flexible nucleosides or "fleximers" have been designed wherein the nucleobase scaffold resembles a "split" purine as well as a substituted pyrimidine. This modification was employed to explore recognition by both purine and pyrimidine metabolizing enzymes. The synthesis of the carbocyclic fleximers and the results of their preliminary biological screening are described herein.
Collapse
Affiliation(s)
- Sarah C Zimmermann
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | | | | | | | | | |
Collapse
|
6
|
Porcelli M, Moretti MA, Concilio L, Forte S, Merlino A, Graziano G, Cacciapuoti G. S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: biochemical characterization and analysis of protein structure by comparative molecular modeling. Proteins 2006; 58:815-25. [PMID: 15645450 DOI: 10.1002/prot.20381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C. The enzyme is a homotetramer of 190 kDa and contains four cysteine residues per subunit. Thiol groups are not involved in the catalytic process whereas disulfide bond(s) could be present since incubation with 0.8 M dithiothreitol reduces enzyme activity. Multiple sequence alignment of hyperthermophilic AdoHcyHD reveals the presence of two cysteine residues in the N-terminus of the enzyme conserved only in members of Pyrococcus species, and shows that hyperthermophilic AdoHcyHD lack eight C-terminal residues, thought to be important for structural and functional properties of the eukaryotic enzyme. The homology-modeled structure of PfAdoHcyHD shows that Trp220, Tyr181, Tyr184, and Leu185 of each subunit and Ile244 from a different subunit form a network of hydrophobic and aromatic interactions in the central channel formed at the subunits interface. These contacts partially replace the interactions of the C-terminal tail of the eukaryotic enzyme required for tetramer stability. Moreover, Cys221 and Lys245 substitute for Thr430 and Lys426, respectively, of the human enzyme in NAD-binding. Interestingly, all these residues are fairly well conserved in hyperthermophilic AdoHcyHDs but not in mesophilic ones, thus suggesting a common adaptation mechanism at high temperatures.
Collapse
Affiliation(s)
- Marina Porcelli
- Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Università di Napoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
De Clercq E. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1395-415. [PMID: 16438025 DOI: 10.1080/15257770500265638] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology and Immunology, K.U. Letven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Miles RW, Nielsen LPC, Ewing GJ, Yin D, Borchardt RT, Robins MJ. S-homoadenosyl-L-cysteine and S-homoadenosyl-L-homocysteine. Synthesis and binding studies of hon-hydrolyzed substrate analogues with S-adenosyl-L-homocysteine hydrolase. J Org Chem 2002; 67:8258-60. [PMID: 12423165 DOI: 10.1021/jo020478g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of homoadenosine [9-(5-deoxy-beta-D-ribo-hexofuranosyl)adenine] with thionyl chloride and pyridine in acetonitrile gave 6'-chloro-6'-deoxyhomoadenosine, which underwent nucleophilic displacement with L-cysteine or L-homocysteine to give homologated analogues of S-adenosyl-L-homocysteine. Each amino acid in aqueous sodium hydroxide at 60 degrees C gave excellent conversion from the chloronucleoside, and adsorption on Amberlite XAD-4 resin provided more convenient isolation than prior methods. Weak binding of these non-hydrolyzed analogues to S-adenosyl-L-homocysteine hydrolase was observed.
Collapse
Affiliation(s)
- Robert W Miles
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA
| | | | | | | | | | | |
Collapse
|
10
|
Daelemans D, De Clercq E, Vandamme AM. A quantitative GFP-based bioassay for the detection of HIV-1 Tat transactivation inhibitors. J Virol Methods 2001; 96:183-8. [PMID: 11445148 DOI: 10.1016/s0166-0934(01)00330-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tat function of the human immunodeficiency virus (HIV) represents an important target for the development of new anti-HIV drugs. A rapid, sensitive and simple bioassay was developed for the detection of HIV transactivation inhibitors. A reporter plasmid based on the expression of the green fluorescent protein (GFP) under control of the HIV-1 long terminal repeat (LTR) was constructed. This reporter gene can be quantified by simply measuring the fluorescence irradiated by GFP-producing cells, without the need of extraction procedures or enzymatic assays. Cells, stably expressing HIV-1 Tat protein, were transfected with this plasmid and the inhibitory effect of anti-Tat drugs was assessed by measuring the inhibition of fluorescence. Using this assay system the anti-transactivation activity of several known compounds was confirmed. This is the first HIV transactivation assay using GFP reporter gene in microtiter plates. The assay can be used for the detection and quantification of HIV transactivation, and for the high throughput evaluation of anti-transactivation drugs in different cellular backgrounds.
Collapse
Affiliation(s)
- D Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | | | | |
Collapse
|
11
|
Casaubon RL, Snapper ML. S-adenosylmethionine reverses ilimaquinone's vesiculation of the Golgi apparatus: a fluorescence study on the cellular interactions of ilimaquinone. Bioorg Med Chem Lett 2001; 11:133-6. [PMID: 11206443 DOI: 10.1016/s0960-894x(00)00617-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The marine sponge metabolite ilimaquinone has a wide range of biological activities, including vesiculation of the Golgi apparatus and interference with intracellular protein trafficking. Some of these activities may arise from ilimaquinone's influence on the activated methyl cycle. To visualize the morphological effects of ilimaquinone on the Golgi apparatus, NRK (normal rat kidney) cells were labeled with fluorescent wheat germ agglutinin and treated with ilimaquinone in the presence and absence of the methylating agent S-adenosylmethionine (SAMe). While ilimaquinone alone fragments the Golgi apparatus, the organelle remains intact when SAMe is included in the incubation mixture. This observation supports ilimaquinone's interaction with methylation enzymes as the cause of Golgi vesiculation. The examination of a fluorescently labeled ilimaquinone analogue in NRK cells suggests that the cellular interactions of ilimaquinone are not localized to the Golgi apparatus.
Collapse
Affiliation(s)
- R L Casaubon
- Eugene F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | | |
Collapse
|
12
|
Porcelli M, Fusco S, Inizio T, Zappia V, Cacciapuoti G. Expression, purification, and characterization of recombinant S-adenosylhomocysteine hydrolase from the thermophilic archaeon Sulfolobus solfataricus. Protein Expr Purif 2000; 18:27-35. [PMID: 10648166 DOI: 10.1006/prep.1999.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-Adenosylhomocysteine hydrolase from Sulfolobus solfataricus was expressed in Escherichia coli by inserting the genomic fragment containing the gene encoding for S-adenosylhomocysteine hydrolase downstream the isopropyl-beta-d-thiogalactoside-inducible promoter of pTrc99A expression vector. An ATG positioned 25 bp upstream of the gene which is in frame with a stop codon was utilized as the initiation codon. This construct was used to transform E. coli RB791 and E. coli JM105 strains. The recombinant protein, purified by a fast and efficient two-step procedure (yield of 0.4 mg of enzyme per gram of cells), does not appear homogeneous on SDS-PAGE because of the presence of a protein contaminant corresponding to a "truncated" S-adenosylhomocysteine hydrolase subunit lacking the first 24 amino acid residues. The recombinant enzyme shows the same molecular mass, optimum temperature, and kinetic features of S-adenosylhomocysteine hydrolase isolated from S. solfataricus but it is less thermostable. To construct a vector which presents a correct distance between the ribosome-binding site and the start codon of S-adenosylhomocysteine hydrolase gene, a NcoI site was created at the translation initiation codon using site-directed mutagenesis. The expression of the homogeneous mutant S-adenosylhomocysteine hydrolase was achieved at high level (1.7 mg of mutant protein per gram of cells). The mutant S-adenosylhomocysteine hydrolase and the native one were indistinguishable in all physicochemical and kinetic properties including thermostability, indicating that the interactions involving the NH(2)-terminal sequence of the protein play a role in the thermal stability of S. solfataricus S-adenosylhomocysteine hydrolase.
Collapse
Affiliation(s)
- M Porcelli
- Istituto di Biochimica delle Macromolecole, Facoltà di Medicina e Chirurgia, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, Naples, 80138, Italy
| | | | | | | | | |
Collapse
|
13
|
Daelemans D, Vandamme AM, De Clercq E. Human immunodeficiency virus gene regulation as a target for antiviral chemotherapy. Antivir Chem Chemother 1999; 10:1-14. [PMID: 10079874 DOI: 10.1177/095632029901000101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inhibitors interfering with human immunodeficiency virus (HIV) gene regulation may have great potential in anti-HIV drug (combination) therapy. They act against different targets to currently used anti-HIV drugs, reduce virus production from acute and chronically infected cells and are anticipated to elicit less virus drug resistance. Several agents have already proven to inhibit HIV gene regulation in vitro. A first class of compounds interacts with cellular factors that bind to the long terminal repeat (LTR) promoter and that are needed for basal level transcription, such as NF-kappa B and Sp1 inhibitors. A second class of compounds specifically inhibits the transactivation of the HIV LTR promoter by the viral Tat protein, such as the peptoid CGP64222. A third class of compounds prevents the accumulation of single and unspliced mRNAs through inhibition of the viral regulator protein Rev, such as the aminoglycosidic antibiotics. Most of these compounds have been tested in specific transactivation assays. Whether they are active at the postulated target in virus replication assays has, for many of them, not been ascertained. Toxicity data are often lacking or insufficient. Yet these data are crucial in view of the toxicity that may be expected for compounds that primarily interact with cellular factors. Although a promising lead, considerable research is still required before gene regulation inhibitors may come of age as clinically useful agents.
Collapse
Affiliation(s)
- D Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Kloor D, Fuchs S, Petroktistis F, Delabar U, Mühlbauer B, Quast U, Osswald H. Effects of ions on adenosine binding and enzyme activity of purified S-adenosylhomocysteine hydrolase from bovine kidney. Biochem Pharmacol 1998; 56:1493-6. [PMID: 9827583 DOI: 10.1016/s0006-2952(98)00250-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation was undertaken to determine the effect of various ions on the characteristics of S-adenosylhomocysteine (SAH) hydrolase from bovine kidney. The binding sites of [3H]-adenosine to purified SAH hydrolase were not influenced by phosphate, magnesium, potassium, sodium, chloride or calcium ions at physiological cytosolic concentrations. To test whether NAD+ in the SAH hydrolase is essential for adenosine binding, we prepared the apoenzyme by removing NAD+ with ammonium sulfate. The resulting apoenzyme did not exhibit any [3H]-adenosine binding. Since the apoenzyme was enzymatically inactive, it is suggested that adenosine binds to the active site and not to an allosteric site of the intact enzyme. The kinetics of the hydrolysis and the synthesis of SAH catalyzed by the enzyme SAH hydrolase were measured in the presence and absence of phosphate and magnesium. Phosphate increased the Vmax for both synthesis and hydrolysis. However, only the affinity of adenosine for SAH synthesis was significantly enhanced from 10.1+/-1.3 microM to 5.4+/-0.5 microM by phosphate. This effect was already maximal at a phosphate concentration of 1 mM. All other tested ions were without effect on the enzyme activity. Our results show that phosphate at physiological concentrations shifts the thermodynamic equilibrium of SAH hydrolase in the direction of SAH synthesis. These findings imply that SAH-sensitive transmethylation reactions are inhibited during renal hypoxia when intracellular levels of phosphate, adenosine, and SAH are elevated.
Collapse
Affiliation(s)
- D Kloor
- Department of Pharmacology, University of Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Witvrouw M, Daelemans D, Pannecouque C, Neyts J, Andrei G, Snoeck R, Vandamme AM, Balzarini J, Desmyter J, Baba M, De Clercq E. Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12. Antivir Chem Chemother 1998; 9:403-11. [PMID: 9875393 DOI: 10.1177/095632029800900504] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fluoroquinolone derivatives have been shown to inhibit human immunodeficiency virus (HIV) replication at the transcriptional level. We confirmed the anti-HIV activity of the most potent congener, 8-difluoromethoxy-1-ethyl-6-fluoro-1,4-dihydro-7-[4-(2- methoxyphenyl)-1-piperazinyl]-4-quinolone-3-carboxylic acid (K-12), in both acutely and chronically infected cells. K-12 was active against different strains of HIV-1 (including AZT- and ritonavir-resistant HIV-1 strains), HIV-2 and simian immunodeficiency virus, in MT-4, CEM, C8166 and peripheral blood mononuclear cells. In all of these antiviral assay systems, K-12 showed a similar activity (EC50 0.2-0.6 microM). K-12 inhibited Moloney murine sarcoma virus-induced transformation of C3H/3T3 cells with an EC50 of 6.9 microM. Also, K-12 proved inhibitory to herpesvirus saimiri, human cytomegalovirus, varicella-zoster virus and herpes simplex virus types 1 and 2 (in order of decreasing sensitivity), but was not inhibitory (at subtoxic concentrations) to human herpesvirus type 8 (as evaluated in BCBL-1 cells), vaccinia virus, Sindbis virus, vesicular stomatitis virus, respiratory syncytial virus, Coxsackie virus, Punta Toro virus, parainfluenza virus or reovirus. Time-of-addition experiments and quantitative transactivation bioassays indicated that K-12 inhibits the Tat-mediated transactivation process in HIV-infected cells.
Collapse
Affiliation(s)
- M Witvrouw
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|