1
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
2
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|
3
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
4
|
Zenkov RG, Vlasova OA, Maksimova VP, Fetisov TI, Karpechenko NY, Ektova LV, Eremina VA, Popova VG, Usalka OG, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Molecular Mechanisms of Anticancer Activity of N-Glycosides of Indolocarbazoles LCS-1208 and LCS-1269. Molecules 2021; 26:molecules26237329. [PMID: 34885910 PMCID: PMC8658795 DOI: 10.3390/molecules26237329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Novel indolocarbazole derivatives named LCS were synthesized by our research group. Two of them were selected as the most active anticancer agents in vivo. We studied the mechanisms of anticancer activity in accordance with the previously described effects of indolocarbazoles. Cytotoxicity was estimated by MTT assay. We analyzed LCS-DNA interactions by circular dichroism in cholesteric liquid crystals and fluorescent indicator displacement assay. The effect on the activity of topoisomerases I and II was studied by DNA relaxation assay. Expression of interferon signaling target genes was estimated by RT-PCR. Chromatin remodeling was analyzed–the effect on histone H1 localization and reactivation of epigenetically silenced genes. LCS-induced change in the expression of a wide gene set was counted by means of PCR array. Our study revealed the cytotoxic activity of the compounds against 11 cancer cell lines and it was higher than in immortalized cells. Both compounds bind DNA; binding constants were estimated—LCS-1208 demonstrated higher affinity than LCS-1269; it was shown that LCS-1208 intercalates into DNA that is typical for rebeccamycin derivatives. LCS-1208 also inhibits topoisomerases I and IIα. Being a strong intercalator and topoisomerase inhibitor, LCS-1208 upregulates the expression of interferon-induced genes. In view of LCSs binding to DNA we analyzed their influence on chromatin stability and revealed that LCS-1269 displaces histone H1. Our analysis of chromatin remodeling also included a wide set of epigenetic experiments in which LCS-1269 demonstrated complex epigenetic activity. Finally, we revealed that the antitumor effect of the compounds is based not only on binding to DNA and chromatin remodeling but also on alternative mechanisms. Both compounds induce expression changes in genes involved in neoplastic transformation and target genes of the signaling pathways in cancer cells. Despite of being structurally similar, each compound has unique biological activities. The effects of LCS-1208 are associated with intercalation. The mechanisms of LCS-1269 include influence on higher levels such as chromatin remodeling and epigenetic effects.
Collapse
Affiliation(s)
- Roman G. Zenkov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Correspondence:
| | - Olga A. Vlasova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Varvara P. Maksimova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Timur I. Fetisov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Natalia Y. Karpechenko
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Lidiya V. Ektova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Vera A. Eremina
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Valeriia G. Popova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Ploshchad, 125047 Moscow, Russia
| | - Olga G. Usalka
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Ekaterina A. Lesovaya
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 9 Vysokovoltnaya St., 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Marianna G. Yakubovskaya
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Kirill I. Kirsanov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Institute of Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
5
|
Zenkov RG, Ektova LV, Vlasova OА, Belitskiy GА, Yakubovskaya MG, Kirsanov KI. Indolo[2,3-a]carbazoles: diversity, biological properties, application in antitumor therapy. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02714-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
8
|
Pelliccia M, Andreozzi P, Paulose J, D'Alicarnasso M, Cagno V, Donalisio M, Civra A, Broeckel RM, Haese N, Jacob Silva P, Carney RP, Marjomäki V, Streblow DN, Lembo D, Stellacci F, Vitelli V, Krol S. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat Commun 2016; 7:13520. [PMID: 27901019 PMCID: PMC5141364 DOI: 10.1038/ncomms13520] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10−8–10−6 M) or polyethylene glycol (PEG, molecular weight ∼8,000 Da, 10−7–10−4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ∼48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step. Keeping viral vaccines cold from the manufacturers to patients is problematic and costly. Here, Krol and others show additives that can significantly improve at very low concentrations the storage of adenovirus type 5 at ambient and elevated temperature.
Collapse
Affiliation(s)
- Maria Pelliccia
- European School of Molecular Medicine (SEMM), IFOM-IEO-Campus, via Adamello 16, Milan 20139, Italy.,Università degli Studi di Milano, Milan 20122, Italy.,Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy
| | - Patrizia Andreozzi
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy
| | - Jayson Paulose
- Instituut-Lorentz for theoretical physics, Leiden University, 271, Niels Bohrweg 2, NL 2333 CA Leiden, The Netherlands
| | - Marco D'Alicarnasso
- European School of Molecular Medicine (SEMM), IFOM-IEO-Campus, via Adamello 16, Milan 20139, Italy.,Università degli Studi di Milano, Milan 20122, Italy.,Fondazione CEN-European Centre for Nanomedicine, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Valeria Cagno
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Rebecca M Broeckel
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Nicole Haese
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Paulo Jacob Silva
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Randy P Carney
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskyla, Survontie 9, 40500 Jyväskyla, Finland
| | - Daniel N Streblow
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Francesco Stellacci
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Vincenzo Vitelli
- Instituut-Lorentz for theoretical physics, Leiden University, 271, Niels Bohrweg 2, NL 2333 CA Leiden, The Netherlands
| | - Silke Krol
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy.,Laboratory of Translational Nanotechnology, I.R.C.C.S. Istituto Tumori Giovanni Paolo II, viale Orazio, Flacco 65, Bari 70124, Italy
| |
Collapse
|
9
|
The cell competition-based high-throughput screening identifies small compounds that promote the elimination of RasV12-transformed cells from epithelia. Sci Rep 2015; 5:15336. [PMID: 26480891 PMCID: PMC4612300 DOI: 10.1038/srep15336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies have revealed that cell competition can occur between normal and transformed epithelial cells; normal epithelial cells recognize the presence of the neighboring transformed cells and actively eliminate them from epithelial tissues. Here, we have established a brand-new high-throughput screening platform that targets cell competition. By using this platform, we have identified Rebeccamycin as a hit compound that specifically promotes elimination of RasV12-transformed cells from the epithelium, though after longer treatment it shows substantial cytotoxic effect against normal epithelial cells. Among several Rebeccamycin-derivative compounds, we have found that VC1-8 has least cytotoxicity against normal cells but shows the comparable effect on the elimination of transformed cells. This cell competition-promoting activity of VC1-8 is observed both in vitro and ex vivo. These data demonstrate that the cell competition-based screening is a promising tool for the establishment of a novel type of cancer preventive medicine.
Collapse
|
10
|
Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS. Cytotoxic Indolocarbazoles from Actinomadura melliaura ATCC 39691. JOURNAL OF NATURAL PRODUCTS 2015; 78:1723-9. [PMID: 26091285 PMCID: PMC4515175 DOI: 10.1021/acs.jnatprod.5b00429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Actinomadura melliaura ATCC 39691, a strain isolated from a soil sample collected in Bristol Cove, California, is a known producer of the disaccharide-substituted AT2433 indolocarbazoles (6-9). Reinvestigation of this strain using new media conditions led to >40-fold improvement in the production of previously reported AT2433 metabolites and the isolation and structure elucidation of the four new analogues, AT2433-A3, A4, A5, and B3 (1-4). The availability of this broader set of compounds enabled a subsequent small antibacterial/fungal/cancer SAR study that revealed disaccharyl substitution, N-6 methylation, and C-11 chlorination as key modulators of bioactivity. The slightly improved anticancer potency of the newly reported N-6-desmethyl 1 (compared to 6) contrasts extensive SAR of monoglycosylated rebeccamycin-type topoisomerase I inhibitors where N-6 alkylation has contributed to improved potency and ADME. Complete 2D NMR assignments for the known metabolite BMY-41219 (5) and (13)C NMR spectroscopic data for the known analogue AT2433-B1 (7) are also provided for the first time.
Collapse
Affiliation(s)
- Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Madan K. Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Author:
| |
Collapse
|
11
|
Chang FY, Ternei MA, Calle PY, Brady SF. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. J Am Chem Soc 2015; 137:6044-52. [PMID: 25872030 PMCID: PMC4839266 DOI: 10.1021/jacs.5b01968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs. As suggested by our phylogenetic analysis of CPAS genes, identified in our survey of crude eDNA extracts, reductasporine (2) contains an unprecedented TD core structure: a pyrrolinium indolocarbazole core that is likely key to its unusual bioactivity profile. This work demonstrates the potential for the discovery of structurally rare and biologically interesting natural products using targeted metagenomics, where environmental samples are prescreened to identify the most phylogenetically unique gene sequences and molecules associated with these genes are accessed through targeted metagenomic library construction and heterologous expression.
Collapse
Affiliation(s)
- Fang-Yuan Chang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Melinda A. Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Paula Y. Calle
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
12
|
Kaplan-Ozen C, Tekiner-Gulbas B, Foto E, Yildiz I, Diril N, Aki E, Yalcin I. Benzothiazole derivatives as human DNA topoisomerase IIα inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0577-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Yu H, Li M, Liu G, Geng J, Wang J, Ren J, Zhao C, Qu X. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem Sci 2012. [DOI: 10.1039/c2sc20372c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
14
|
Peterson KE, Cinelli MA, Morrell AE, Mehta A, Dexheimer TS, Agama K, Antony S, Pommier Y, Cushman M. Alcohol-, diol-, and carbohydrate-substituted indenoisoquinolines as topoisomerase I inhibitors: investigating the relationships involving stereochemistry, hydrogen bonding, and biological activity. J Med Chem 2011; 54:4937-53. [PMID: 21710981 PMCID: PMC3151643 DOI: 10.1021/jm101338z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The DNA-relaxing enzyme topoisomerase I (Top1) can be inhibited by heterocyclic compounds such as indolocarbazoles and indenoisoquinolines. Carbohydrate and hydroxyl-containing side chains are essential for the biological activity of indolocarbazoles. The current study investigated how similar functionalities could be "translated" to the indenoisoquinoline system and how stereochemistry and hydrogen bonding affect biological activity. Herein is described the preparation and assay of indenoisoquinolines substituted with short-chain alcohols, diols, and carbohydrates. Several compounds (including those derived from sugars) display potent Top1 poisoning and antiproliferative activities. The Top1 poisoning activity of diol-substituted indenoisoquinolines is dependent upon stereochemistry. Although the effect is striking, molecular modeling and docking studies do not indicate any reason for the difference in activity due to similar calculated interactions between the ligand and Top1-DNA complex and ambiguity about the binding mode. A stereochemical dependence was also observed for carbohydrate-derived indenoisoquinolines. Although similar trends were observed in other classes of Top1 inhibitors, the exact nature of this effect has yet to be elucidated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Cushman
- To whom correspondence should be addressed. Tel: 765-494-1465. Fax: 765-494-6790.
| |
Collapse
|
15
|
Kaluzhny DN, Shchyolkina AK, Ilyinsky NS, Borisova OF, Shtil AA. Novel Indolocarbazole Derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione Is a Preferred c-Myc Guanine Quadruplex Ligand. J Nucleic Acids 2011; 2011:184735. [PMID: 21772991 PMCID: PMC3136114 DOI: 10.4061/2011/184735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
The indolocarbazole derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione (AIC) has demonstrated a high potency (at nanomolar to submicromolar concentrations) towards the NCI panel of human tumor cell lines and transplanted tumors. Intercalation into the DNA double helix has been identified as an important prerequisite for AIC cytotoxicity. In this study, we provide evidence for preferential binding to the G-quadruplex derived from the c-Myc oncogene promoter (Pu18 d(AG(3)TG(4))(2); G-c-Myc). The association constant for AIC:G-c-Myc complex was ~100 times and 10 times greater than the respective values for the complexes AIC:c-Myc duplex and AIC:telomeric d(TTAGGG)(4) G-quadruplex. The concentrations at which AIC formed complexes with G-c-Myc were close to those that attenuated the steady-state level of the c-Myc mRNA in the human HCT116 colon carcinoma cell line. We suggest that preferential binding of AIC to G-c-Myc rather than to the c-Myc duplex might favor the quadruplex formation in the cells, thereby contributing to downregulation of the c-Myc expression by AIC.
Collapse
Affiliation(s)
- Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
16
|
Zou P, Yu Y, Wang YA, Zhong Y, Welton A, Galbán C, Wang S, Sun D. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 2010; 7:1974-84. [PMID: 20845930 PMCID: PMC2997864 DOI: 10.1021/mp100273t] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies were conducted to develop antibody- and fluorescence-labeled superparamagnetic iron oxide nanoparticle (SPIO) nanotheranostics for magnetic resonance imaging (MRI) and fluorescence imaging of cancer cells and pH-dependent intracellular drug release. SPIO nanoparticles (10 nm) were coated with amphiphilic polymers and PEGylated. The antibody HuCC49ΔCH2 and fluorescent dye 5-FAM were conjugated to the PEG of iron oxide nanoparticles (IONPs). Anticancer drugs doxorubicin (Dox), azido-doxorubicin (Adox), MI-219, and 17-DMAG containing primary amine, azide, secondary amine, and tertiary amine, respectively, were encapsulated into IONPs. The encapsulation efficiency and drug release at various pHs were determined using LC-MS/MS. The cancer targeting and imaging were monitored using MRI and fluorescent microscopy in a colon cancer cell line (LS174T). The pH-dependent drug release, intracellular distribution, and cytotoxicity were evaluated using microscopy and MTS assay. The PEGylation of SPIO and conjugation with antibody and 5-FAM increased SPIO size from 18 to 44 nm. Fluorescent imaging, magnetic resonance imaging (MRI) and Prussian blue staining demonstrated that HuCC49ΔCH2-SPIO increased cancer cell targeting. HuCC49ΔCH2-SPIO nanotheranostics decreased the T(2) values in MRI of LS174T cells from 117.3 ± 1.8 ms to 55.5 ± 2.6 ms. The loading capacities of Dox, Adox, MI-219, and 17-DMAG were 3.16 ± 0.77%, 6.04 ± 0.61%, 2.22 ± 0.42%, and 0.09 ± 0.07%, respectively. Dox, MI-219 and 17-DMAG showed pH-dependent release while Adox did not. Fluorescent imaging demonstrated the accumulation of HuCC49ΔCH2-SPIO nanotheranostics in endosomes/lysosomes. The encapsulated Dox was released in acidic lysosomes and diffused into cytosol and nuclei. In contrast, the encapsulated Adox only showed limited release in endosomes/lysosomes. HuCC49ΔCH2-SPIO nanotheranostics target-delivered more Dox to LS174T cells than nonspecific IgG-SPIO and resulted in a lower IC(50) (1.44 μM vs 0.44 μM). The developed HuCC49ΔCH2-SPIO nanotheranostics provides an integrated platform for cancer cell imaging, targeted anticancer drug delivery and pH-dependently drug release.
Collapse
Affiliation(s)
- Peng Zou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanke Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Andrew Wang
- Ocean NanoTech, LLC700 Research Center Blvd, Fayetteville, AR 72701, USA
| | - Yanqiang Zhong
- Department of Pharmaceutics, College of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Amanda Welton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig Galbán
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Comprehensive Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Pavan GM, Posocco P, Tagliabue A, Maly M, Malek A, Danani A, Ragg E, Catapano CV, Pricl S. PAMAM dendrimers for siRNA delivery: computational and experimental insights. Chemistry 2010; 16:7781-95. [PMID: 20496352 DOI: 10.1002/chem.200903258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Short double-stranded RNAs, which are known as short interfering RNA (siRNA), can be used to specifically down-regulate the expression of the targeted gene in a process known as RNA interference (RNAi). However, the success of gene silencing applications based on the use of synthetic siRNA critically depends on efficient intracellular delivery. Polycationic branched macromolecules such as poly(amidoamine) (PAMAM) dendrimers show a strong binding affinity for RNA molecules and, hence, can provide an effective, reproducible, and relatively nontoxic method for transferring siRNAs into animal cells. Notwithstanding these perspectives, relatively few attempts have been made so far along these lines to study in detail the molecular mechanisms underlying the complexation process between PAMAMs and siRNAs. In this work we combine molecular simulation and experimental approaches to study the molecular requirements of the interaction of RNA-based therapeutics and PAMAM dendrimers of different generations. The dendrimers and their siRNA complexes were structurally characterized, and the free energy of binding between each dendrimer and a model siRNA was quantified by using the well-known MM/PBSA approach. DOSY NMR experiments confirmed the structural in silico prediction and yielded further information on both the complex structure and stoichiometry at low N/P ratio values. siRNA/PAMAM complex formation was monitored at different N/P ratios using gel retardation assays, and a simple model was proposed, which related the amount of siRNA complexed to the entropy variation upon complex formation obtained from the computer simulations.
Collapse
Affiliation(s)
- Giovanni Maria Pavan
- Physical and Mathematical Sciences Research Unit (SMF), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, 6928 Manno, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaluzhny D, Tatarskiy V, Dezhenkova L, Plikhtyak I, Miniker T, Shchyolkina A, Strel'tsov S, Chilov G, Novikov F, Kubasova I, Smirnova Z, Mel'nik S, Livshits M, Borisova O, Shtil A. Novel Antitumor L-Arabinose Derivative of Indolocarbazole with High Affinity to DNA. ChemMedChem 2009; 4:1641-8. [DOI: 10.1002/cmdc.200900227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Guo S, Tipparaju SK, Pegan SD, Wan B, Mo S, Orjala J, Mesecar AD, Franzblau SG, Kozikowski AP. Natural product leads for drug discovery: isolation, synthesis and biological evaluation of 6-cyano-5-methoxyindolo[2,3-a]carbazole based ligands as antibacterial agents. Bioorg Med Chem 2009; 17:7126-30. [PMID: 19783449 DOI: 10.1016/j.bmc.2009.08.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/20/2009] [Accepted: 08/29/2009] [Indexed: 11/30/2022]
Abstract
Indolo[2,3-a]carbazole based inhibitors were synthesized from readily available indigo via a seven-step linear synthetic sequence with a moderate overall yield. The inhibitors were selectively and readily functionalized at the nitrogen on the indole portion of the carbazole unit. The synthesized analogs displayed moderate inhibitory activities toward Bacillus anthracis and Mycobacterium tuberculosis, indicating that indolo[2,3-a]carbazoles could serve as promising leads in the development of new drugs to combat anthrax and tuberculosis infections.
Collapse
Affiliation(s)
- Songpo Guo
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Delarue-Cochin S, McCort-Tranchepain I. Synthesis of new aza-analogs of staurosporine, K-252a and rebeccamycin by nucleophilic opening of C2-symmetric bis-aziridines. Org Biomol Chem 2009; 7:706-16. [DOI: 10.1039/b815737e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Borthakur G, Alvarado Y, Ravandi-Kashani F, Cortes J, Estrov Z, Faderl S, Ivy P, Bueso-Ramos C, Nebiyou Bekele B, Giles F. Phase 1 study of XL119, a rebeccamycin analog, in patients with refractory hematologic malignancies. Cancer 2008; 113:360-6. [PMID: 18473351 DOI: 10.1002/cncr.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND XL119 is a water-soluble derivative of rebeccamycin with dose-dependent myelosuppression as dose-limiting toxicity in phase 1 studies of solid tumors. A phase 1 study was conducted to determine the maximum tolerated dose and toxicities of XL119 in patients with advanced myelodysplastic syndrome and relapsed or refractory acute leukemias. METHODS Thirty-one patients were treated at 7 dose levels ranging from 140 to 260 mg/m(2)/daily times 5 in a 21-day cycle. Consenting patients had correlative biologic parameters studied. RESULTS Dose-limiting toxicity was grade 3/4 mucositis. The recommended phase 2 dose in hematologic malignancies is 240 mg/m(2)/daily times 5 in a 21-day cycle. Clinically significant reduction in bone marrow blasts were seen in 5 patients and additional patients had reductions in peripheral blood blasts. However, the responses were transient. Changes of plasma vascular endothelial growth factor levels from Day 1 to Day 7 correlated negatively with changes in peripheral blood blasts from Day 1 to Day 7. CONCLUSIONS Further assessment of XL119 in combination with other agents in patients with acute leukemias and high-risk myelodysplastic syndrome is warranted.
Collapse
Affiliation(s)
- Gautam Borthakur
- Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Animati F, Berettoni M, Bigioni M, Binaschi M, Felicetti P, Gontrani L, Incani O, Madami A, Monteagudo E, Olivieri L, Resta S, Rossi C, Cipollone A. Synthesis, Biological Evaluation, and Molecular Modeling Studies of Rebeccamycin Analogues Modified in the Carbohydrate Moiety. ChemMedChem 2008; 3:266-79. [DOI: 10.1002/cmdc.200700232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Conchon E, Anizon F, Aboab B, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M. Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone. Eur J Med Chem 2008; 43:282-92. [PMID: 17502122 DOI: 10.1016/j.ejmech.2007.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/16/2022]
Abstract
The synthesis of substituted pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone is reported. Their inhibitory properties toward Checkpoint 1 kinase (Chk1) have been evaluated and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, human colon carcinoma HT29 and HCT116 have been determined. From the biological results, it appears that, in contrast with the upper E heterocycle, the lower D heterocycle is not absolutely required for Chk1 inhibition. The ATP binding pocket of Chk1 seems to be adaptable to substitution of the nitrogen of the imide E heterocycle with a hydroxymethyl group, allowing the fundamental hydrogen bond with the Glu(85) residue of the enzyme.
Collapse
Affiliation(s)
- Elisabeth Conchon
- Laboratoire SEESIB, Université Blaise Pascal, UMR 6504 du CNRS, 24, avenue des Landais, 63177 Aubière, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Kalyuzhnyi DN, Tatarskii VV, Bondarev FS, Plikhtyak IL, Miniker TD, Me'lnik SY, Shtil' AA, Borisova OF. Interaction with DNA as a cytotoxicity factor of a novel glycoside derivative of indolocarbazole. DOKL BIOCHEM BIOPHYS 2007; 411:365-8. [PMID: 17396583 DOI: 10.1134/s1607672906060111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- D N Kalyuzhnyi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991 Russia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sánchez C, Méndez C, Salas JA. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 2006; 23:1007-45. [PMID: 17119643 DOI: 10.1039/b601930g] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indolocarbazole family of natural products, including the biosynthetically related bisindolylmaleimides, is reviewed (with 316 references cited). The isolation of indolocarbazoles from natural sources and the biosynthesis of this class of compounds are thoroughly reviewed, including recent developments in molecular genetics, enzymology and metabolic engineering. The biological activities and underlying modes of action displayed by natural and synthetic indolocarbazoles is also presented, with an emphasis on the development of analogs that have entered clinical trials for its future use against cancer or other diseases.
Collapse
Affiliation(s)
- César Sánchez
- Departamento de Biología Funcional & Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
26
|
Shangguan G, Xing F, Qu X, Mao J, Zhao D, Zhao X, Ren J. DNA binding specificity and cytotoxicity of novel antitumor agent Ge132 derivatives. Bioorg Med Chem Lett 2005; 15:2962-2965. [PMID: 15914003 DOI: 10.1016/j.bmcl.2005.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/23/2005] [Accepted: 04/25/2005] [Indexed: 11/25/2022]
Abstract
A series of Ge132 derivatives have shown enhanced antitumor activity. Previous studies suggest that DNA can be their primary target. Here we show direct evidence that two newly synthesized Ge132 derivatives can intercalate into DNA. Unexpected methyl substitution effect of the novel derivatives on DNA sequence selectivity and cytotoxicity was observed.
Collapse
Affiliation(s)
- Guoqiang Shangguan
- Division of Biological Inorganic Chemistry, Key Laboratory of Rare Earth Chemistry and Physics, Graduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Laronze M, Boisbrun M, Léonce S, Pfeiffer B, Renard P, Lozach O, Meijer L, Lansiaux A, Bailly C, Sapi J, Laronze JY. Synthesis and anticancer activity of new pyrrolocarbazoles and pyrrolo-β-carbolines. Bioorg Med Chem 2005; 13:2263-83. [PMID: 15830466 DOI: 10.1016/j.bmc.2004.12.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
'Bended' 1, 3 or 'linear' 2 pyrrolidino-fused (aza)carbazoles were prepared and screened towards a few cancer-related targets. Whereas 'bended' derivatives 1 and 3 proved to be weakly toxic, several members of the 'linear' family strongly interact with DNA, especially derivative 28a.
Collapse
Affiliation(s)
- M Laronze
- CNRS FRE 2715 'Isolement, Structure, Transformations et Synthèse de Produits Naturels', IFR 53, Faculté de Pharmacie, 51 Rue Cognacq Jay, 51096 Reims cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Long BH, Balasubramanian BN. Non-camptothecin topoisomerase I active compounds as potential anticancer agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.5.635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Zhang G, Shen J, Cheng H, Zhu L, Fang L, Luo S, Muller MT, Lee GE, Wei L, Du Y, Sun D, Wang PG. Syntheses and Biological Activities of Rebeccamycin Analogues with Uncommon Sugars. J Med Chem 2005; 48:2600-11. [PMID: 15801850 DOI: 10.1021/jm0493764] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rebeccamycin analogues containing uncommon sugars and substitutions on the imide nitrogen have been synthesized. Their cytotoxicities were tested in colon cancer and leukemia cells. Their ability to target topoisomerase I was examined using the in vivo complex of the topoisomerase bioassay in Hela cells. Compared with aglycon 1, the modified compounds with various sugar moieties showed more potent cytotoxicities and topo I targeting ability. In addition, the rebeccamycin analogues with various uncommon sugars showed distinct cytotoxicities and topo I targeting activities. The activity of compounds with 2-deoxyglucose (8 and 9) > compounds with 2,6-deoxyglucose (5 and 6) > compounds with 2,3,6-deoxyglucose (10). Furthermore, the anticancer activity of compounds correlated with their ability to target endogenous topo I. These results suggest that the sugar moiety, especially the 2-OH and 6-OH group of the sugar, rather than the modifications in imide structure on the indolocarbazole ring, is a key element for its activity.
Collapse
Affiliation(s)
- Guisheng Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeleke TK, Zeleke JM, Hofstetter H, Hofstetter O. Stereoselective antibodies to free α-hydroxy acids. J Mol Recognit 2005; 18:334-40. [PMID: 15880650 DOI: 10.1002/jmr.741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work describes antibodies exhibiting high stereoselectivity and class-specificity towards the enantiomers of free alpha-hydroxy acids. Since the antibodies interact primarily with the carboxyl-hydroxyl-hydrogen triad about the stereogenic center, they are useful for enantiomer analysis of a variety of structurally different alpha-hydroxy acids including aromatic and aliphatic compounds, e.g. lactic acid. The utility of such antibodies for enantiomer separation in chromatography was demonstrated. Comparative studies of these and previously described anti-alpha-amino acid antibodies revealed that both types of antibodies bind only to analytes that possess both the corresponding target structure and the correct configuration. Thus, substitution of an amino group for the alpha-hydroxyl group results in a complete loss of binding activity with the anti-alpha-hydroxy acid antibodies, while an alpha-amino group is essential for the interaction between analytes and anti-alpha-amino acid antibodies.
Collapse
Affiliation(s)
- Tigabu K Zeleke
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA
| | | | | | | |
Collapse
|
31
|
Chen AY, Chou R, Shih SJ, Lau D, Gandara D. Enhancement of radiotherapy with DNA topoisomerase I-targeted drugs. Crit Rev Oncol Hematol 2004; 50:111-9. [PMID: 15157660 DOI: 10.1016/j.critrevonc.2003.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2003] [Indexed: 11/22/2022] Open
Abstract
Since its discovery more than a century ago, ionizing radiation has become a mainstay therapy for patients suffering from cancers. Currently, radiotherapy provides cure or palliative care for approximately one half of the cancer population. The anticancer efficacy of radiotherapy is, however, largely limited by its lack of tumor specificity and, consequently, normal tissue toxicity. There is an urgent need to develop systemic adjuncts that can enhance the efficacy and the selectivity of radiotherapy toward tumor cells. DNA topoisomerase I (TOP1)-targeted drugs such as camptothecin derivatives represent a novel class of chemotherapeutic agents that have recently been shown to be excellent radiation sensitizers. Combined modality therapy with TOP1-targeted drugs and radiotherapy represents a new promising cancer therapy. The mechanism of enhancement of radiotherapy by TOP1-targeted drugs is under intense investigation. Clinical trials using combinations of radiation and camptothecin derivatives are also currently ongoing in various solid tumors including brain, head and neck, and lung cancers. A better understanding of the radiosensitization (RS) mechanism of TOP1-targeted drugs is pivotal to their clinical application, as well as in guiding the development of better radiation sensitizers.
Collapse
Affiliation(s)
- Allan Y Chen
- Department of Radiation Oncology, UC Davis Medical Center, 4501 X Street, Suite G-126, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
32
|
Moreau P, Gaillard N, Marminon C, Anizon F, Dias N, Baldeyrou B, Bailly C, Pierré A, Hickman J, Pfeiffer B, Renard P, Prudhomme M. Semi-synthesis, topoisomerase I and kinases inhibitory properties, and antiproliferative activities of new rebeccamycin derivatives. Bioorg Med Chem 2003; 11:4871-9. [PMID: 14604648 DOI: 10.1016/j.bmc.2003.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated. The 3,9-dihydroxy derivative is the most efficient compound of this series toward CDK1/cyclin B and CDK5/p25. It is also characterized as a DNA binding topoisomerase I poison. Its broad spectrum of molecular activities likely accounts for its cytotoxic potential. This compound which displays a tumor cell line-selectivity may represent a new lead for subsequent drug design in this series of glycosylated indolocarbazoles.
Collapse
Affiliation(s)
- Pascale Moreau
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, 63177, Aubière, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Anizon F, Moreau P, Sancelme M, Laine W, Bailly C, Prudhomme M. Rebeccamycin analogues bearing amine substituents or other groups on the sugar moiety. Bioorg Med Chem 2003; 11:3709-22. [PMID: 12901916 DOI: 10.1016/s0968-0896(03)00343-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the course of structure-activity relationship studies on rebeccamycin analogues, a series of compounds bearing an amino function on the sugar moiety were synthesized with the aim of improving the solubility and interaction with the macromolecular target(s). The syntheses of amino derivatives and the corresponding chloro, iodo and azido intermediates are described. Their interaction with DNA and effects on human DNA topoisomerases I and II were investigated. Their antimicrobial activities against two Gram-positive bacteria, Bacillus cereus and Streptomyces chartreusis, a Gram-negative bacterium Escherichia coli and a yeast Candida albicans were also determined. 6'-Amino compound 7 and 6'-N-methylamino 14 very efficiently inhibit the growth of E. coli. The introduction of an amino group at the 6'-position strongly enhances the capacity of the drugs to interact with DNA but almost abolishes their poisoning effect on topoisomerase I. Unlike the vast majority of rebeccamycin analogues previously studied, the newly designed compounds do not stimulate DNA cleavage by topoisomerase I. The enhanced capacity of the 6'-amino glycosyl rebeccamycin derivatives to bind to DNA likely account for the improved biological profiles. DNA and topoisomerase I represent two independent targets which can both be used for the development of antitumor rebeccamycin derivatives.
Collapse
Affiliation(s)
- Fabrice Anizon
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 du CNRS, 63177, Aubière, France
| | | | | | | | | | | |
Collapse
|
34
|
Marminon C, Pierré A, Pfeiffer B, Pérez V, Léonce S, Renard P, Prudhomme M. Syntheses and antiproliferative activities of rebeccamycin analogues bearing two 7-azaindole moieties. Bioorg Med Chem 2003; 11:679-87. [PMID: 12537997 DOI: 10.1016/s0968-0896(02)00532-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a part of structure-activity relationship studies on rebeccamycin analogues, compounds containing two aza-indole moieties were synthesized bearing either a methyl group or a hydrogen atom on the imide nitrogen. The azaindole substructures were expected to enhance the cytotoxicity toward tumor cell lines through stronger hydrogen bonding with the target enzyme(s). The cytotoxicities of compounds 8, 10 and 19 against a panel of tumor cell lines were examined and compared with those of rebeccamycin, dechlorinated rebeccamycin 2 and N-methylated analogue A. Their effect on the L1210 cell cycle was also evaluated. Compound 19, having an imide NH function had the strongest cytotoxicity towards L1210 cells and induced the largest accumulation of cells in the G2+M phases of the cell cycle. In contrast to their non-aza analogues, which were cytotoxic for all the cell lines tested, diaza compounds 10 and 19 showed selectivity for some cell lines.
Collapse
Affiliation(s)
- Christelle Marminon
- Université Blaise Pascal, Synthèse Et Etude de Systèmes à Intérêt Biologique, UMR 6504, 63177 Aubière, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Marminon C, Pierré A, Pfeiffer B, Pérez V, Léonce S, Joubert A, Bailly C, Renard P, Hickman J, Prudhomme M. Syntheses and antiproliferative activities of 7-azarebeccamycin analogues bearing one 7-azaindole moiety. J Med Chem 2003; 46:609-22. [PMID: 12570382 DOI: 10.1021/jm0210055] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rebeccamycin analogues containing one azaindole unit, with and without a methyl group on the imide nitrogen and with the sugar moiety coupled either to the indole nitrogen or to the azaindole nitrogen were synthesized. To increase the solubility and induce stronger interactions with the target macromolecules, a bromo or nitro substitutent was introduced on the indole unit. The DNA binding and topoisomerase I inhibition properties were investigated together with the antiproliferative activities toward nine tumor cell lines. In addition, the effect of the compounds on the cell cycle of L1210 leukemia cells was examined. The nonaza analogues were found to be cytotoxic against all cell lines of the panel whereas the aza-analogues showed a selective action toward certain cell lines. They strongly inhibited the proliferation of SK-N-MC neuroblastoma, A431 epidermoid carcinoma and NCI-H69 small cell lung carcinoma cells, but showed little or no cytotoxic effect against IGROV ovary carcinoma, HT29 colon carcinoma, and A549 non small cell lung carcinoma cells. Whatever their cytotoxicity profile, all compounds induce similar cell cycle effects, with a marked G2+M block observed with L1210 leukemia cells. The data suggest that the molecular mechanism of action of the aza-analogue derivatives is different from that of rebeccamycin.
Collapse
Affiliation(s)
- Christelle Marminon
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, 63177 Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hotzel C, Marotto A, Pindur U. New propylamine oligopyrrole carboxamides linked to a heterocyclic or anthraquinone system: synthesis, DNA binding, topoisomerase I inhibition and cytotoxicity. Eur J Med Chem 2003; 38:189-97. [PMID: 12620663 DOI: 10.1016/s0223-5234(02)01441-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Continuing our studies on combilexines, compounds consisting of a DNA intercalator linked to a minor groove ligand, new results are presented. The synthesis of a series of new propylamine oligopyrrole carboxamides closely related to netropsin and distamycin A, linked to a heterocyclic or anthraquinone system is reported. The cytotoxic activity in vitro, the DNA binding characteristics and the inhibition of the topoisomerase I of the compounds were studied in order to explain the biological mechanism of action of these new potential combilexines. Some of the synthesised compounds showed cytotoxic activity against human tumour cell lines, as well as DNA binding and topoisomerase I inhibiting properties.
Collapse
Affiliation(s)
- Christian Hotzel
- Department of Pharmacy, Johannes Gutenberg-University, Staudingerweg 5, 55099, Mainz, Germany
| | | | | |
Collapse
|
37
|
Abstract
Rebeccamycin, a microbial metabolite possessing a maleimide indolo[2,3-a]carbazole framework with a carbohydrate moiety attached to one of the indole nitrogens, is a well-known topoisomerase I inhibitor. This review reports the various total syntheses of rebeccamycin and structure-activity relationship studies on rebeccamycin analogues. Rebeccamycin analogues were prepared either by semi-synthesis from the natural metabolite or by total synthesis. Different families of rebeccamycin analogues were obtained by modifications at the imide heterocycle, dechlorination and substitutions on the indole moieties, modifications of the sugar residue, construction of dimers, coupling the sugar unit to the second indole nitrogen, changing indolo[2,3-a]carbazole skeleton to indolo[2,3-c]carbazole, replacing one or both indole moieties by 7-azaindole units. The biological activities of the rebeccamycin analogues are described. According to their chemical structure, the analogues can inhibit topoisomerase I and/or kinases. From the structure-activity relationships, some important rules were established. Several compounds exhibit stronger antiproliferative activities than the natural metabolite with IC(50) values in the nanomolar range. Some analogues, especially those possessing azaindole moieties, are much more selective than rebeccamycin toward the tumour cell lines tested.
Collapse
Affiliation(s)
- Michelle Prudhomme
- Université Blaise Pascal, Synthèse et étude de systèmes à intérêt biologique, UMR 6504 du CNRS, 24, avenue des Landais, 63177, Aubière, France.
| |
Collapse
|
38
|
Hotzel C, Marotto A, Pindur U. Design, synthesis, DNA-binding and cytotoxicity evaluation of new potential combilexines. Eur J Med Chem 2002; 37:367-78. [PMID: 12008051 DOI: 10.1016/s0223-5234(02)01349-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Combilexines, compounds in which a DNA intercalator is linked to a minor groove binding component, interact with the DNA in a sequence specific manner to yield in most cases compounds with anticancer activity. A series of new compounds closely related to netropsin in which the two components were linked by an amide group was synthesised as potential combilexines. As some of these compounds showed cytotoxic activity in vitro, an attempt was made to rationalise their mechanism of action. The DNA binding characteristics of the carboxamides were evaluated by thermal denaturation experiments and by ethidium bromide displacement assay. Their ability to inhibit the topoisomerase I was also determined. It was concluded that the new compounds were only weak DNA ligands although able in some cases to inhibit topoisomerase I.
Collapse
Affiliation(s)
- Christian Hotzel
- Department of Pharmacy, Johannes Gutenberg University, Staudingerweg 5, D-55099 Mainz, Germany
| | | | | |
Collapse
|
39
|
Marminon C, Facompré M, Bailly C, Hickman J, Pierré A, Pfeiffer B, Renard P, Prudhomme M. Dimers from dechlorinated rebeccamycin: synthesis, interaction with DNA, and antiproliferative activities. Eur J Med Chem 2002; 37:435-40. [PMID: 12008058 DOI: 10.1016/s0223-5234(02)01350-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the course of structure-activity relationships on rebeccamycin analogues, two dimers of dechlorinated rebeccamycin were synthesised with the aim to improve the interaction with DNA and in vitro antiproliferative activities. The synthesis of two dimeric compounds obtained by joining two molecules of dechlorinated rebeccamycin via the imide nitrogen is described. Melting temperature and DNase I footprinting studies were performed to investigate their interaction with DNA. Four tumour cell lines, murine L1210 leukaemia, human HT29 colon carcinoma, A549 non-small cell lung carcinoma and K-562 leukaemia, were used to evaluate the cytotoxicity of the drugs. Their effects on the cell cycle of L1210 cells were also investigated.
Collapse
Affiliation(s)
- Christelle Marminon
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 du CNRS, F-63177 Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Carrasco C, Facompré M, Chisholm JD, Van Vranken DL, Wilson WD, Bailly C. DNA sequence recognition by the indolocarbazole antitumor antibiotic AT2433-B1 and its diastereoisomer. Nucleic Acids Res 2002; 30:1774-81. [PMID: 11937631 PMCID: PMC113207 DOI: 10.1093/nar/30.8.1774] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antibiotic AT2433-B1 belongs to a therapeutically important class of antitumor agents. This natural product contains an indolocarbazole aglycone connected to a unique disaccharide consisting of a methoxyglucose and an amino sugar subunit, 2,4-dideoxy-4-methylamino-L-xylose. The configuration of the amino sugar distinguishes AT2433-B1 from its diastereoisomer iso-AT2433-B1. Here we have investigated the interaction of these two disaccharide indolocarbazole derivatives with different DNA sequences by means of DNase I footprinting and surface plasmon resonance (SPR). Accurate binding measurements performed at 4 and 25 degrees C using the BIAcore SPR method revealed that AT2433-B1 binds considerably more tightly to a hairpin oligomer containing a [CG](4) block than to an oligomer with a central [AT](4) tract. The kinetic analysis shows that the antibiotic dissociates much more slowly from the GC sequence compared to the AT one. Preferential binding of AT2433-B1 to GC-rich sequences in DNA was independently confirmed by DNase I footprinting experiments performed with a 117 bp DNA restriction fragment. The specific binding sequence 5'-AACGCCAG identified from the footprints was then converted into a biotin-labeled DNA hairpin duplex and compound interactions with this specific sequence were characterized by high resolution BIAcore SPR experiments. Such a combined approach provided a detailed understanding of the molecular basis of DNA recognition. The discovery that the glycosyl antibiotic AT2433-B1 preferentially recognizes defined sequences offers novel opportunities for the future design of sequence-specific DNA-reading small molecules.
Collapse
Affiliation(s)
- Carolina Carrasco
- Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret and INSERM U-524, IRCL, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | |
Collapse
|
41
|
Marminon C, Anizon F, Moreau P, Léonce S, Pierré A, Pfeiffer B, Renard P, Prudhomme M. Syntheses and antiproliferative activities of new rebeccamycin derivatives with the sugar unit linked to both indole nitrogens. J Med Chem 2002; 45:1330-9. [PMID: 11882002 DOI: 10.1021/jm011045t] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of new rebeccamycin derivatives, in which the carbohydrate moiety is attached to both indole nitrogens, is described. The newly synthesized compounds were tested for their abilities to block the cell cycle of murine leukemia L1210 cells and their in vitro antiproliferative activities against four tumor cell lines (murine L1210 leukemia and human HT29 colon carcinoma, A549 non-small-cell lung carcinoma, K-562 leukemia). Their biological activities are compared with those of the parent compound rebeccamycin. Some of the new compounds exhibit potent antiproliferative activities, either against the four cell lines or mostly the two leukemias (L1210 and K-562 cell lines). The 3,9-diformyl analogue 9 was selective toward L1210 cells, whereas the 3,9-dibromo 16 was strongly cytotoxic toward the four cell lines tested. Nonselective compound 16 and 3,9-dinitro 13, which exhibited selectivity toward leukemia tumor cell lines, were selected for in-depth evaluation, including in vivo experiments.
Collapse
Affiliation(s)
- Christelle Marminon
- Synthèse et Etude de Systèmes à Intérêt Biologique, Université Blaise Pascal, UMR 6504, 63177 Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Voldoire A, Sancelme M, Prudhomme M, Colson P, Houssier C, Bailly C, Léonce S, Lambel S. Rebeccamycin analogues from indolo[2,3-c]carbazole. Bioorg Med Chem 2001; 9:357-65. [PMID: 11249128 DOI: 10.1016/s0968-0896(00)00251-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylated indolocarbazoles related to the antibiotic rebeccamycin represent an important series of antitumor drugs. In the course of structure-activity relationship studies, we report the synthesis of two new derivatives containing an indolo[2,3-c]carbazole chromophore instead of the conventional indolo[2,3-a]carbazole unit found in the natural metabolites. The N-methylated compound 8 containing one glucose residue behaves as a typical DNA intercalating agent, as judged from circular and electric linear dichroism measurements with purified DNA. In contrast, the bis-glycosylated derivative 7 containing a glucose residue on each indole nitrogen has lost its capacity to form stable complexes with DNA. DNA relaxation experiments reveal that the two drugs 7 and 8 have weak effects on human DNA topoisomerase I. The modified conformation of the indolocarbazole chromophore is detrimental to the stabilization of topoisomerase I-DNA complexes. The lack of potent topoisomerase I inhibition leads to decreased cytotoxicity but, however, we observed that the DNA-intercalating mono-glycosyl derivative 8 is about 5 times more cytoxic than the bis-glycosyl analogue 7. The study suggests that the naturally-occurring indolo[2,3-a]carbazole skeleton should be preserved to maintain the topoisomerase I inhibitory and cytotoxic activities.
Collapse
Affiliation(s)
- A Voldoire
- Université Blaise Pascal, Synthèse, Electrosynthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bailly C, Goossens JF, Laine W, Anizon F, Prudhomme M, Ren J, Chaires JB. Formaldehyde-induced alkylation of a 2'-aminoglucose rebeccamycin derivative to both A.T and G.C base pairs in DNA. J Med Chem 2000; 43:4711-20. [PMID: 11101362 DOI: 10.1021/jm0003438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rebeccamycin derivatives represent a promising class of antitumor agents. In this series, two glycosylated indolocarbazoles, NB-506 and NSC-655649, are currently undergoing clinical trials. Their anticancer activities are associated with their capacities to interact with DNA and to inhibit DNA topoisomerases. Previous studies revealed that the planar indolocarbazole chromophore can intercalate into DNA, locating the appended carbohydrate residue in one of the two helical grooves, probably the minor groove as is the case with the anthracyclines and other DNA-binding antibiotics. The sugar residue contributes significantly to the DNA binding free energy of NB-506. However, the exact positioning of the glycosyl residue of rebeccamycin derivatives in the drug-DNA complex remains poorly understood. To better understand how glycosylated indolocarbazoles interact with DNA, we investigated the interaction of a rebeccamycin derivative (85) bearing a 2'-amino group on the sugar residue. We show that the presence of the 2'-amino function permits the formation of covalent drug-DNA complexes in the presence of formaldehyde. Complementary biochemical and spectroscopic measurements attest that 85 reacts covalently with the 2-amino group of guanines exposed in the minor groove of the double helix, as is the case with daunomycin. In contrast to daunomycin, 85 also forms cross-links with an oligonucleotide containing only A.T base pairs. The covalent binding to A.T base pairs was detected using a gel mobility shift assay and was independently confirmed by thermal denaturation studies and by fluorescence measurements using a series of synthetic polynucleotides. The HCHO-mediated alkylation reaction of the drug with A.T base pairs apparently involves the 6-amino group of adenines exposed in the major groove whereas the covalent attachment to G.C base pairs implicates the 2-amino group of guanines situated in the opposite minor groove. Therefore, the results suggest that either the drug is able to switch grooves in response to sequence or it can simultaneously bind to both the minor and major grooves of the double helix. This study will help to guide the rational design of new DNA-binding antitumor indolocarbazole drugs and also provides a general experimental approach for probing minor versus major groove interactions between small molecules and DNA.
Collapse
Affiliation(s)
- C Bailly
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, 59045 Lille, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chisholm JD, Van Vranken DL. Regiocontrolled synthesis of the antitumor antibiotic AT2433-A1. J Org Chem 2000; 65:7541-53. [PMID: 11076613 DOI: 10.1021/jo000911r] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indolo[2,3-a]carbazole glycosides are potent antitumor antibiotics currently undergoing clinical trials for the treatment of numerous types of cancer. AT2433-A1 is the most complex member of this family of compounds possessing a unique disaccharide with a sensitive aminodeoxysugar and an unsymmetric aglycon. The synthesis of this natural product requires a method for glycosylation that sets the stereochemistry of the anomeric center and the regiochemistry of the aglycon. These goals were accomplished by carrying out the Mannich cyclization of a bis-3, 4-(3-indolyl)succinimide to give a key class of indoline intermediates that could be glycosylated stereoselectively with complex carbohydrates without hydroxyl protection or activation. The regiochemistry of the Mannich cyclization was precisely controlled by choosing between kinetic or thermodynamic conditions. This strategy culminated in the first synthesis of the antitumor antibiotic AT2433-A1.
Collapse
Affiliation(s)
- J D Chisholm
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
45
|
Bailly C, Qu X, Chaires JB, Colson P, Houssier C, Ohkubo M, Nishimura S, Yoshinari T. Substitution at the F-ring N-imide of the indolocarbazole antitumor drug NB-506 increases the cytotoxicity, DNA binding, and topoisomerase I inhibition activities. J Med Chem 1999; 42:2927-35. [PMID: 10425102 DOI: 10.1021/jm990108t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antitumor drug NB-506, which is currently undergoing phase I/II clinical trials, contains a DNA-intercalating indolocarbazole chromophore substituted with a glucose residue. In addition to interacting with DNA, the drug stabilizes the topoisomerase I-DNA covalent complex. To reinforce the DNA binding and anti-topoisomerase I activities of NB-506, an analogue containing a new substituent on the naphthalimide ring F was synthesized. The N-formylamino group of NB-506 has been replaced with a more hydrophilic group, N-bis(hydroxymethyl)methylamino. In this study we show that the incorporation of a longer substituent on the N6 position effectively reinforces both the interaction with DNA and the capacity of the drug to maintain the integrity of the topoisomerase I-DNA covalent complexes. The strength and the mode of binding of the drugs to DNA were studied by complementary biophysical techniques including absorption, fluorescence, and circular and linear dichroism. Various biochemical procedures were applied to investigate the effects on human topoisomerase I using plasmid DNA as well as restriction fragments. The drug binding sites and the positions of the topoisomerase I-mediated cleavage sites were mapped with nucleotide resolution using footprinting and sequencing techniques. Cytotoxicity measurements performed with various human cancer cell lines (HCT-116, DLD-1, MKN-45) indicate that the newly designed drug is 3 to 4 times more toxic to colon and gastric cancer cells than NB-506. Therefore, the results suggest that the antitumor activity of indolocarbazole-based drugs can be enhanced by incorporating DNA and/or topoisomerase I reactive groups. They also support the hypothesis that the substituent on the imide nitrogen on the F ring of NB-506 has direct interaction with the molecular target. The study helps to define the structure-activity relationships in the indolocarbazole series of antitumor agents targeting topoisomerase I.
Collapse
Affiliation(s)
- C Bailly
- Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret and INSERM U-524, IRCL, Lille 59045, France.
| | | | | | | | | | | | | | | |
Collapse
|