1
|
Uetrecht J. DILI prediction in drug development: present and future. Expert Opin Drug Metab Toxicol 2025:1-12. [PMID: 40253704 DOI: 10.1080/17425255.2025.2495955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (iDILI) results in significant patient morbidity and significantly increases the risk of drug development. The current methods to screen for iDILI risk are inadequate. AREAS COVERED The general mechanism of iDILI and the current methods to screen for iDILI are reviewed. Then the potential for new biomarkers is explored. EXPERT OPINION Better biomarkers of iDILI risk should be based on the mechanism of iDILI. In general, it is an adaptive immune response, specifically CD8+ cytotoxic T cells, that is responsible for hepatocyte cell death, not direct toxicity of the drug. Therefore, in vitro cytotoxicity assays represent an artifact not the mechanism of iDILI. Activation of the adaptive immune response leading to iDILI requires an innate immune response, in particular activation of antigen presenting cells. The innate immune response is immediate and unlikely to be idiosyncratic. For example, studies have found that incubation of hepatocytes with drugs causes the release of molecules that activate THP-1-derived macrophages. The response of hepatocytes, the release of damage-associated molecular pattern molecules (DAMPs), especially in extracellular vesicles, and the response of antigen presenting cells (APCs) are likely to provide better biomarkers of iDILI risk.
Collapse
Affiliation(s)
- Jack Uetrecht
- Faculty of Pharmacy, University of Toronto, Toronto, ON, USA
| |
Collapse
|
2
|
Maris BR, Grama A, Pop TL. Drug-Induced Liver Injury-Pharmacological Spectrum Among Children. Int J Mol Sci 2025; 26:2006. [PMID: 40076629 PMCID: PMC11901067 DOI: 10.3390/ijms26052006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Drug-induced liver injury (DILI) is one of the main causes of acute liver failure in children. Its incidence is probably underestimated, as specific diagnostic tools are currently lacking. Over 1000 known drugs cause DILI, and the list is expanding. The aim of this review is to describe DILI pathogenesis and emphasize the drugs accountable for child DILI in order to aid its recognition. Intrinsic DILI is well described in terms of mechanism, incriminated drugs, and toxic dose. Conversely, idiosyncratic DILI (iDILI) is unpredictable, occurring as a result of a particular response to drug administration, and its occurrence cannot be foreseen in clinical studies. Half of pediatric iDILI cases are linked to antibiotics, mostly amoxicillin-clavulanate, in the immune-allergic group, while autoimmune DILI is the hallmark of minocycline and nitrofurantoin. Secondly, antiepileptics are responsible for 20% of pediatric iDILI cases, children being more prone to iDILI caused by these agents than adults. A similar tendency was observed in anti-tuberculosis drugs, higher incidences being reported in children below three years old. Current data show growing cases of iDILI related to antineoplastic agents, atomoxetine, and albendazole, so that it is advisable for clinicians to maintain a high index of suspicion regarding iDILI.
Collapse
Affiliation(s)
- Bianca Raluca Maris
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Elzagallaai AA, Rieder MJ. Pathophysiology of drug hypersensitivity. Br J Clin Pharmacol 2024; 90:1856-1868. [PMID: 36519187 DOI: 10.1111/bcp.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Drug hypersensitivity reactions (DHRs) are type B adverse drug reactions (ADRs) traditionally defined as unpredictable, dose independent and not related to the drug pharmacology. DHRs, also called drug allergy if the immune system involvement is confirmed, represent around one-sixth of all ADRs and can cause major clinical problems due to their vague clinical presentation and irregular time course. Understanding the underlying pathophysiology of DHRs is very important for their diagnosis and management. Multiple layers of evidence exist pointing to the involvement of the immune system in DHRs. Recent data have led to a paradigm shift in our understanding of the exact pathophysiology of these reactions. Numerous hypotheses proposing explanation on how a low molecular weight drug molecule can elicit an immune reaction have been proposed. In addition to the classical "hapten" hypothesis, the reactive metabolite hypothesis, the pharmacological interaction with the immune system (p-i) concept, the danger/injury hypothesis and the altered peptide repertoire hypothesis have been proposed. We here introduce the inflammasome activation hypothesis and the cross-reactivity hypothesis as additional models explaining the pathophysiology of DHRs. Available data supporting these hypotheses are briefly summarized and discussed. We also introduced the cross-reactivity model, which may provide a platform to appreciate the potential role played by other factors leading to the activation of the immune system. We believe that although the drug in question could be the trigger of the reaction, the components of the immune system mediating the reaction do not act in isolation but rather are affected by the proinflammatory milieu occurring at the time of the reaction. This review attempts to summarize the available evidence to further illustrate the pathophysiology of DHRs.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics and Physiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Cho T, Hayes A, Henderson JT, Uetrecht J. The use of PD-1 functional knockout rats to study idiosyncratic adverse reactions to nevirapine. Toxicol Sci 2024; 200:382-393. [PMID: 38767978 DOI: 10.1093/toxsci/kfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Idiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1-/- mice are more susceptible to drug-induced liver injury, but PD-1-/- mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1-/- mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs.
Collapse
Affiliation(s)
- Tiffany Cho
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anthony Hayes
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey T Henderson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
5
|
Jee A, Sernoskie SC, Uetrecht J. The role of corticosterone in nevirapine-induced idiosyncratic drug-induced liver injury. Toxicol Sci 2024; 200:146-164. [PMID: 38636494 PMCID: PMC11199915 DOI: 10.1093/toxsci/kfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Nevirapine, an antiretroviral used in the treatment of HIV, is associated with idiosyncratic drug-induced liver injury (IDILI), a potentially life-threatening adverse drug reaction. Its usage has decreased due to this concern, but it is still widely used in lower-resource settings. In general, the mechanisms underlying idiosyncratic drug reactions (IDRs) are poorly understood, but evidence indicates that most are immune-mediated. There is very limited understanding of the early immune response following administration of drugs associated with IDRs, which likely occurs due to reactive metabolite formation. In this work, we aimed to characterize the links between covalent binding of nevirapine, the development of an early immune response, and the subsequent liver injury using a mouse model. We describe initial attempts to characterize an early immune response to nevirapine followed by the discovery that nevirapine induced the release of corticosterone. Corticosterone release was partially associated with the degree of drug covalent binding in the liver but was also likely mediated by additional mechanisms at higher drug doses. Transcriptomic analysis confirmed metabolic activation, glucocorticoid signaling, and decreased immune activation; GDF-15 also warrants further investigation as part of the immune response to nevirapine. Finally, glucocorticoid blockade preceding the first dose of nevirapine attenuated nevirapine-induced liver injury at 3 weeks, suggesting that acute glucocorticoid signaling is harmful in the context of nevirapine-induced liver injury. This work demonstrates that nevirapine induces acute corticosterone release, which contributes to delayed-onset liver injury. It also has implications for screening drug candidates for IDILI risk and preventing nevirapine-induced IDILI.
Collapse
Affiliation(s)
- Alison Jee
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
6
|
Cho T, Wierk A, Gertsenstein M, Rodgers CE, Uetrecht J, Henderson JT. The development and characterization of a CRISPR/Cas9-mediated PD-1 functional knockout rat as a tool to study idiosyncratic drug reactions. Toxicol Sci 2024; 198:233-245. [PMID: 38230816 PMCID: PMC10964746 DOI: 10.1093/toxsci/kfae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.
Collapse
Affiliation(s)
- Tiffany Cho
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Antonia Wierk
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Marina Gertsenstein
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Rodgers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
7
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
8
|
Singh D, Khan MA, Siddique HR. Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:22-41. [PMID: 37775996 DOI: 10.1002/ptr.8022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
10
|
McGill MR, Kaufman YJ, LoBianco FV, Schleiff MA, Aykin-Burns N, Miller GP. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. LIVERS 2023; 3:310-321. [PMID: 38037613 PMCID: PMC10688230 DOI: 10.3390/livers3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health; Depts. of Pharma-cology & Toxicology and Pathology, College of Medicine; University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Yihong J. Kaufman
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Francesca V. LoBianco
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Mary A. Schleiff
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Nukhet Aykin-Burns
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Grover P. Miller
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| |
Collapse
|
11
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
13
|
The Role of Myeloperoxidase in Clozapine-Induced Inflammation: A Mechanistic Update for Idiosyncratic Drug-Induced Agranulocytosis. Int J Mol Sci 2023; 24:ijms24021243. [PMID: 36674761 PMCID: PMC9862306 DOI: 10.3390/ijms24021243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The risk of idiosyncratic drug-induced agranulocytosis (IDIAG) markedly constrains the use of clozapine, a neuroleptic with unparalleled efficacy. Most clozapine patients experience an early inflammatory response, likely a necessary step in IDIAG onset. However, most patients do not progress to IDIAG, presumably because of the requirement of specific human leukocyte antigen (HLA) haplotypes, T cell receptors, and other unknown factors. We established that clozapine activates inflammasomes and that myeloperoxidase bioactivation of clozapine generates neoantigens, but the connection between these early mechanistic events remained unknown and, thus, was the aim of this work. We found that the myeloperoxidase inhibitor PF-1355 attenuated myeloperoxidase activity in phorbol myristate acetate (PMA)-differentiated THP-1 macrophages, and it also attenuated clozapine-induced release of inflammatory mediators (e.g., IL-1β, CXCL1, and C-reactive protein). In vivo, pretreatment of Sprague Dawley rats with PF-1355 significantly attenuated clozapine-induced increases in neutrophil mobilization from the bone marrow to the blood and spleen, as determined using differential blood counts and flow cytometry. Moreover, the clozapine-triggered release of inflammatory mediators (e.g., IL-1β, calprotectin, CXCL1, and α-1-acid glycoprotein) from the liver, spleen, and bone marrow was dampened by myeloperoxidase inhibition. These data support the working hypothesis that oxidation of clozapine to a reactive metabolite by myeloperoxidase is critical for induction of the inflammatory response to clozapine. Ultimately, a better mechanistic understanding of the early events involved in the immune response to clozapine may elucidate ways to prevent IDIAG, enabling safer, more frequent therapeutic use of this and potentially other highly efficacious drugs.
Collapse
|
14
|
SOC-IV-04 DAMPening the immune response to clozapine: the role of reactive metabolites in idiosyncratic drug reactions. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Jackson KD, Argikar UA, Cho S, Crouch RD, Driscoll JP, Heck C, King L, Maw HH, Miller GP, Seneviratne HK, Wang S, Wei C, Zhang D, Khojasteh SC. Bioactivation and Reactivity Research Advances - 2021 year in review. Drug Metab Rev 2022; 54:246-281. [PMID: 35876116 DOI: 10.1080/03602532.2022.2097254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (Khojasteh et al., 2021, 2020, 2019, 2018, 2017; Baillie et al., 2016). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA, 02139, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, 37203, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics. Bristol Myers Squibb, Brisbane, CA, 94005, USA
| | - Carley Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | - Hlaing Holly Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St Slot 516, Little Rock, Arkansas, 72205, USA
| | - Herana Kamal Seneviratne
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, 02142, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| |
Collapse
|
16
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
17
|
de Filippis R, Kane JM, Kuzo N, Spina E, De Sarro G, de Leon J, De Fazio P, Schoretsanitis G. Screening the European pharmacovigilance database for reports of clozapine-related DRESS syndrome: 47 novel cases. Eur Neuropsychopharmacol 2022; 60:25-37. [PMID: 35635994 DOI: 10.1016/j.euroneuro.2022.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022]
Abstract
Clozapine-related drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare adverse reaction. We aimed to screen a large pharmacovigilance database to identify clozapine-related DRESS cases, even if otherwise reported and provide a clinical overview. We screened spontaneous reports of clozapine-related DRESS syndrome in EudraVigilance database applying the European Registry on Severe Cutaneous Adverse Drug Reactions (RegiSCAR) criteria and scores to identify probable/definite DRESS syndrome cases. Clinical and demographic characteristics of included cases were provided and associations between RegiSCAR scores, and time to develop/recover DRESS were assessed. In a total of 262,146 adverse drug reactions reports for 75,190 clozapine-treated patients, 596 cases fulfilled RegiSCAR criteria; ultimately, 51 cases were rated as probable/definite DRESS according to RegiSCAR scores, of which 4 were previously published as case reports. The mean age of patients was 41.06 years (43.1% females), with 13 patients (25.5%) receiving reported co-medication with other DRESS culprit drugs. Median time between clozapine initiation and DRESS symptoms was 25 days. Clozapine dose was associated with days to develop symptoms (Spearman's ρ 0.40, p = 0.03). Organ involvement was reported in all cases followed by fever (n = 49; 96.1%) and eosinophilia (n = 47; 92.2%). Treatment involved clozapine discontinuation for 37 patients (72.5%), while 3.9% (n = 2) of cases ended fatally. Clozapine rechallenge was undertaken in 25 patients (49.0%). The screening of the EudraVigilance database revealed 47 novel clozapine-related DRESS cases, and only one was originally reported as DRESS. Clozapine-related DRESS may occur with clozapine monotherapy not only during dose titration, but also during maintenance treatment.
Collapse
Affiliation(s)
- Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.
| | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nazar Kuzo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | | | - Jose de Leon
- Mental Health Research Center, Eastern State Hospital, Lexington, KY, USA; Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apóstol Hospital, University of the Basque Country, Vitoria, Spain
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| |
Collapse
|
18
|
Uetrecht J. Idiosyncratic Drug Reactions: A 35-Year Chemical Research in Toxicology Perspective. Chem Res Toxicol 2022; 35:1649-1654. [PMID: 35687011 DOI: 10.1021/acs.chemrestox.2c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When Larry Marnett founded Chemical Research in Toxicology, the study of idiosyncratic drug reactions (IDRs) was in its infancy. There was evidence that IDRs involve chemically reactive metabolites, and many of the papers in Chemical Research in Toxicology investigated the bioactivation of drugs. However, it became clear that not all drugs that form reactive metabolites are associated with a high risk of IDRs, and some drugs that do not appear to form reactive metabolites do cause IDRs. Some of the early Chemical Research in Toxicology papers investigated involvement of the adaptive immune system in the mechanism of IDRs, and HLA associations provided strong evidence for an immune mechanism of IDRs. This led to the question of how reactive metabolites might induce an immune response. The classic hapten hypothesis provided an obvious explanation, but a new hypothesis the danger hypothesis, added another dimension. Although there are common features to IDRs, it is becoming increasingly clear that there are also many differences in the mechanisms caused by different drugs. Other pharmacological effects of drugs may also play a role in the mechanism, and that is obviously true of IDRs caused by biological agents. The requirement for specific HLA and T-cell receptors is presumably the major factor that makes IDRs idiosyncratic. However, an innate immune response is required to prime the adaptive immune response. In contrast to the adaptive immune response, the innate immune response is unlikely to be idiosyncratic, and studies of the innate immune response to drugs may provide a much more accurate way to screen drugs for their potential to cause IDRs. For essential drugs that are known to cause IDRs, it may be possible to markedly decrease risk by a slow dose titration to induce immune tolerance. Significant progress has been made in the study of IDRs, but there is still a long way to go.
Collapse
Affiliation(s)
- Jack Uetrecht
- Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
19
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
20
|
Sernoskie SC, Lobach AR, Kato R, Jee A, Weston JK, Uetrecht J. Clozapine induces an acute proinflammatory response that is attenuated by inhibition of inflammasome signaling: implications for idiosyncratic drug-induced agranulocytosis. Toxicol Sci 2021; 186:70-82. [PMID: 34935985 PMCID: PMC8883353 DOI: 10.1093/toxsci/kfab154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although clozapine is a highly efficacious schizophrenia treatment, it is under-prescribed due to the risk of idiosyncratic drug-induced agranulocytosis (IDIAG). Clinical data indicate that most patients starting clozapine experience a transient immune response early in treatment and a similar response has been observed in clozapine-treated rats, but the mechanism by which clozapine triggers this transient inflammation remains unclear. Therefore, the aim of this study was to characterize the role of inflammasome activation during the early immune response to clozapine using in vitro and in vivo models. In both differentiated and nondifferentiated human monocytic THP-1 cells, clozapine, but not its structural analogues fluperlapine and olanzapine, caused inflammasome-dependent caspase-1 activation and IL-1β release that was inhibited using the caspase-1 inhibitor yVAD-cmk. In Sprague Dawley rats, a single dose of clozapine caused an increase in circulating neutrophils and a decrease in lymphocytes within hours of drug administration along with transient spikes in the proinflammatory mediators IL-1β, CXCL1, and TNF-α in the blood, spleen, and bone marrow. Blockade of inflammasome signaling using the caspase-1 inhibitor VX-765 or the IL-1 receptor antagonist anakinra attenuated this inflammatory response. These data indicate that caspase-1-dependent IL-1β production is fundamental for the induction of the early immune response to clozapine and, furthermore, support the general hypothesis that inflammasome activation is a common mechanism by which drugs associated with the risk of idiosyncratic reactions trigger early immune system activation. Ultimately, inhibition of inflammasome signaling may reduce the risk of IDIAG, enabling safer, more frequent use of clozapine in patients.
Collapse
Affiliation(s)
| | - Alexandra R Lobach
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, 569-1094, Japan
| | - Alison Jee
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - J Kyle Weston
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.,Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|