1
|
Estrada JA, Hori A, Fukazawa A, Ishizawa R, Hotta N, Kim HK, Smith SA, Mizuno M. Abnormal cardiovascular control during exercise: Role of insulin resistance in the brain. Auton Neurosci 2025; 258:103239. [PMID: 39874739 DOI: 10.1016/j.autneu.2025.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance. This review will highlight recent advances in our understanding of how insulin resistance induces changes in central signaling. The alterations in central insulin signaling produce aberrant cardiovascular responses to exercise. In particular, we will discuss the role of insulin signaling within the medullary cardiovascular control nuclei. The nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) are key nuclei where insulin has been demonstrated to modulate cardiovascular reflexes. The first locus of integration for the EPR, BR and central command is the NTS which is high in neurons expressing insulin receptors (IRs). The IRs on these neurons are well positioned to modulate cardiovascular responses to exercise. Additionally, the differences in IR density and presence of receptor isoforms enable specificity and diversity of insulin actions within the CNS. Therefore, non-invasive delivery of insulin into the CNS may be an effective means of normalizing cardiovascular responses to exercise in patients with insulin resistance.
Collapse
Affiliation(s)
- Juan A Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Rie Ishizawa
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kagoshima 891-2393, Japan
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Han-Kyul Kim
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Bertotto LB, Lampson-Stixrud D, Sinha A, Rohani NK, Myer I, Zorrilla EP. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells 2024; 13:321. [PMID: 38391934 PMCID: PMC10886814 DOI: 10.3390/cells13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.B.B.); (D.L.-S.); (A.S.); (N.K.R.); (I.M.)
| |
Collapse
|
3
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
4
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
5
|
Sousa LE, Magalhães WG, Bezerra FS, Santos RAS, Campagnole-Santos MJ, Isoldi MC, Alzamora AC. Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats. Free Radic Res 2015; 49:1335-43. [DOI: 10.3109/10715762.2015.1069291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Montero S, Lemus M, Luquin S, Garcia-Estrada J, Melnikov V, Leal CA, Portilla-de Buen E, Roces de Álvarez-Buylla E. Nitric oxide in the commissural nucleus tractus solitarii regulates carotid chemoreception hyperglycemic reflex and c-Fos expression. Nitric Oxide 2014; 36:87-93. [DOI: 10.1016/j.niox.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
|
7
|
Lysophosphatidylcholine causes neuropathic pain via the increase of neuronal nitric oxide synthase in the dorsal root ganglion and cuneate nucleus. Pharmacol Biochem Behav 2013; 106:47-56. [DOI: 10.1016/j.pbb.2013.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/01/2023]
|
8
|
Winick-Ng W, Leri F, Kalisch BE. Nitric oxide and histone deacetylases modulate cocaine-induced mu-opioid receptor levels in PC12 cells. BMC Pharmacol Toxicol 2012; 13:11. [PMID: 23079001 PMCID: PMC3520874 DOI: 10.1186/2050-6511-13-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Cocaine exposure has been reported to alter central μ-opioid receptor (MOR) expression in vivo. The present study employed an in vitro cellular model to explore possible mechanisms that may be involved in this action of cocaine. Methods To assess the effects of cocaine on MOR levels, two treatment regimens were tested in PC12 cells: single continuous or multiple intermittent. MOR protein levels were assessed by western blot analysis and quantitative PCR was used to determine relative MOR mRNA expression levels. To evaluate the role of nitric oxide (NO) and histone acetylation in cocaine-induced MOR expression, cells were pre-treated with the NO synthase inhibitor Nω-nitro-L-arginine methylester (L-NAME) or the non-selective histone acetyltransferase inhibitor curcumin. Results Both cocaine treatment regimens significantly increased MOR protein levels and protein stability, but only multiple intermittent treatments increased MOR mRNA levels as well as c-fos mRNA levels and activator protein 1 binding activity. Both regimens increased NO production, and pre-treatment with L-NAME prevented cocaine-induced increases in MOR protein and mRNA levels. Single and multiple cocaine treatment regimens inhibited histone deacetylase activity, and pre-treatment with curcumin prevented cocaine-induced up-regulation of MOR protein expression. Conclusions In the PC12 cell model, both NO and histone deacetylase activity regulate cocaine-induced MOR expression at both the transcriptional and post-transcriptional levels. Based on these novel findings, it is hypothesized that epigenetic mechanisms are implicated in cocaine’s action on MOR expression in neurons.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
9
|
Lemus M, Montero S, Leal CA, Portilla-de Buen E, Luquin S, Garcia-Estrada J, Melnikov V, de Alvarez-Buylla E. Nitric oxide infused in the solitary tract nucleus blocks brain glucose retention induced by carotid chemoreceptor stimulation. Nitric Oxide 2011; 25:387-95. [DOI: 10.1016/j.niox.2011.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/19/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
10
|
Steinbicker AU, Liu H, Jiramongkolchai K, Malhotra R, Choe EY, Busch CJ, Graveline AR, Kao SM, Nagasaka Y, Ichinose F, Buys ES, Brouckaert P, Zapol WM, Bloch KD. Nitric oxide regulates pulmonary vascular smooth muscle cell expression of the inducible cAMP early repressor gene. Nitric Oxide 2011; 25:294-302. [PMID: 21642009 DOI: 10.1016/j.niox.2011.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/10/2011] [Accepted: 05/21/2011] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) regulates vascular smooth muscle cell (VSMC) structure and function, in part by activating soluble guanylate cyclase (sGC) to synthesize cGMP. The objective of this study was to further characterize the signaling mechanisms by which NO regulates VSMC gene expression using transcription profiling. DNA microarrays were hybridized with RNA extracted from rat pulmonary artery smooth muscle cells (RPaSMC) exposed to the NO donor compound, S-nitroso-glutathione (GSNO). Many of the genes, whose expression was induced by GSNO, contain a cAMP-response element (CRE), of which one encoded the inducible cAMP early repressor (ICER). sGC and cAMP-dependent protein kinase, but not cGMP-dependent protein kinase, were required for NO-mediated phosphorylation of CRE-binding protein (CREB) and induction of ICER gene expression. Expression of a dominant-negative CREB in RPaSMC prevented the NO-mediated induction of CRE-dependent gene transcription and ICER gene expression. Pre-treatment of RPaSMC with the intracellular calcium (Ca(2+)) chelator, BAPTA-AM, blocked the induction of ICER gene expression by GSNO. The store-operated Ca(2+) channel inhibitors, 2-ABP, and SKF-96365, reduced the GSNO-mediated increase in ICER mRNA levels, while 2-ABP did not inhibit GSNO-induced CREB phosphorylation. Our results suggest that induction of ICER gene expression by NO requires both CREB phosphorylation and Ca(2+) signaling. Transcription profiling of RPaSMC exposed to GSNO revealed important roles for sGC, PKA, CREB, and Ca(2+) in the regulation of gene expression by NO. The induction of ICER in GSNO-treated RPaSMC highlights a novel cross-talk mechanism between cGMP and cAMP signaling pathways.
Collapse
Affiliation(s)
- Andrea U Steinbicker
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yen DHT, Chen LC, Shen YC, Chiu YC, Ho IC, Lou YJ, Chen IC, Yen JC. Protein kinase A-dependent neuronal nitric oxide synthase activation mediates the enhancement of baroreflex response by adrenomedullin in the nucleus tractus solitarii of rats. J Biomed Sci 2011; 18:32. [PMID: 21595896 PMCID: PMC3115842 DOI: 10.1186/1423-0127-18-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Adrenomedullin (ADM) exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA), or neuronal nitric oxide synthase (nNOS). We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR) response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS). Methods Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol) in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope. Results We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG) respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM22-52 or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons. Conclusions The novel finding of this study is that the signal transduction cascade that underlies the enhancement of BRR response by ADM in NTS is composed sequentially of cAMP/PKA and nNOS/PKG pathways.
Collapse
Affiliation(s)
- David H T Yen
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Martel G, Hamet P, Tremblay J. GREBP, a cGMP-response element-binding protein repressing the transcription of natriuretic peptide receptor 1 (NPR1/GCA). J Biol Chem 2010; 285:20926-39. [PMID: 20444705 DOI: 10.1074/jbc.m109.061622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NPR1/GCA (natriuretic peptide receptor 1/guanylyl cyclase A) expression is controlled by several agents, including ANP (atrial natriuretic peptide). After ANP stimulation, NPR1/GCA down-regulates the transcriptional activity of its gene via a cGMP-dependent mechanism. Because we previously identified a cis-acting element responsible for this cGMP sensitivity, we proceed here to explore novel putative protein binding to cGMP-response element (cGMP-RE). Using the yeast one-hybrid technique with a human kidney cDNA library, we identified a strong positive clone able to bind cGMP-RE. The clone was derived from 1083-bp-long cDNA of a gene of yet unknown function localized on human chromosome 1 (1p33.36). We named this new protein GREBP (for cGMP-response element-binding protein). DNA binding assays showed 18-fold higher cGMP-RE binding capacity than the controls, whereas an electromobility shift assay indicated a specific binding for the cGMP-RE, and chromatin immunoprecipitation confirmed the binding of GREBP to the element under physiological conditions. By acting on cGMP-RE, GREBP inhibited the expression of a luciferase-coupled NPR1 promoter construct. In H295R cells, ANP heightened GREBP expression by 60% after just 3 h of treatment while inhibiting NPR1/GCA expression by 30%. Silencing GREBP with specific small interfering RNA increased the activity of the luciferase-coupled NPR1 promoter and GCA/NPR1 mRNA levels. GREBP is a nuclear protein mainly expressed in the heart. We report here the existence of a human-specific gene that acts as a transcriptional repressor of the NPR1/GCA gene.
Collapse
Affiliation(s)
- Guy Martel
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H1W 4A4, Canada
| | | | | |
Collapse
|
13
|
Lemus M, Montero S, Luquín S, García J, De Alvarez-Buylla ER. Nitric oxide in the solitary tract nucleus (STn) modulates glucose homeostasis and FOS-ir expression after carotid chemoreceptor stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:403-10. [PMID: 19536505 DOI: 10.1007/978-90-481-2259-2_46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We evaluate in rats the role of NO in the solitary tract nucleus (STn) after an anoxic stimulus to carotid body chemoreceptor cells (CChrc) with cyanide (NaCN), on the hyperglycemic reflex with glucose retention by the brain (BGR) and FOS expression (FOS-ir) in the STn. The results suggest that nitroxidergic pathways in the STn may play an important role in glucose homeostasis. A NO donor such as sodium nitroprusside (NPS) in the STn before CChrc stimulation increased arterial glucose level and significantly decreased BGR. NPS also induced a higher FOS-ir expression in STn neurons when compared to neurons in control rats that only received artificial cerebrospinal fluid (aCSF) before CChrc stimulation. In contrast, a selective NOS inhibitor such as Nomega-nitro-L-arginine methyl ester (L-NAME) in the STn before CChrc stimulation resulted in an increase of both, systemic glucose and BGR above control values. In this case, the number of FOS-ir positive neurons in the STn decreased when compared to control or to NPS experiments. FOS-ir expression in brainstem cells suggests that CChrc stimulation activates nitroxidergic pathways in the STn to regulate peripheral and central glucose homeostasis. The study of these functionally defined cells will be important to understand brain glucose homeostasis.
Collapse
Affiliation(s)
- M Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col. 28045, Mexico
| | | | | | | | | |
Collapse
|
14
|
Hao H, Liu H, Gonye G, Schwaber JS. A fast carrier chromatin immunoprecipitation method applicable to microdissected tissue samples. J Neurosci Methods 2008; 172:38-42. [PMID: 18502516 PMCID: PMC2527857 DOI: 10.1016/j.jneumeth.2008.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Transcriptional regulation studies of CNS neurons are complicated by both cellular diversity and plasticity. Microdissection of specific functionally related populations of neurons can greatly reduce these issues, but typically excludes the use of many technologies due to tissue requirements, such as Chromatin Immunoprecipitation (ChIP), a powerful tool for studying in vivo protein-DNA interactions. We have developed a fast carrier ChIP (Fast CChIP) method for analyzing specific in vivo transcription factor-DNA interactions in as little as 0.2 mm(3) brain tissue. Using an antibody against phosphorylated cyclic-AMP response element binding (CREB) protein, we confirmed phospho-CREB (pCREB) binding at the c-fos gene promoter. Then we further demonstrated the applicability of Fast CChIP in determining hypertension-induced pCREB binding at the c-fos gene promoter in the rat nucleus tractus solitarius (NTS), confirming CREB's role in mediating hypertension-induced c-fos expression. This method will be broadly applicable to individual brain nucleus and biopsy/surgical samples.
Collapse
Affiliation(s)
- Haiping Hao
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | | | | | | |
Collapse
|
15
|
Casteel DE, Zhang T, Zhuang S, Pilz RB. cGMP-dependent protein kinase anchoring by IRAG regulates its nuclear translocation and transcriptional activity. Cell Signal 2008; 20:1392-9. [PMID: 18450420 PMCID: PMC2477739 DOI: 10.1016/j.cellsig.2008.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 10/24/2022]
Abstract
Type I cGMP-dependent protein kinases (PKGs) translocate to the nucleus to regulate gene expression in some, but not all cell types; we hypothesized that nuclear translocation of PKG may be regulated by extra-nuclear anchoring proteins. The inositol 1,4,5-triphosphate (IP(3)) receptor-associated cGMP kinase substrate (IRAG) binds to the N-terminus of PKG Ibeta, but not PKG Ialpha, and in smooth muscle cells, IRAG and PKG Ibeta are in a complex with the IP(3) receptor at endoplasmatic reticulum membranes, where the complex regulates calcium release [Schlossmann et al., Nature, 404 (2000) 197]. We found that co-expression of IRAG and PKG Ibeta in baby hamster kidney cells prevented cGMP-induced PKG Ibeta translocation to the nucleus, and decreased cGMP/PKG Ibeta transactivation of a cAMP-response element-dependent reporter gene. These effects required the PKG Ibeta/IRAG association, as demonstrated by a binding-incompetent IRAG mutant, and were specific for PKG Ibeta, as nuclear translocation and reporter gene activation by PKG Ialpha was not affected by IRAG. A phosphorylation-deficient IRAG mutant that is no longer functionally regulated by PKG phosphorylation suppressed cGMP/PKG Ibeta transcriptional activity, indicating that IRAG's effect was not explained by changes in intracellular calcium, and was not related to competition of IRAG with other PKG substrates. These results demonstrate that PKG anchoring to a specific binding protein is sufficient to dictate subcellular localization of the kinase and affect cGMP signaling in the nucleus, and may explain why nuclear translocation of PKG I does not occur in all cell types.
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093-0652, United States
| | | | | | | |
Collapse
|
16
|
Khan RL, Vadigepalli R, McDonald MK, Rogers RF, Gao GR, Schwaber JS. Dynamic transcriptomic response to acute hypertension in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2008; 295:R15-27. [PMID: 18434436 DOI: 10.1152/ajpregu.00152.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Baroreceptor afferents project to the cardiovascular region of the nucleus tractus solitarius (cvNTS), and their cvNTS target neurons may play a role in governing the sensitivity and operating range of the arterial baroreceptor reflex (baroreflexes). Recent studies have shown differential gene and protein expression in the cvNTS in response to changed arterial pressure. However, the extent of these responses is unknown. Therefore, we collected differential global gene expression data in a time series following acute hypertension in awake, freely moving rats. To acquire statistically significant results and place them in functional context, we overcame several quality control requirements and developed novel analytical approaches. The physiologically new findings from the study are that acute hypertension causes very extensive, time-varying gene regulatory changes, many involving neuronal function-specific genes and systems of genes. We use standard genomic analysis methods to manage the large data sets and to develop results such as heat maps to examine patterns and clusters in the gene regulation. We used the Gene Ontology categories to provide functional context. To place our findings in the context of the relevant literature, we developed two graphical representations of the networks implicated, linking receptors and channels to signaling pathways. The results point to the multivariate complexity of the response and implicate a group of receptors as candidates for mediating nucleus tractus solitarius baroreflex function in hypertension by identifying concurrent upregulation of receptor genes. We were able to make transcription factor binding predictions and record dysregulation of heart rate correlated with the transcriptional response.
Collapse
Affiliation(s)
- Rishi L Khan
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wang WD, Chen ZT, Kang BG, Li R. Construction of an artificial intercellular communication network using the nitric oxide signaling elements in mammalian cells. Exp Cell Res 2008; 314:699-706. [DOI: 10.1016/j.yexcr.2007.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 11/19/2007] [Accepted: 11/22/2007] [Indexed: 12/13/2022]
|
18
|
Lo WC, Lu PJ, Ho WY, Hsiao M, Tseng CJ. Induction of heme oxygenase-1 is involved in carbon monoxide-mediated central cardiovascular regulation. J Pharmacol Exp Ther 2006; 318:8-16. [PMID: 16565166 DOI: 10.1124/jpet.105.099051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been identified as an endogenous biological messenger in the brain. Heme oxygenase (HO) catalyzes the metabolism of heme to CO and biliverdin. Previously, we have shown the involvement of CO in central cardiovascular regulation, baroreflex modulation, and glutaminergic neuro-transmission in the nucleus tractus solitarii (NTS) of rats. In this study, we examined which HO isoform could be induced after hemin injection in the NTS. We also investigated their in situ distributions in the NTS after induction. Male Sprague-Dawley rats were anesthetized with urethane, and blood pressure was monitored intra-arterially. Unilateral microinjection of hemin (1 nmol), a heme molecule cleaved by HO to yield CO, produced significant decrease in blood pressure and heart rate. These cardiovascular effects of hemin were attenuated by prior administration of HO inhibitor zinc protoporphyrin IX (ZnPPIX). Microinjection of hemin into NTS resulted in significant induction of HO-1 protein expression in situ. Pretreatment of ZnPPIX significantly inhibited the HO-1 induction after hemin injection. No significant changes of HO-2 expression were found after hemin injection and ZnPPIX pretreatment. The in situ inductions of the HO-1 protein expression were further confirmed to be in glial cells and neurons after hemin injections into the NTS. These results indicated HO-1 but not HO-2 might be responsible for the generation of CO and contribute to central control of cardiovascular effects.
Collapse
Affiliation(s)
- Wan-Chen Lo
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta-Chung 1st Road, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Abstract
Increased expression of CD11b, the beta-integrin marker of microglia, represents microglial activation during neurodegenerative inflammation. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of nitric oxide (NO) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) induced the production of NO and increased the expression of CD11b in mouse BV-2 microglial cells and primary microglia. Either a scavenger of NO (PTIO) or an inhibitor of inducible nitric-oxide synthase (L-NIL) blocked this increase in microglial CD11b expression. Furthermore, co-microinjection of PTIO with LPS was also able to suppress LPS-mediated expression of CD11b and loss of dopaminergic neuronal fibers and neurotransmitters in striatum in vivo. Similarly, other inducers of NO production such as interferon-gamma, interleukin-1beta, human immunodeficiency virus type-1 gp120, and double-stranded RNA (poly(IC)) also increased the expression of CD11b in microglia through NO. The role of NO in the expression of CD11b was corroborated further by the expression of microglial CD11b by GSNO, an NO donor. Because NO transduces many intracellular signals via guanylate cyclase (GC), we investigated the role of GC, cyclic GMP (cGMP), and cGMP-activated protein kinase (PKG) in microglial expression of CD11b. Inhibition of LPS- and GSNO-mediated up-regulation of CD11b either by NS2028 (a specific inhibitor of GC) or by KT5823 and Rp-8-bromo-cGMP (specific inhibitors of PKG), and increase in CD11b expression either by 8-bromo-cGMP or by MY-5445 (a specific inhibitor of cGMP phosphodiesterase) alone suggest that NO increases microglial expression of CD11b via GC-cGMP-PKG. In addition, GSNO induced the activation of cAMP response element-binding protein (CREB) via PKG that was involved in the up-regulation of CD11b. This study illustrates a novel biological role of NO in regulating the expression of CD11b in microglia through GC-cGMP-PKG-CREB pathway that may participate in the pathogenesis of devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Avik Roy
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Yiu K. Fung
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Xiaojuan Liu
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Kalipada Pahan
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| |
Collapse
|
20
|
Jurado S, Rodríguez-Pascual F, Sánchez-Prieto J, Reimunde FM, Lamas S, Torres M. NMDA induces post-transcriptional regulation of alpha2-guanylyl-cyclase-subunit expression in cerebellar granule cells. J Cell Sci 2006; 119:1622-31. [PMID: 16569663 DOI: 10.1242/jcs.02867] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of N-methyl-D-aspartate (NMDA) glutamate receptors commonly affects gene expression in different neurons. We reported previously that chronic treatment of rat cerebellar granule cells with NMDA (24 hours) upregulates the expression of mRNA encoding the alpha2 subunit of the nitric-oxide-sensitive guanylyl cyclase. However, the molecular mechanisms involved in this process remained to be elucidated. Here, we have performed mRNA-decay experiments using the transcriptional inhibitor actinomycin D, providing evidence that the half-life of alpha2 mRNA is significantly prolonged in cells exposed to NMDA. The role of the 3' untranslated region of the alpha2 transcripts in NMDA-induced mRNA stabilisation was examined and an association between the RNA-binding proteins AUF1 and ELAV-like protein 1 (HuR/HuA), and endogenous alpha2 mRNA was demonstrated in vivo, as revealed by coimmunoprecipitation experiments with specific antibodies against AUF1 and HuR. Further studies indicated that stimulation of the NMDA receptor induces a downregulation in AUF1 levels stabilising the alpha2 mRNA transcripts. These events are triggered through a mechanism that depends on formation of nitric oxide, and on the subsequent activation of guanylyl cyclase and cGMP dependent protein kinases.
Collapse
Affiliation(s)
- Sandra Jurado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, E-28040 Spain
| | | | | | | | | | | |
Collapse
|
21
|
Li S, Doss JC, Hardee EJ, Quock RM. Involvement of cyclic GMP-dependent protein kinase in nitrous oxide-induced anxiolytic-like behavior in the mouse light/dark exploration test. Brain Res 2005; 1038:113-7. [PMID: 15748880 DOI: 10.1016/j.brainres.2005.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 12/29/2004] [Accepted: 01/04/2005] [Indexed: 11/18/2022]
Abstract
The second messenger cyclic GMP (cGMP) plays a role in the anxiolytic-like behavioral response of mice to nitrous oxide (N2O). This study was conducted to determine whether this behavioral effect of N2O is affected by inhibition of cGMP-dependent protein kinase (PKG). N2O-induced behavior in the light/dark exploration test was significantly attenuated by the PKG inhibitors H-8 and Rp-8-pCPT-cGMPS but not Rp-8-pCPT-cAMPS, an inhibitor of cAMP-dependent protein kinase. These findings implicate PKG in the mediation or modulation of the anxiolytic-like behavioral response to N2O.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| | | | | | | |
Collapse
|
22
|
Wang LL, Ou CC, Chan JYH. Receptor-independent activation of GABAergic neurotransmission and receptor-dependent nontranscriptional activation of phosphatidylinositol 3-kinase/protein kinase Akt pathway in short-term cardiovascular actions of dexamethasone at the nucleus tractus solitarii of the rat. Mol Pharmacol 2005; 67:489-98. [PMID: 15523051 DOI: 10.1124/mol.104.005595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas glucocorticoids are important blood pressure regulators via an action on peripheral circulation, their roles in central cardiovascular regulation are less known. This study evaluated the short-term cardiovascular effect of glucocorticoid in the nucleus tractus solitarii (NTS) and delineated the underlying molecular mechanisms. In Sprague-Dawley rats maintained under propofol anesthesia, microinjection bilaterally into the NTS of a synthetic glucocorticoid, dexamethasone (Dex; 12.5, 25, 50, or 100 pmol), elicited hypertensive and tachycardiac responses. The initial cardiovascular responses, which lasted 15 to 30 min, were blunted by coadministration of a selective GABA(A) or GABA(B) receptor antagonist, bicuculline (15 pmol) or 2-hydroxy saclofen (150 pmol). The delayed responses, which endured at least 90 min and entailed maintained hypertension and tachycardia, were reversed by selective glucocorticoid type II receptor (GR) antagonist mifepristone (100 or 200 pmol), phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] (20 nmol), or nitric-oxide synthase inhibitor N(G)-monomethyl-l-arginine acetate (5 nmol), but not by the RNA synthesis inhibitor actinomycin D (20 nmol). Moreover, Dex induced an association of GR with the regulatory subunit of PI3K, p85alpha, in a ligand-dependent manner and promoted serine/threonine kinase Akt phosphorylation that was blocked by coadministration of mifepristone or LY294002. These cardiovascular and molecular responses occurred when translocation of activated GR into the nucleus was minimal. Our results indicate that Dex acts on the NTS to elicit hypertension and tachycardia via both a GR-independent interaction with GABA(A) and GABA(B) receptors and a GR-dependent but nontranscriptional mechanism that involves activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ling-Lin Wang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, Republic of China
| | | | | |
Collapse
|