1
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
2
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
3
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
4
|
Batrouni AG, Baskin JM. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg Med Chem 2021; 40:116190. [PMID: 33965837 DOI: 10.1016/j.bmc.2021.116190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Kelley CA, De Henau S, Bell L, Dansen TB, Cram EJ. Redox signaling modulates Rho activity and tissue contractility in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2020; 31:1486-1497. [PMID: 32374641 PMCID: PMC7359568 DOI: 10.1091/mbc.e20-04-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actomyosin-based contractility in smooth muscle and nonmuscle cells is regulated by signaling through the small GTPase Rho and by calcium-activated pathways. We use the myoepithelial cells of the Caenorhabditis elegans spermatheca to study the mechanisms of coordinated myosin activation in vivo. Here, we show that redox signaling modulates RHO-1/Rho activity in this contractile tissue. Exogenously added as well as endogenously generated hydrogen peroxide decreases spermathecal contractility by inhibition of RHO-1, which depends on a conserved cysteine in its nucleotide binding site (C20). Further, we identify an endogenous gradient of H2O2 across the spermathecal tissue, which depends on the activity of cytosolic superoxide dismutase, SOD-1. Collectively, we show that SOD-1-mediated H2O2 production regulates the redox environment and fine tunes Rho activity across the spermatheca through oxidation of RHO-1 C20.
Collapse
Affiliation(s)
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Liam Bell
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
De Henau S, Pagès-Gallego M, Pannekoek WJ, Dansen TB. Mitochondria-Derived H 2O 2 Promotes Symmetry Breaking of the C. elegans Zygote. Dev Cell 2020; 53:263-271.e6. [PMID: 32275886 DOI: 10.1016/j.devcel.2020.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
Symmetry breaking is an essential step in cell differentiation and early embryonic development. However, the molecular cues that trigger symmetry breaking remain largely unknown. Here, we show that mitochondrial H2O2 acts as a symmetry-breaking cue in the C. elegans zygote. We find that symmetry breaking is marked by a local H2O2 increase and coincides with a relocation of mitochondria to the cell cortex. Lowering endogenous H2O2 levels delays the onset of symmetry breaking, while artificially targeting mitochondria to the cellular cortex using a light-induced heterodimerization technique is sufficient to initiate symmetry breaking in a H2O2-dependent manner. In wild-type development, both sperm and maternal mitochondria contribute to symmetry breaking. Our findings reveal that mitochondrial H2O2-signaling promotes the onset of polarization, a fundamental process in development and cell differentiation, and this is achieved by both mitochondrial redistribution and differential H2O2-production.
Collapse
Affiliation(s)
- Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Marc Pagès-Gallego
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Willem-Jan Pannekoek
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
7
|
Sehgal PB, Westley J, Lerea KM, DiSenso-Browne S, Etlinger JD. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs). Anal Biochem 2020; 597:113691. [PMID: 32194074 DOI: 10.1016/j.ab.2020.113691] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
Membraneless organelles (MLOs) in the cytoplasm and nucleus in the form of 2D and 3D phase-separated biomolecular condensates are increasingly viewed as critical in regulating diverse cellular functions. These functions include cell signaling, immune synapse function, nuclear transcription, RNA splicing and processing, mRNA storage and translation, virus replication and maturation, antiviral mechanisms, DNA sensing, synaptic transmission, protein turnover and mitosis. Components comprising MLOs often associate with low affinity; thus cell integrity can be critical to the maintenance of the full complement of respective MLO components. Phase-separated condensates are typically metastable (shape-changing) and can undergo dramatic, rapid and reversible assembly and disassembly in response to cell signaling events, cell stress, during mitosis, and after changes in cytoplasmic "crowding" (as observed with condensates of the human myxovirus resistance protein MxA). Increasing evidence suggests that neuron-specific aberrations in phase-separation properties of RNA-binding proteins (e.g. FUS and TDP-43) and others (such as the microtubule-binding protein tau) contribute to the development of degenerative neurological diseases (e.g. amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease). Thus, studies of liquid-like phase separation (LLPS) and the formation, structure and function of MLOs are of considerable importance in understanding basic cell biology and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA; Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| | - Jenna Westley
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Kenneth M Lerea
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Susan DiSenso-Browne
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA; Department of Dental Medicine, Touro College of Dental Medicine, Hawthorne, NY, 10532, USA
| | - Joseph D Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
8
|
Mambwe B, Neo K, Javanmard Khameneh H, Leong KWK, Colantuoni M, Vacca M, Muimo R, Mortellaro A. Tyrosine Dephosphorylation of ASC Modulates the Activation of the NLRP3 and AIM2 Inflammasomes. Front Immunol 2019; 10:1556. [PMID: 31333677 PMCID: PMC6624653 DOI: 10.3389/fimmu.2019.01556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The inflammasome is an intracellular multi-protein complex that orchestrates the release of the pro-inflammatory cytokines IL-1β and IL-18, and a form of cell death known as pyroptosis. Tyrosine phosphorylation of the inflammasome sensors NLRP3, AIM2, NLRC4, and the adaptor protein, apoptosis-associated speck-like protein (ASC) has previously been demonstrated to be essential in the regulation of the inflammasome. By using the pharmacological protein tyrosine phosphatase (PTPase) inhibitor, phenylarsine oxide (PAO), we have demonstrated that tyrosine dephosphorylation is an essential step for the activation of the NLRP3 and AIM2 inflammasomes in human and murine macrophages. We have also shown that PTPase activity is required for ASC nucleation leading to caspase-1 activation, IL-1β, and IL-18 processing and release, and cell death. Furthermore, by site-directed mutagenesis of ASC tyrosine residues, we have identified the phosphorylation of tyrosine Y60 and Y137 of ASC as critical for inflammasome assembly and function. Therefore, we report that ASC tyrosine dephosphorylation and phosphorylation are crucial events for inflammasome activation.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, United Kingdom
| | - Kurt Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Keith Weng Kit Leong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mariasilvia Colantuoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,International PhD Program in Molecular Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Vacca
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, United Kingdom
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Wang Z, Li Y, Cai S, Li R, Cao G. Cannabinoid receptor 2 agonist attenuates blood‑brain barrier damage in a rat model of intracerebral hemorrhage by activating the Rac1 pathway. Int J Mol Med 2018; 42:2914-2922. [PMID: 30132506 DOI: 10.3892/ijmm.2018.3834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
Blood‑brain barrier (BBB) disruption and consequent edema formation are the most common brain injuries following intracerebral hemorrhage (ICH). Endocannabinoid receptors can alter the permeability of various epithelial barriers and have potential neuroprotective effects. The present study aimed to explore whether the selective cannabinoid receptor 2 (CNR2) agonist, JWH133, can ameliorate BBB integrity and behavioral outcome by activating Ras‑related C3 botulinum toxin substrate 1 (Rac1) following ICH. Autologous arterial blood was injected into the basal ganglia of rats to induce ICH. Animals were randomly divided into the following groups: Sham‑operated, ICH+vehicle, ICH+JWH133, ICH+JWH13+vehicle, ICH+JWH133+AM630 (a selective CNR2 antagonist), ICH+AM630, ICH+JWH133 +NSC23766 (a Rac1 antagonist) and ICH+NSC23766. JWH133 and AM630 were independently intraperitoneally administrated at 1 h prior to ICH. NSC23766 was intracerebroventricularly (ICV) administered 30 min prior to ICH. A modified Garcia test, corner test, Evans blue extravasation and brain water content analysis were performed at 24 and 72 h following ICH. Western blotting and pull‑down assays were performed at 24 h following ICH. The results demonstrated that JWH133 treatment improved neurofunctional deficits, reduced perihematomal brain edema and alleviated BBB damage at 24 and 72 h following ICH. In addition, JWH133 treatment increased the protein expression levels of guanosine‑5'‑triphosphate‑Rac1 and of the adherens junction proteins occludin, zonula occludens‑1 and claudin‑5. However, these effects were reversed by AM630 and NSC23766 treatment. In conclusion, the present findings revealed that JWH133 treatment attenuated brain injury in a rat model of ICH via activation of the Rac1 signaling pathway, thus preserving BBB integrity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Yongfu Li
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Shuangyong Cai
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Rui Li
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Guanbo Cao
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| |
Collapse
|
10
|
Lin L, Xu C, Carraway MS, Piantadosi CA, Whorton AR, Li S. RhoA inactivation by S-nitrosylation regulates vascular smooth muscle contractive signaling. Nitric Oxide 2018; 74:56-64. [DOI: 10.1016/j.niox.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
|
11
|
Bani-Fwaz MZ, Fazary AE. Commentary on the Synthesis and Structures of Unsupported Cycloarsoxane Compounds. COMMENT INORG CHEM 2018. [DOI: 10.1080/02603594.2018.1423618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mutasem Z. Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Centre for Advanced Material Sciences (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Ahmed E. Fazary
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Centre for Advanced Material Sciences (RCAMS), King Khalid University, Abha, Saudi Arabia
- Egyptian Organization for Biological Products and Vaccines [VACSERA Holding Company], Giza, Egypt
| |
Collapse
|
12
|
Heckman CA, Pandey P, Cayer ML, Biswas T, Zhang Z, Boudreau NS. The tumor promoter-activated protein kinase Cs are a system for regulating filopodia. Cytoskeleton (Hoboken) 2017; 74:297-314. [PMID: 28481056 PMCID: PMC5575509 DOI: 10.1002/cm.21373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Different protein kinase C (PKC) isoforms have distinct roles in regulating cell functions. The conventional (α, β, γ) and novel (δ, ɛ, η, θ) classes are targets of phorbol ester tumor promoters, which are surrogates of endogenous second messenger, diacylglycerol. The promoter-stimulated disappearance of filopodia was investigated by use of blocking peptides (BPs) that inhibit PKC maturation and/or docking. Filopodia were partially rescued by a peptide representing PKC ɛ hydrophobic sequence, but also by a myristoylated PKC α/β pseudosubstrate sequence, and an inhibitor of T-cell protein tyrosine phosphatase (TC-PTP). The ability to turn over filopodia was widely distributed among PKC isoforms. PKC α and η hydrophobic sequences enhanced filopodia in cells in the absence of tumor promoter treatment. With transcriptional knockdown of PKC α, the content of PKC ɛ predominated over other isoforms. PKC ɛ could decrease filopodia significantly in promoter-treated cells, and this was attributed to ruffling. The presence of PKC α counteracted the PKC ɛ-mediated enhancement of ruffling. The results showed that there were two mechanisms of filopodia downregulation. One operated in the steady-state and relied on PKC α and η. The other was stimulated by tumor promoters and relied on PKC ɛ. Cycles of protrusion and retraction are characteristic of filopodia and are essential for the cell to orient itself during chemotaxis and haptotaxis. By suppressing filopodia, PKC ɛ can create a long-term "memory" of an environmental signal that may act in nature as a mnemonic device to mark the direction of a repulsive signal.
Collapse
Affiliation(s)
- Carol A. Heckman
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Pratima Pandey
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Marilyn L. Cayer
- Center for Microscopy and MicroanalysisBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Tania Biswas
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityRobert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall DriveWest LafayetteIndiana47907
| | - Nancy S. Boudreau
- Department of Applied Statistics and Operations ResearchBowling Green State University344 Business Administration BuildingBowling GreenOhio43403
| |
Collapse
|
13
|
Foster CK, Thorpe C. Challenges in the evaluation of thiol-reactive inhibitors of human protein disulfide Isomerase. Free Radic Biol Med 2017; 108:741-749. [PMID: 28465261 PMCID: PMC5507595 DOI: 10.1016/j.freeradbiomed.2017.04.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
This paper addresses how to evaluate the efficacy of the growing inventory of thiol-reactive inhibitors of mammalian protein disulfide Isomerase (PDI) enzymes under realistic concentrations of potentially competing thiol-containing peptides and proteins. For this purpose, we introduce a variant of the widely-used reductase assay by using a commercially-available cysteine derivative (BODIPY FL L-Cystine; BD-SS) that yields a 55-fold increase in fluorescence (excitation/emission; 490/513nm) on scission of the disulfide bond. This plate reader-compatible method detects human PDI down to 5-10nM, can utilize a range of thiol substrates (including 5µM dithiothreitol, 10µM reduced RNase thiols, and 5mM glutathione; GSH), and can operate from pH 6-9.5 in a variety of buffers. PDI assays often employ low micromolar levels of substrates leading to ambiguities when thiol-directed inhibitors are evaluated. The present work utilizes 5mM GSH for both pre-incubation and assay phases to more realistically reflect the high concentration of thiols that an inhibitor would encounter intracellularly. Extracellular PDI faces a much lower concentration of potentially competing thiols; to assess reductase activity under these conditions, the pre-reduced PDI is treated with inhibitor and then fluorescence increase upon reduction of BD-SS is followed in the absence of additional competing thiols. Both assay modes were tested with four mechanistically diverse PDI inhibitors. Two reversible reagents, 3,4-methylenedioxy-β-nitrostyrene (MNS) and the arsenical APAO, were found to be strong inhibitors of PDI in the absence of competing thiols, but were ineffective in the presence of 5mM GSH. A further examination of the nitrostyrene showed that MNS not only forms facile Michael adducts with GSH, but also with the thiols of unfolded proteins (Kd values of 7 and <0.1µM, respectively) suggesting the existence of multiple potential intracellular targets for this membrane-permeant reagent. The inhibition of PDI by the irreversible alkylating agent, the chloroacetamide 16F16, was found to be only modestly attenuated by 5mM GSH. Finally, the thiol-independent flavonoid inhibitor quercetin-3-O-rutinoside was found to show equal efficacy in reoxidation and turnover assay types. This work provides a framework to evaluate inhibitors that may target the CxxC motifs of PDI and addresses some of the complexities in the interpretation of the behavior of thiol-directed reagents in vivo.
Collapse
Affiliation(s)
- Celia K Foster
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
14
|
Wang ZG, Cheng Y, Yu XC, Ye LB, Xia QH, Johnson NR, Wei X, Chen DQ, Cao G, Fu XB, Li XK, Zhang HY, Xiao J. bFGF Protects Against Blood-Brain Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway Following Traumatic Brain Injury. Mol Neurobiol 2015; 53:7298-7311. [PMID: 26687235 DOI: 10.1007/s12035-015-9583-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
Abstract
Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.
Collapse
Affiliation(s)
- Zhou-Guang Wang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Cheng
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, Longyou People's Hospital, Quzhou, 324400, China
| | - Xi-Chong Yu
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li-Bing Ye
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Hai Xia
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Noah R Johnson
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiao-Bing Fu
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Kun Li
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
15
|
Hobbs GA, Zhou B, Cox AD, Campbell SL. Rho GTPases, oxidation, and cell redox control. Small GTPases 2014; 5:e28579. [PMID: 24809833 DOI: 10.4161/sgtp.28579] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| | - Bingying Zhou
- Department of Pharmacology; University of North Carolina; Chapel Hill, NC USA
| | - Adrienne D Cox
- Department of Pharmacology; University of North Carolina; Chapel Hill, NC USA; Department of Radiation Oncology, University of North Carolina; Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
16
|
V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond. Anal Bioanal Chem 2014; 406:5171-85. [DOI: 10.1007/s00216-014-7706-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022]
|
17
|
Protein disulfide isomerase: a promising target for cancer therapy. Drug Discov Today 2014; 19:222-40. [DOI: 10.1016/j.drudis.2013.10.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/12/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
|
18
|
Mitchell L, Hobbs GA, Aghajanian A, Campbell SL. Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 2013; 18:250-8. [PMID: 22657737 PMCID: PMC3518547 DOI: 10.1089/ars.2012.4687] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidation and reduction events are critical to physiological and pathological processes and are highly regulated. Herein, we present evidence for the role of Ras and Rho GTPases in controlling these events and the unique underlying mechanisms. Evidence for redox regulation of Ras GTPases that contain a redox-sensitive cysteine (X) in the conserved NKXD motif is presented, and a growing consensus supports regulation by a thiyl radical-mediated oxidation mechanism. We also discuss the debate within the literature regarding whether 2e(-) oxidation mechanisms also regulate Ras GTPase activity. RECENT ADVANCES We examine the increasing in vitro and cell-based data supporting oxidant-mediated activation of Rho GTPases that contain a redox-sensitive cysteine at the end of the conserved phosphoryl-binding loop (p-loop) motif (GXXXXG[S/T]C). While this motif is distinct from Ras, these data suggest a similar 1e(-) oxidation-mediated activation mechanism. CRITICAL ISSUES We also review the data showing that the unique p-loop placement of the redox-sensitive cysteine in Rho GTPases supports activation by 2e(-) cysteine oxidation. Finally, we examine the role that Ras and Rho GTPases play in controlling key oxidant-regulating enzymes in the cell, and we speculate on a feedback mechanism. FUTURE DIRECTIONS Given that these GTPases and redox-regulating enzymes are involved in multiple physiological and pathological processes, we discuss future experiments that may clarify the interplay between them.
Collapse
Affiliation(s)
- Lauren Mitchell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
19
|
Annaba F, Sarwar Z, Gill RK, Ghosh A, Saksena S, Borthakur A, Hecht GA, Dudeja PK, Alrefai WA. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1216-22. [PMID: 22403793 PMCID: PMC3362099 DOI: 10.1152/ajpgi.00017.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.
Collapse
Affiliation(s)
- Fadi Annaba
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Zaheer Sarwar
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Ravinder K. Gill
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Amit Ghosh
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Seema Saksena
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Alip Borthakur
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Gail A. Hecht
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
20
|
Octavia Y, Brunner-La Rocca HP, Moens AL. NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic Biol Med 2012; 52:291-7. [PMID: 22080085 DOI: 10.1016/j.freeradbiomed.2011.10.482] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) occurs when the adaptation mechanisms of the heart fail to compensate for stress factors, such as pressure overload, myocardial infarction, inflammation, diabetes, and cardiotoxic drugs, with subsequent ventricular hypertrophy, fibrosis, myocardial dysfunction, and chamber dilatation. Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) generation and the capacity of antioxidant defense systems, has been authenticated as a pivotal player in the cardiopathogenesis of the various HF subtypes. The family of NADPH oxidases has been investigated as a key enzymatic source of ROS in the pathogenesis of HF. In this review, we discuss the importance of NADPH oxidase-dependent ROS generation in the various subtypes of HF and its implications. A better understanding of the pathogenic roles of NADPH oxidases in the failing heart is likely to provide novel therapeutic strategies for the prevention and treatment of HF.
Collapse
Affiliation(s)
- Yanti Octavia
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | | | | |
Collapse
|
21
|
|
22
|
Nölle A, Zeug A, van Bergeijk J, Tönges L, Gerhard R, Brinkmann H, Al Rayes S, Hensel N, Schill Y, Apkhazava D, Jablonka S, O'mer J, Srivastav RK, Baasner A, Lingor P, Wirth B, Ponimaskin E, Niedenthal R, Grothe C, Claus P. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011; 20:4865-78. [PMID: 21920940 DOI: 10.1093/hmg/ddr425] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.
Collapse
Affiliation(s)
- Anna Nölle
- Institute for Neuroanatomy, Hannover Medical School, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2011; 2008:260146. [PMID: 18431449 PMCID: PMC2292810 DOI: 10.1155/2008/260146] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 07/03/2007] [Accepted: 08/17/2007] [Indexed: 01/11/2023] Open
Abstract
Arsenic-based compounds have become accepted agents for cancer therapy providing high rates of remission of some cancers such as acute promyelocytic leukemia (APL). The mechanisms by which arsenic-containing compounds kill cells and
reasons for selective killing of only certain types of cancer cells such as APLs have recently been delineated. This knowledge
was gained in parallel with increasing understanding and awareness of the importance of intracellular redox systems and
regulation of the production of reactive oxygen species (ROS) by controlling mitochondrial function. Many of the targets for
the arsenic-containing compounds are mitochondrial proteins involved in regulating the production of ROS. Inhibition of these
proteins by disulfide linkage of vicinal thiol groups often leads to increased production of ROS and induction of apoptotic
signalling pathways. Sensitivity or resistance to the actions of arsenic-containing compounds on cancer cells and normal
cells depends on the levels of transport systems for their uptake or efflux from the cells as well as their redox defence
mechanisms. The exact mechanisms of arsenic toxicity as well as its anticancer properties are likely to be related and these
aspects of arsenic metabolism are covered in this review. Greater understanding of the mechanisms of action of arsenic will
help determine the risks of human exposure to this chemical. Novel organic arsenic-containing compounds and the lessons
learned from studying their selective sensitivity in targeting dividing endothelial cells to inhibit angiogenesis raise the future
possibility for designing better targeted antineoplastic arsenic-containing compounds with less toxicity to normal cells.
Collapse
|
24
|
Alam A, Goyal M, Iqbal MS, Bindu S, Dey S, Pal C, Maity P, Mascarenhas NM, Ghoshal N, Bandyopadhyay U. Cysteine-3 and cysteine-4 are essential for the thioredoxin-like oxidoreductase and antioxidant activities of Plasmodium falciparum macrophage migration inhibitory factor. Free Radic Biol Med 2011; 50:1659-68. [PMID: 21406224 DOI: 10.1016/j.freeradbiomed.2011.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/05/2011] [Accepted: 03/08/2011] [Indexed: 02/07/2023]
Abstract
Plasmodium falciparum macrophage migration inhibitory factor (PfMIF) exhibits thioredoxin (Trx)-like oxidoreductase activity but the active site for this activity and its function have not been evaluated. A bioinformatics search revealed that the conserved CXXC motif, which is responsible for Trx-like oxidoreductase activity, is absent from PfMIF. In contrast, the adjacent N-terminal Cys-3 and Cys-4 are conserved in MIF across species of malarial parasites. Mutation of either vicinal Cys-3 or Cys-4 of PfMIF abolished the Trx-like activity, whereas the mutation of the remaining Cys-59 or Cys-103 did not affect it. PfMIF has an antioxidant function. It prevents reactive oxygen species-mediated lipid peroxidation and oxidative damage of DNA as evident from DNA nicking assay. Interestingly, chemical modification of the vicinal cysteines by phenylarsine oxide (PAO), a specific vicinal thiol modifier, significantly prevented this antioxidant activity. Modification of Cys-3 and Cys-4 was confirmed by MALDI-TOF mass spectroscopy of peptide fragments obtained after cyanogen bromide digestion of PAO-modified PfMIF. Furthermore, mutation of either Cys-3 or Cys-4 of PfMIF resulted in the loss of both Trx-like oxidoreductase and antioxidant activities of PfMIF. Altogether, our results suggest that the vicinal Cys-3 and Cys-4 play a critical role in the Trx-like oxidoreductase activity and antioxidant property of PfMIF.
Collapse
Affiliation(s)
- Athar Alam
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One 2011; 6:e15866. [PMID: 21253588 PMCID: PMC3017061 DOI: 10.1371/journal.pone.0015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/25/2010] [Indexed: 12/30/2022] Open
Abstract
Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and Δ12-PGJ2 selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ2. Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Díez-Dacal
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Bray
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario García de Lacoba
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Carlota A. García-Domínguez
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents. Anal Bioanal Chem 2010; 398:2677-91. [PMID: 20730528 DOI: 10.1007/s00216-010-4076-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Toxic organophosphorus compounds (OPC), e.g., pesticides and nerve agents (NA), are known to phosphylate distinct endogenous proteins in vivo and in vitro. OPC adducts of butyrylcholinesterase and albumin are considered to be valuable biomarkers for retrospective verification of OPC exposure. Therefore, we have detected and identified novel adducts of human serum albumin (HSA) by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pure albumin and plasma were incubated with numerous pesticides and NA of the V- and G-type in different molar ratios. Samples were prepared either by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel enzymatic cleavage using endoproteinase Glu-C (Glu-C) or by combining highly albumin-selective affinity extraction with ultrafiltration followed by reduction, carbamidomethylation, and enzymatic cleavage (Glu-C) prior to MALDI-TOF MS analysis. Characteristic mass shifts for phosphylation revealed tyrosine adducts at Y(411) (Y(401)KFQNALLVRY(411)TKKVPQVSTPTLVE(425)), Y(148) and Y(150) (I(142)ARRHPY(148)FY(150)APE(153), single and double labeled), and Y(161) (L(154)LFFAKRY(161)KAAFTE(167)) produced by original NA (tabun, sarin, soman, cyclosarin, VX, Chinese VX, and Russian VX) as well as by chlorpyrifos-oxon, diisopropyl fluorophosphate (DFP), paraoxon-ethyl (POE), and profenofos. MALDI-MS/MS of the single-labeled I(142)-E(153) peptide demonstrated that Y(150) was phosphylated with preference to Y(148). Aged albumin adducts were not detected. The procedure described was reproducible and feasible for detection of adducts at the most reactive Y(411)-residue (S/N ≥ 3) when at least 1% of total albumin was labeled. This was achieved by incubating plasma with molar HSA/OPC ratios ranging from approximately 1:0.03 (all G-type NA, DFP, and POE) to 1:3 (V-type NA, profenofos). Relative signal intensity of the Y(411) adduct correlated well with the spotted relative molar amount underlining the usefulness for quantitative adduct determination. In conclusion, the current analytical design exhibits potential as a verification tool for high-dose exposure.
Collapse
|
27
|
Iero A, Manente S, De Pieri S, Mane E, Gallo M, Cima F, Ballarin L, Bragadin M. Interactions of Cr(VI) and Cr(III) with isolated rat liver mitochondria. INORG CHEM COMMUN 2010. [DOI: 10.1016/j.inoche.2010.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol 2010; 2010:484987. [PMID: 20011071 PMCID: PMC2789582 DOI: 10.1155/2010/484987] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/28/2009] [Indexed: 02/06/2023] Open
Abstract
A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-gamma), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells.
Collapse
|
29
|
Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 2009; 106:20097-102. [PMID: 19897733 DOI: 10.1073/pnas.0902675106] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensitization can be recapitulated in excised inside-out membrane patches, reversed by strong reducing agents, and blocked by pretreatment with maleimide that alkylates cysteines. We identify multiple cysteines required for full modulation of TRPV1 by oxidative challenges. Robust oxidative modulation recovers the agonist sensitivity of receptors desensitized by prolonged exposure to capsaicin. Moreover, oxidative modulation operates synergistically with kinase or proton modulations. Thus, oxidative modulation is a robust mechanism tuning TRPV1 activity via covalent modification of evolutionarily conserved cysteines and may play a role in pain sensing processes during inflammation, infection, or tissue injury.
Collapse
|
30
|
Gancz D, Donin N, Fishelson Z. Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol 2009; 47:310-7. [PMID: 19864026 DOI: 10.1016/j.molimm.2009.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 12/16/2022]
Abstract
Cell death and survival signals activated by the complement membrane attack complex C5b-9 play important roles in complement-associated diseases and in antibody-based cancer therapy. Here, we investigated the involvement of the JNK mitogen-activated protein kinase in C5b-9-induced cell lysis. Necrotic-type cell death regulation by JNK1 and JNK2 was selectively studied in mouse fibroblasts and human K562, HeLa and 293T cells. C5b-9 induced higher JNK activation than C5b-8. Pretreatment with a JNK inhibitor reduced cell sensitivity to complement-mediated lysis. KO cells deficient in either JNK1 or JNK2 were less sensitive to lysis than WT cells. This correlated with lower C3 and C5b-9 deposition on KO cells. Furthermore, silencing of JNK1 or JNK2 expression by RNA interference decreased cell lysis by complement. Reconstitution of JNK2 into JNK2-/- cells and over expression of JNK2 in WT cells increased C3 and C5b-9 deposition as well as cell sensitivity to complement-mediated lysis. Pretreatment of cells with the phosphotyrosine phosphatase inhibitor phenylarsine oxide increased JNK activation and JNK-dependent complement-mediated necrotic death of WT and JNK2-/- KO cells but not of JNK1-/- KO cells. The JNK inhibitor and PAO had no effect on complement-mediated lysis in cells lacking Bid, suggesting involvement of Bid in the JNK lytic pathway. Our results demonstrate that complement C5b-9 induce a JNK/Bid-dependent and JNK-independent necrotic cell death. Both JNK1 and JNK2 have cytotoxic potential, however JNK2 is the primary signal transducer.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
31
|
Vogt A, McPherson PA, Shen X, Balachandran R, Zhu G, Raccor BS, Nelson SG, Tsang M, Day BW. High-content analysis of cancer-cell-specific apoptosis and inhibition of in vivo angiogenesis by synthetic (-)-pironetin and analogs. Chem Biol Drug Des 2009; 74:358-68. [PMID: 19691472 DOI: 10.1111/j.1747-0285.2009.00866.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The natural product (-)-pironetin is a structurally simple small molecule microtubule-perturbing agent whose biological activities appear to be exquisitely dependent on defined stereochemistry and the presence of an eletrophilic alpha,beta-unsaturated lactone moiety. We used alkaloid-catalyzed acyl halide-aldehyde cyclocondensation reactions in asymmetric total syntheses of (-)-pironetin and three synthetic analogs, and evaluated their biological activities by high-content analysis in cell culture and in a zebrafish model. Synthetic (-)-pironetin and 2,3-dihydro-3-hydroxypironetin caused mitotic arrest and programmed cell death in human lung cancer cells but not in normal lung fibroblasts, had nanomolar growth inhibitory activity in multi-drug resistant cells, and inhibited neovascularization in zebrafish embryos. Synthetic (-)-pironetin delayed the onset but increased the extent of tubulin assembly in vitro. The data illustrate the power of acyl halide-aldehyde cyclocondensation to generate biologically active synthetic analogs of stereochemically complex targets and suggest that (-)-pironetin and 2,3-dihydro-3-hydroxypironetin possess unique properties that may bestow them with advantages over existing microtubule-perturbing agents in the context of a whole organism or under conditions of multi-drug resistance.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moulakakis C, Stamme C. Role of clathrin-mediated endocytosis of surfactant protein A by alveolar macrophages in intracellular signaling. Am J Physiol Lung Cell Mol Physiol 2009; 296:L430-41. [PMID: 19136579 DOI: 10.1152/ajplung.90458.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We recently provided evidence that anti-inflammatory macrophage activation, i.e., the inhibition of constitutive and signal-induced NF-kappaB activity by the pulmonary collectin surfactant protein (SP)-A, critically involves a promoted stabilization of IkappaB-alpha, the predominant inhibitor of NF-kappaB, via posttranscriptional mechanisms comprising the activation of atypical (a)PKCzeta. SP-A uptake and degradation by alveolar macrophages (AMphi) occur in a receptor-mediated, clathrin-dependent manner. However, a mutual link between endocytosis of and signaling by SP-A remains elusive. The aim of this study was to investigate whether clathrin-mediated endocytosis (CME) of SP-A by AMphi is a prerequisite for its modulation of the IkappaB-alpha/NF-kappaB pathway. The inhibition of clathrin-coated pit (CCP) formation and clathrin-coated vesicle (CCV) formation/budding abrogates SP-A-mediated IkappaB-alpha stabilization and SP-A-mediated inhibition of LPS-induced NF-kappaB activation in freshly isolated rat AMphi, as determined by Western analysis, fluorescence-activated cell sorting, confocal microscopy, and EMSA. Actin depolymerization and inhibition of CCP formation further abolished SP-A-mediated inhibition of LPS-induced TNF-alpha release, as determined by ELISA. In addition, SP-A-induced atypical PKCzeta activation was abolished by pretreatment of AMphi with CCV inhibitors as determined by in vitro immunocomplex kinase assay. Although CME is classically considered as a means to terminate signaling, our results demonstrate that SP-A uptake via CME by AMphi has to precede the initiation of SP-A signaling.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Clinical Medicine, Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | |
Collapse
|
33
|
Xia W, Wong EWP, Mruk DD, Cheng CY. TGF-beta3 and TNFalpha perturb blood-testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 2008; 327:48-61. [PMID: 19103189 DOI: 10.1016/j.ydbio.2008.11.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 08/19/2008] [Accepted: 11/21/2008] [Indexed: 11/27/2022]
Abstract
In adult mammals such as rats, the blood-testis barrier (BTB) conferred by adjacent Sertoli cells in the seminiferous epithelium segregates post-meiotic germ cell development from the systemic circulation and is one of the tightest blood-tissue barriers. Yet it must "open" transiently at stages VIII to IX of the epithelial cycle to accommodate the migration of preleptotene/leptotene spermatocytes. While this is a vital event of spermatogenesis, the mechanism(s) that regulates BTB dynamics is virtually unknown. Recent studies have suggested that transforming growth factor-beta3 (TGF-beta3) and tumor necrosis factor alpha (TNFalpha) secreted by Sertoli and germ cells into the microenvironment of the BTB are capable of inducing reversible BTB disruption in vivo, apparently by reducing the steady-state levels of occludin and zonula occludens-1 (ZO-1) at the BTB via the p38 mitogen activated protein (MAP) kinase signaling pathway. In this study, local administration of TGF-beta3 (200 ng/testis) to the testis was shown to reversibly perturb the BTB integrity in vivo. We next sought to delineate the mechanism by which these cytokines maintain the steady-state level of integral membrane proteins: occludin, junctional adhesion molecule-A (JAM-A) and N-cadherin at the BTB. Primary Sertoli cells cultured in vitro were shown to establish intact tight junctions and functional BTB within two days when assessed by transepithelial electrical resistance (TER) measurement across the cell epithelium. Sertoli cell integral membrane protein internalization at the BTB was assessed by biotinylation of cell surface proteins, to be followed by tracking the endocytosed/biotinylated proteins by using specific antibodies. Both TGF-beta3 (3 ng/ml) and TNFalpha (10 ng/ml) were shown to significantly accelerate the kinetics of internalization of JAM-A, N-cadherin, and occludin versus controls. Treatment of cells with phenylarsine oxide (PAO) at 10 microM that blocks clathrin-mediated endocytosis was shown to inhibit the TGF-beta3-induced protein internalization. This inhibition of TGF-beta3-mediated protein endocytosis was further validated by silencing of clathrin. The specific effect of TGF-beta3 on protein internalization was further confirmed by RNAi using specific TGF-beta receptor I (TbetaR1) siRNA duplexes. When TbetaR1 was knocked down, the TGF-beta3-induced increase in the kinetics of JAM-A and occludin endocytosis was abolished, making them indistinguishable from controls, illustrating the specificity of the TGF-beta3 effects on protein endocytosis. In summary, this report demonstrates for the first time that BTB dynamics are regulated by TGF-beta3 and TNFalpha via an enhancement of protein endocytosis at the BTB.
Collapse
Affiliation(s)
- Weiliang Xia
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
34
|
Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 2008; 440:15-33. [PMID: 18369934 DOI: 10.1007/978-1-59745-178-9_2] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Eukaryotic cells constantly form and internalize plasma membrane vesicles in a process known as endocytosis. Endocytosis serves a variety of housekeeping and specialized cellular functions, and it can be mediated by distinct molecular pathways. Among them, internalization via clathrin-coated pits, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis are the most extensively characterized. The major endocytic pathways are usually distinguished on the basis of their differential sensitivity to pharmacological/chemical inhibitors, although the possibility of nonspecific effects of such inhibitors is frequently overlooked. This review provides a critical evaluation of the selectivity of the most widely used pharmacological inhibitors of clathrin-mediated, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis. The mechanisms of actions of these agents are described with special emphasis on their reported side effects on the alternative internalization modes and the actin cytoskeleton. The most and the least-selective inhibitors of each major endocytic pathway are highlighted.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
35
|
Montaudon D, Palle K, Rivory LP, Robert J, Douat-Casassus C, Quideau S, Bjornsti MA, Pourquier P. Inhibition of topoisomerase I cleavage activity by thiol-reactive compounds: importance of vicinal cysteines 504 and 505. J Biol Chem 2007; 282:14403-12. [PMID: 17355975 DOI: 10.1074/jbc.m611673200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1) is a nuclear enzyme that plays a crucial role in the removal of DNA supercoiling associated with replication and transcription. It is also the target of the anticancer agent, camptothecin (CPT). Top1 contains eight cysteines, including two vicinal residues (504 and 505), which are highly conserved across species. In this study, we show that thiol-reactive compounds such as N-ethylmaleimide and phenylarsine oxide can impair Top1 catalytic activity. We demonstrate that in contrast to CPT, which inhibits Top1-catalyzed religation, thiolation of Top1 inhibited the DNA cleavage step of the reaction. This inhibition was more pronounced when Top1 was preincubated with the thiol-reactive compound and could be reversed in the presence of dithiothreitol. We also established that phenylarsine oxide-mediated inhibition of Top1 cleavage involved the two vicinal cysteines 504 and 505, as this effect was suppressed when cysteines were mutated to alanines. Interestingly, mutation of Cys-505 also altered Top1 sensitivity to CPT, even in the context of the double Cys-504 to Cys-505 mutant, which relaxed supercoiled DNA with a comparable efficiency to that of wild-type Top1. This indicates that cysteine 505, which is located in the lower Lip domain of human Top1, is critical for optimal poisoning of the enzyme by CPT and its analogs. Altogether, our results suggest that conserved vicinal cysteines 504 and 505 of human Top1 play a critical role in enzyme catalytic activity and are the target of thiol-reactive compounds, which may be developed as efficient Top1 catalytic inhibitors.
Collapse
Affiliation(s)
- Danièle Montaudon
- Groupe de Pharmacologie Moléculaire INSERM E347 and Institut Bergonié, 229 Cours de l'Argonne, Université Victor Segalen Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Du JH, Guan TJ, Zhang H, Xiao H, Han QD, Zhang YY. Phenylarsine oxide inhibited beta-adrenergic receptor-mediated IL-6 secretion: inhibition of cAMP accumulation and CREB activation in cardiac fibroblasts. Biochem Biophys Res Commun 2006; 352:744-9. [PMID: 17141199 DOI: 10.1016/j.bbrc.2006.11.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 11/15/2006] [Indexed: 12/15/2022]
Abstract
As we previously reported, cAMP and p38 MAPK instead of protein kinase A were involved in beta-adrenergic receptor (beta-AR)-mediated interleukin-6 (IL-6) production in mouse cardiac fibroblasts. Besides kinases, phosphatases may also be involved in IL-6 gene regulation. To study the role of protein tyrosine phosphatases (PTPs) in beta-AR-mediated IL-6 production, we selected the most widely used PTP inhibitor, phenylarsine oxide (PAO). We found that PAO dose-dependently inhibited the IL-6 release in response to beta-AR agonist isoproterenol (ISO) in mouse cardiac fibroblasts. This effect was probably due to the inhibition of PTPs, resulting in increased tyrosine phosphorylation, since genistein, an inhibitor of protein tyrosine kinases further potentiated ISO-induced IL-6 production and could partially reverse the inhibitory effect of PAO. PAO also significantly inhibited the IL-6 production by forskolin, an adenylyl cyclase (AC) activator. Furthermore, PAO dose-dependently inhibited the increased cAMP accumulation by either ISO or forskolin and suppressed the phosphorylation of CREB, an important transcriptional factor for IL-6 gene expression. But PAO did not affect the activation of p38 MAPK by ISO. Although PAO was also reported to inhibit NADPH oxidase, the inhibition of NADPH oxidase by its specific inhibitor, diphenylene iodonium (DPI) could not suppress beta-AR-mediated IL-6 production, suggesting that NADPH oxidase may not contribute to the inhibitory effect of PAO on IL-6 production. To our knowledge, this is the first report that PAO can inhibit ISO-induced IL-6 expression and CREB phosphorylation, demonstrating that PTPs may negatively regulate beta-AR-mediated IL-6 production. This study may also further our understanding of beta-AR signaling and provide potential therapeutic targets for the treatment of heart diseases.
Collapse
Affiliation(s)
- Jian-Hai Du
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Hsu MF, Sun SP, Chen YS, Tsai CR, Huang LJ, Tsao LT, Kuo SC, Wang JP. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. Biochem Pharmacol 2005; 70:1320-9. [PMID: 16143313 DOI: 10.1016/j.bcp.2005.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/11/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
In this study, we demonstrate that N-ethylmaleimide (NEM), a cell permeable thiol-alkylating agent, enhanced the [Ca2+]i rise caused by stimulation with cyclopiazonic acid (CPA), a sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibitor, in rat neutrophils. In addition, NEM attenuated the formyl-Met-Leu-Phe (fMLP)-induced [Ca2+]i rise whether NEM was added to cells prior to or after fMLP stimulation. Moreover, application of NEM after fMLP activation in the absence of external Ca2+ inhibited the Ca2+ signal upon addition of Ca2+ to the medium. Similar patterns were also obtained by using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a cell impermeable dithiol-oxidizing agent, which replaced NEM in the CPA- and fMLP-induced [Ca2+]i rise experiments. Treatment with dithiothreitol (DTT), a cell permeable dithiol-reducing agent, N-acetyl-l-cysteine (NAC), a cell permeable monothiol-reducing agent, and tris-(2-carboxyethyl)phosphine (TCEP), a cell impermeable reductant without a thiol group, all rescued the fMLP-induced Ca2+ signal from NEM. Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) C6, inositol trisphosphate receptor (IP3R) 2 and IP3R3. NEM had no effect on the mitochondrial membrane potential. NEM could restore the polarization and F-actin accumulation of fMLP-treated cells to those of the control. In the absence of external Ca2+, NEM rendered the CPA-induced [Ca2+]i elevation persistently but inhibited the fMLP-induced Ca2+ spike, which was reversed by tris-(2-cyanoethyl)phosphine (TCP), a cell permeable reductant without a thiol group. DTNB did not affect the Ca2+ spike caused by fMLP. These results indicate that through protein thiol oxidation, NEM affects the receptor-activated and the store depletion-derived Ca2+ signals in an opposing manner.
Collapse
Affiliation(s)
- Mei-Feng Hsu
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun H, Patrick BO, Cullen WR. A convenient way of making arsoxanes (RAsO)n, X-ray crystal structure of (m-F3CC6H4AsO)4. Appl Organomet Chem 2005. [DOI: 10.1002/aoc.779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Sokolovski S, Blatt MR. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. PLANT PHYSIOLOGY 2004; 136:4275-84. [PMID: 15563619 PMCID: PMC535857 DOI: 10.1104/pp.104.050344] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/17/2004] [Accepted: 09/17/2004] [Indexed: 05/18/2023]
Abstract
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant pathogen defense and are a prerequisite for drought and abscisic acid responses in Arabidopsis (Arabidopsis thaliana) and Vicia faba guard cells. Nonetheless, its mechanism(s) of action has not been well defined. NO regulates inward-rectifying K+ channels of Vicia guard cells through its action on Ca2+ release from intercellular Ca2+ stores, but alternative pathways are indicated for its action on the outward-rectifying K+ channels (I(K,out)), which are Ca2+ insensitive. We report here that NO affects I(K,out) when NO is elevated above approximately 10 to 20 nm. NO action on I(K,out) was consistent with oxidative stress and was suppressed by several reducing agents, the most effective being British anti-Lewisite (2,3-dimercapto-1-propanol). The effect of NO on the K+ channel was mimicked by phenylarsine oxide, an oxidizing agent that cross-links vicinal thiols. Neither intracellular pH buffering nor the phosphotyrosine kinase antagonist genistein affected NO action on I(K,out), indicating that changes in cytosolic pH and tyrosine phosphorylation are unlikely to contribute to NO or phenylarsine oxide action in this instance. Instead, our results strongly suggest that NO directly modifies the K+ channel or a closely associated regulatory protein, probably by nitrosylation of cysteine sulfhydryl groups.
Collapse
Affiliation(s)
- Sergei Sokolovski
- Laboratory of Plant Physiology and Biophysics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
40
|
Bailey SN, Sabatini DM, Stockwell BR. Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc Natl Acad Sci U S A 2004; 101:16144-9. [PMID: 15534212 PMCID: PMC528944 DOI: 10.1073/pnas.0404425101] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a microarray-based system for screening small molecules in mammalian cells. This system is compatible with image-based screens and requires fewer than 100 cells per compound. Each compound is impregnated in a 200-microm-diameter disc composed of biodegradable poly-(D),(L)-lactide/glycolide copolymer. Cells are seeded on top of these discs, and compounds slowly diffuse out, affecting proximal cells. In contrast with microtiter-based screening, this system does not involve the use of wells or walls between each compound-treated group of cells. We demonstrate detection of the effects of a single compound in a large microarray, that diverse compounds can be released in this format, and that extended release over several days is feasible. We performed a small synthetic lethal screen and identified a compound (macbecin II) that has reduced activity in cells with RNA interference-mediated decrease in the expression of tuberous sclerosis 2. Thus, we have developed a microarray-based screening system for testing the effects of small molecules on mammalian cells by using an imaging-based readout. This method will be useful to those performing small-molecule screens to discover new chemical tools and potential therapeutic agents.
Collapse
Affiliation(s)
- Steve N Bailey
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|