1
|
Asbjarnarson A, Joelsson JP, Gardarsson FR, Sigurdsson S, Parnham MJ, Kricker JA, Gudjonsson T. The Non-Antibacterial Effects of Azithromycin and Other Macrolides on the Bronchial Epithelial Barrier and Cellular Differentiation. Int J Mol Sci 2025; 26:2287. [PMID: 40076911 PMCID: PMC11900332 DOI: 10.3390/ijms26052287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The respiratory epithelium maintains the barrier against inhaled harmful agents. When barrier failure occurs, as in several respiratory diseases, acute or chronic inflammation leading to destructive effects and exacerbations can occur. Macrolides are used to treat a spectrum of infections but are also known for off-label use. Some macrolides, particularly azithromycin (AZM), reduce exacerbations in chronic obstructive pulmonary disease (COPD), whereby its efficacy is thought to be due to its effects on inflammation and oxidative stress. In vitro data indicate that AZM reduces epithelial barrier failure, evidenced by increased transepithelial electrical resistance (TEER). Here, we compared the effects of macrolides on differentiation and barrier integrity in VA10 cells, a bronchial epithelial cell line for 14 and 21 days. Erythromycin, clarithromycin, roxithromycin, AZM, solithromycin, and tobramycin (an aminoglycoside) were analyzed using RNA sequencing, barrier integrity assays, and immunostaining to evaluate effects on the epithelium. All macrolides affected the gene expression of pathways involved in epithelial-to-mesenchymal transition, metabolism, and immunomodulation. Treatment with AZM, clarithromycin, and erythromycin raised TEER and induced phospholipid retention. AZM treatment was distinct in terms of enhancement of the epithelial barrier, retention of phospholipids, vesicle build-up, and its effect on gene sets related to keratinocyte differentiation and establishment of skin barrier.
Collapse
Affiliation(s)
- Arni Asbjarnarson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Jon Petur Joelsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | - Snaevar Sigurdsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | - Thorarinn Gudjonsson
- School of Health Sciences, University of Iceland, 101 Reykjavík, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
2
|
Li Y, Tao C, Li S, Chen W, Fu D, Jafvert CT, Zhu T. Feasibility study of machine learning to explore relationships between antimicrobial resistance and microbial community structure in global wastewater treatment plant sludges. BIORESOURCE TECHNOLOGY 2025; 417:131878. [PMID: 39603473 DOI: 10.1016/j.biortech.2024.131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Wastewater sludges (WSs) are major reservoirs and emission sources of antibiotic resistance genes (ARGs) in cities. Identifying antimicrobial resistance (AMR) host bacteria in WSs is crucial for understanding AMR formation and mitigating biological and ecological risks. Here 24 sludge data from wastewater treatment plants in Jiangsu Province, China, and 1559 sludge data from genetic databases were analyzed to explore the relationship between 7 AMRs and bacterial distribution. The results of the Procrustes and Spearman correlation analysis were unsatisfactory, with p-value exceeding the threshold of 0.05 and no strong correlation (r > 0.8). In contrast, explainable machine learning (EML) using SHapley Additive exPlanation (SHAP) revealed Pseudomonadota as a major contributor (39.3 %-74.2 %) to sludge AMR. Overall, the application of ML is promising in analyzing AMR-bacteria relationships. Given the different applicable occasions and advantages of various analysis methods, using ML as one of the correlation analysis tools is strongly recommended.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuyin Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxuan Chen
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chad T Jafvert
- Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
3
|
Met CM, Hofstaedter CE, O'Keefe IP, Yang H, Moustafa DA, Sherman ME, Doi Y, Rasko DA, Sweet CR, Goldberg JB, Ernst RK. Characterization of Pseudomonas aeruginosa from subjects with diffuse panbronchiolitis. Microbiol Spectr 2024; 12:e0053024. [PMID: 39377602 PMCID: PMC11537112 DOI: 10.1128/spectrum.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Diffuse panbronchiolitis (DPB) is a rare, idiopathic inflammatory disease primarily diagnosed in East Asian populations. DPB is characterized by diffuse pulmonary lesions, inflammation of the respiratory bronchioles, and bacterial infections of the airway. Historically, sputum cultures reveal Pseudomonas aeruginosa in 22% of DPB patients, increasing to 60% after 4 years from disease onset. Although DPB patients have a known susceptibility to respiratory P. aeruginosa infections, as is observed in other chronic lung diseases such as cystic fibrosis (CF), the characterization of DPB P. aeruginosa strains is limited. In this study, we characterized 24 strains obtained from a cohort of DPB patients for traits previously associated with virulence, including growth, motility, antibiotic susceptibility, lipopolysaccharide structure, and genomic diversity. Our cohort of DPB P. aeruginosa strains exhibits considerable genomic variability when compared with isolates from people with cystic fibrosis chronically colonized with P. aeruginosa and acute P. aeruginosa infection isolates. Similar to CF, DPB P. aeruginosa strains produce a diverse array of modified lipid A structures. Antibiotic susceptibility testing revealed increased resistance to erythromycin, a representative agent of the macrolide antibiotics used to manage DPB patients. Differences in the O-antigen type among P. aeruginosa strains collected from these different backgrounds were also observed. Ultimately, the characterization of DPB P. aeruginosa strains highlights several unique qualities of P. aeruginosa strains collected from chronically diseased airways, underscoring the challenges in treating DPB, CF, and other obstructive respiratory disease patients with P. aeruginosa infections. IMPORTANCE Diffuse panbronchiolitis (DPB), a chronic lung disease characterized by persistent P. aeruginosa infection, serves as an informative comparator to more common chronic lung diseases, such as cystic fibrosis (CF). This study aimed to better address the interplay between P. aeruginosa and chronically compromised airway environments through the examination of DPB P. aeruginosa strains, as existing literature regarding DPB is limited to case reports, case series, and clinical treatment guidelines. The evaluation of these features in the context of DPB, in tandem with prevailing knowledge of P. aeruginosa strains collected from more common chronic lung diseases (e.g., CF), can aid in the development of more effective strategies to combat respiratory P. aeruginosa infections in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Charles M. Met
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Ian P. O'Keefe
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew E. Sherman
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Yohei Doi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David A. Rasko
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland - Baltimore, Baltimore, Maryland, USA
| | - Charles R. Sweet
- Chemistry Department, USA Naval Academy, Annapolis, Maryland, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Godinho D, Freixa M, Froes F. What do we know about macrolides immunomodulatory therapeutic potential in respiratory disease in 2023. Pulmonology 2024; 30:509-511. [PMID: 38402126 DOI: 10.1016/j.pulmoe.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Affiliation(s)
- Daniela Godinho
- Thorax Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.
| | - Marta Freixa
- Internal Medicine, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Filipe Froes
- Thorax Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
5
|
Wood GE, Lee JW, Peramuna T, Wendt KL, Kim CM, Aguila LKT, Calderon CL, Cichewicz RH. The fungal natural product fusidic acid demonstrates potent activity against Mycoplasma genitalium. Antimicrob Agents Chemother 2024; 68:e0100624. [PMID: 39207152 PMCID: PMC11459954 DOI: 10.1128/aac.01006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial resistance is extremely common in Mycoplasma genitalium, a frequent cause of urethritis in men and cervicitis, vaginitis, and pelvic inflammatory disease in women. Treatment of M. genitalium infections is difficult due to intrinsic and acquired resistance to many antibiotic classes. We undertook a program to identify novel antimicrobials with activity against M. genitalium from fungal natural products. Extracts of Ramularia coccinea contained a molecule with potent activity that was subsequently identified as fusidic acid, a fusidane-type antibiotic that has been in clinical use for decades outside the United States. We found that minimum inhibitory concentrations of fusidic acid ranged from 0.31 to 4 µg/mL among 17 M. genitalium strains including laboratory-passaged and low-passage clinical isolates. Time-kill data indicate that bactericidal killing occurs when M. genitalium is exposed to ≥10 µg/mL for 48 h, comparing favorably to serum concentrations obtained from typical loading dose regimens. Resistance to fusidic acid was associated with mutations in fusA consistent with the known mechanism of action in which fusidic acid inhibits protein synthesis by binding to elongation factor G. Interestingly, no mutants resistant to >10 µg/mL fusidic acid were obtained and a resistant strain containing a F435Y mutation in FusA was impaired for growth in vitro. These data suggest that fusidic acid may be a promising option for the treatment of M. genitalium infections.
Collapse
Affiliation(s)
- Gwendolyn E. Wood
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Thilini Peramuna
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
| | - Karen L. Wendt
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
| | - Caroline M. Kim
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Laarni Kendra T. Aguila
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Claire L. Calderon
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Ohnishi H, Otani T, Kanemitsu Y, Nagano T, Hara J, Eitoku M. A systematic review and meta-analysis of macrolides in the management of adult patients with asthma. Allergol Int 2024; 73:382-389. [PMID: 38296770 DOI: 10.1016/j.alit.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The efficacy of macrolides in the management of asthma has been studied but remains controversial. We conducted a systematic review and meta-analysis of macrolides in the management of adult patients with asthma. METHODS Randomized controlled trials of macrolides used in adult patients with asthma were searched for in MEDLINE, EMBASE, PsycINFO, Cochrane Library, CINAHL, and Igaku Chuo Zasshi databases to evaluate the efficacy and safety of macrolides. RESULTS Seventeen reports with macrolide treatment durations ranging from 6 to 48 weeks were included. Macrolides did not reduce exacerbations requiring hospitalization, severe exacerbations, or rescue use of short-acting beta-2 agonist inhalers; improve lung function; decrease peripheral blood or sputum neutrophil counts; or decrease fractional exhaled nitric oxide compared to placebo. Macrolides statistically improved asthma control and quality of life but by less than the minimal clinically important difference. Peripheral blood eosinophil counts as well as serum and sputum eosinophilic cationic protein concentrations were significantly decreased with macrolides compared to placebo. The improvement of asthma symptoms and airway hyperresponsiveness varied by study. The safety profile of macrolides was comparable to that of placebo. CONCLUSIONS Although macrolides have some useful clinical aspects, there is not sufficient evidence to recommend their use in the management of adult patients with asthma.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Toshihito Otani
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy, and Clinical Immunology, Nagoya City University of Medical Sciences, Nagoya, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Johsuke Hara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
7
|
Bose D, Saha P, Roy S, Trivedi A, More M, Klimas N, Tuteja A, Chatterjee S. A Double-Humanized Mouse Model for Studying Host Gut Microbiome-Immune Interactions in Gulf War Illness. Int J Mol Sci 2024; 25:6093. [PMID: 38892281 PMCID: PMC11172868 DOI: 10.3390/ijms25116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Unraveling the multisymptomatic Gulf War Illness (GWI) pathology and finding an effective cure have eluded researchers for decades. The chronic symptom persistence and limitations for studying the etiologies in mouse models that differ significantly from those in humans pose challenges for drug discovery and finding effective therapeutic regimens. The GWI exposome differs significantly in the study cohorts, and the above makes it difficult to recreate a model closely resembling the GWI symptom pathology. We have used a double engraftment strategy for reconstituting a human immune system coupled with human microbiome transfer to create a humanized-mouse model for GWI. Using whole-genome shotgun sequencing and blood immune cytokine enzyme linked immunosorbent assay (ELISA), we show that our double humanized mice treated with Gulf War (GW) chemicals show significantly altered gut microbiomes, similar to those reported in a Veteran cohort of GWI. The results also showed similar cytokine profiles, such as increased levels of IL-1β, IL-6, and TNF R-1, in the double humanized model, as found previously in a human cohort. Further, a novel GWI Veteran fecal microbiota transfer was used to create a second alternative model that closely resembled the microbiome and immune-system-associated pathology of a GWI Veteran. A GWI Veteran microbiota transplant in humanized mice showed a human microbiome reconstitution and a systemic inflammatory pathology, as reflected by increases in interleukins 1β, 6, 8 (IL-1β, IL-6, IL-8), tumor necrosis factor receptor 1 (TNF R-1), and endotoxemia. In conclusion, though preliminary, we report a novel in vivo model with a human microbiome reconstitution and an engrafted human immune phenotype that may help to better understand gut-immune interactions in GWI.
Collapse
Affiliation(s)
- Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Ashok Tuteja
- Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
- Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92697, USA
- VA Research and Development, VA Long Beach Health Care, Long Beach, CA 90822, USA
| |
Collapse
|
8
|
Ukkonen RM, Renko M, Kuitunen I. Azithromycin for acute bronchiolitis and wheezing episodes in children - a systematic review with meta-analysis. Pediatr Res 2024; 95:1441-1447. [PMID: 38066246 PMCID: PMC11126380 DOI: 10.1038/s41390-023-02953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 05/26/2024]
Abstract
BACKGROUND The aim of this systematic review and meta-analysis was to analyse the efficacy of azithromycin in acute bronchiolitis and wheezing. METHODS PubMed, Scopus, and Web of Science databases were searched for randomized controlled trials comparing azithromycin to placebo in children <2 years of age. Main outcomes were progress of acute wheezing episode and recurrence of wheezing. We used random-effects model to calculate mean difference (MD) with 95% confidence interval (CI) or risk ratios (RR) with CI. RESULTS We screened 1604 abstracts and included 7 studies. Risk of bias was low in three and had some concerns in four studies. Need for intensive care unit treatment was assessed in four studies (446 children) and the risk difference was 0.0% (CI -2.0 to 2.0; low quality evidence). Hospitalization duration was -0.27 days shorter in the azithromycin group (MD-0.27, CI -0.47 to -0.07; three studies; moderate quality evidence). Azithromycin did not prevent recurrence of wheezing (RR 0.84, CI 0.45-1.56; three studies), hospital readmissions (RR 1.14, CI 0.82-1.60; four studies). CONCLUSIONS We found moderate quality evidence that azithromycin may reduce hospitalization duration. Low certainty evidence suggests that azithromycin does not reduce the need for intensive care unit treatment. Furthermore, azithromycin did not prevent wheezing recurrence. IMPACT Azithromycin may reduce hospitalization time in acute bronchiolitis and wheezing episodes among children aged less than two. Azithromycin administrated during the acute wheezing period, does not have preventive effect on wheezing recurrence. Azithromycin seemed to have similar adverse event profile than placebo. Future studies with clinically relevant outcomes, and sufficient sample sizes are needed, before implementing azithromycin into clinical use.
Collapse
Affiliation(s)
- Rosa-Maria Ukkonen
- Institute of Clinical Medicine and Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Marjo Renko
- Institute of Clinical Medicine and Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Ilari Kuitunen
- Institute of Clinical Medicine and Department of Pediatrics, University of Eastern Finland, Kuopio, Finland.
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
9
|
Böscke R. [Difficult-to-treat chronic rhinosinusitis-when the standard treatment is not effective and biologics are not available]. HNO 2024; 72:231-241. [PMID: 38472346 DOI: 10.1007/s00106-024-01443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND In recent years, significant improvements have been made in the treatment options for uncontrolled chronic rhinosinusitis (CRS) refractory to standard medical and surgical therapy. This is the result of a better understanding of the pathophysiology and the resulting development of biologicals for CRS with nasal polyps (CRSwNP). However, biologics are not (yet) available for all patients in Europe. OBJECTIVE Based on the session "Difficult-to-treat CRS, when biologics are not available" at the 29th Congress of the European Rhinologic Society (ERS) 2023 in Sofia, Bulgaria, the treatment options for uncontrolled CRS with the exclusion of biologics will be discussed. MATERIALS AND METHODS The content of the presentations "Is there a place for antibiotics?" "Indications for revision surgery," "Novel systemic treatment options," "Novel local treatment options," and "Phototherapy for nasal polyps" are outlined and supported by a review of the literature. RESULTS Various treatment options are available for managing uncontrolled CRS, even if biologic treatments are unavailable. Treatment options for type‑2 (T2) CRS include steroid rinses, repeated short-term oral steroids, steroid-eluting stents, and extended sinus surgery. In the case of nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD), acetylsalicylic acid (ASA) desensitization can be considered. Non-T2 endotypes or CRS without nasal polyps (CRSsNP) may benefit from several weeks of macrolides and xylitol rinses. CONCLUSION To accurately assess the efficacy of second-line therapies for treatment of difficult-to-treat CRS within an endotype-specific framework, additional controlled clinical trials are needed that take into account the heterogeneity of CRS endotypes.
Collapse
Affiliation(s)
- Robert Böscke
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Evangelisches Krankenhaus Oldenburg, Medizinischer Campus der Carl-von-Ossietzky Universität Oldenburg, Steinweg 13-17, 26122, Oldenburg, Deutschland.
| |
Collapse
|
10
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
11
|
Workman AD, Chang J, Lerner DK, Wilensky J, Montone KT, Bosso JV, Palmer JN, Adappa ND, Kohanski MA. Utilizing Histopathology to Predict Success with Macrolide Therapy in CRS Patients. Laryngoscope 2024; 134:1003-1004. [PMID: 38214424 DOI: 10.1002/lary.31279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
There is currently interest regarding CRSsNP patients with refractory symptomatology following functional endoscopic sinus surgery, and which of these patients can derive benefit from low-dose macrolide therapy. In the present study, we analyze a cohort of over fifty CRSsNP patients on macrolide therapy; structured histopathological findings at the time of surgery were analyzed against the success of macrolide treatment. Independently, fibrosis, absence of squamous metaplasia, absence of eosinophilia, presence of neutrophilic infiltrate, and lymphoplasmocytic predominance were all associated with objective success of macrolide treatment; these findings may allow clinicians to more appropriately select patients for this therapy.
Collapse
Affiliation(s)
- Alan D Workman
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Jeremy Chang
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - David K Lerner
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Jadyn Wilensky
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - John V Bosso
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - James N Palmer
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Nithin D Adappa
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Michael A Kohanski
- Division of Rhinology, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
12
|
Mondemé M, Zeroual Y, Soulard D, Hennart B, Beury D, Saliou JM, Carnoy C, Sirard JC, Faveeuw C. Amoxicillin treatment of pneumococcal pneumonia impacts bone marrow neutrophil maturation and function. J Leukoc Biol 2024; 115:463-475. [PMID: 37837383 DOI: 10.1093/jleuko/qiad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a β-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.
Collapse
Affiliation(s)
- Mélanie Mondemé
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Yasmine Zeroual
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Daphnée Soulard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Benjamin Hennart
- Toxicology and Genopathy Unit, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Delphine Beury
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Christophe Carnoy
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Christelle Faveeuw
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| |
Collapse
|
13
|
Waitayangkoon P, Moon SJ, Ponnusamy JJT, Zeng L, Driban J, McAlindon T. Long-Term Safety Profiles of Macrolides and Tetracyclines: A Systematic Review and Meta-Analysis. J Clin Pharmacol 2024; 64:164-177. [PMID: 37751595 PMCID: PMC11949418 DOI: 10.1002/jcph.2358] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Macrolides and tetracyclines are antibiotics that have a range of anti-inflammatory properties beyond their microbial capabilities. Although these antibiotics have been in widespread use, the long-term safety profiles are limited. We performed a systematic review and meta-analysis of randomized clinical trials that compared macrolides or tetracyclines with placeboes to provide long-term safety information. We searched Medline and EMBASE from inception to October 2022 and identified studies that reported study drug-related death, serious adverse events (SAEs), or withdrawal rates, and common adverse effects of each drug. Relative risk (RR) and number needed to harm were calculated. Of the 52 randomized clinical trials included, there are 3151 participants on doxycycline, 2519 participants on minocycline, 3049 participants on azithromycin, 763 participants on clarithromycin, 262 participants on erythromycin, and 100 participants on roxithromycin. There was no death related to any study drugs and rates of SAE were not significantly different from placebo in any drug. Overall withdrawal rates were slightly higher than placebo in doxycycline (RR, 1.30; 95% CI, 1.12-1.52) and minocycline (RR, 1.29; 95% CI, 1.15-1.46). Withdrawal rates due to adverse events were higher in doxycycline (RR, 2.82; 95% CI, 1.88-4.22), minocycline (RR, 1.48; 95% CI, 1.09-1.98), and azithromycin (RR, 1.53; 95% CI, 1.13-2.08). Gastrointestinal disturbances are the most common tolerable adverse effects for every drug. Photosensitivity and rash are the second most common adverse effects for doxycycline and minocycline. We found no evidence that long-term use up to 2 years of macrolides or tetracyclines was associated with increased risk of SAEs.
Collapse
Affiliation(s)
- Palapun Waitayangkoon
- Department of Medicine, MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA, USA
| | - Soo Jin Moon
- Department of Medicine, MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeffrey Driban
- Division of Rheumatology, Allergy & Immunology, Tufts Medical Center, Boston, MA, USA
| | - Timothy McAlindon
- Division of Rheumatology, Allergy & Immunology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
Hua JL, Yang ZF, Cheng QJ, Han YP, Li ZT, Dai RR, He BF, Wu YX, Zhang J. Prevention of exacerbation in patients with moderate-to-very severe COPD with the intent to modulate respiratory microbiome: a pilot prospective, multi-center, randomized controlled trial. Front Med (Lausanne) 2024; 10:1265544. [PMID: 38249987 PMCID: PMC10797043 DOI: 10.3389/fmed.2023.1265544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Considering the role of bacteria in the onset of acute exacerbation of COPD (AECOPD), we hypothesized that the use of influenza-Streptococcus pneumoniae vaccination, oral probiotics or inhaled amikacin could prevent AECOPD. Methods In this pilot prospective, muti-central, randomized trial, moderate-to-very severe COPD subjects with a history of moderate-to-severe exacerbations in the previous year were enrolled and assigned in a ratio of 1:1:1:1 into 4 groups. All participants were managed based on the conventional treatment recommended by GOLD 2019 report for 3 months, with three groups receiving additional treatment of inhaled amikacin (0.4 g twice daily, 5-7 days monthly for 3 months), oral probiotic Lactobacillus rhamnosus GG (1 tablet daily for 3 months), or influenza-S. pneumoniae vaccination. The primary endpoint was time to the next onset of moderate-to-severe AECOPD from enrollment. Secondary endpoints included CAT score, mMRC score, adverse events, and survival in 12 months. Results Among all 112 analyzed subjects (101 males, 96 smokers or ex-smokers, mean ± SD age 67.19 ± 7.39 years, FEV1 41.06 ± 16.09% predicted), those who were given dual vaccination (239.7 vs. 198.2 days, p = 0.044, 95%CI [0.85, 82.13]) and oral probiotics (248.8 vs. 198.2 days, p = 0.017, 95%CI [7.49, 93.59]) had significantly delayed onset of next moderate-to-severe AECOPD than those received conventional treatment only. For subjects with high symptom burden, the exacerbations were significantly delayed in inhaled amikacin group as compared to the conventional treatment group (237.3 vs. 179.1 days, p = 0.009, 95%CI [12.40,104.04]). The three interventions seemed to be safe and well tolerated for patient with stable COPD. Conclusion The influenza-S. pneumoniae vaccine and long-term oral probiotic LGG can significantly delay the next moderate-to-severe AECOPD. Periodically amikacin inhalation seems to work in symptomatic patients. The findings in the current study warrants validation in future studies with microbiome investigation.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT03449459.
Collapse
Affiliation(s)
- Jian-lan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qi-jian Cheng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-pin Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ran-ran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-feng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-xing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
15
|
Li P, Pan J, Dong Y, Sun Y, Wang Y, Liao K, Chen Y, Deng X, Yu S, Hu H. Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment. J Control Release 2024; 365:219-235. [PMID: 37992874 DOI: 10.1016/j.jconrel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Chronic pulmonary infection caused by Pseudomonas aeruginosa (P. aeruginosa) is a common lung disease with high mortality, posing severe threats to public health. Highly resistant biofilm and intrinsic resistance make P. aeruginosa hard to eradicate, while powerful virulence system of P. aeruginosa may give rise to the recurrence of infection and eventual failure of antibiotic therapy. To address these issues, infection-microenvironment responsive nanoparticles functioning on biofilm eradication and virulence inhibition were simply prepared by electrostatic complexation between dimethylmaleic anhydride (DA) modified negatively charged coating and epsilon-poly(l-lysine) derived cationic nanoparticles loaded with azithromycin (AZI) (DA-AZI NPs). Charge reversal responsive to acidic condition enabled DA-AZI NPs to successively penetrate through both mucus and biofilms, followed by targeting to P. aeruginosa and permeabilizing its outer/inner membrane. Then in situ released AZI, which was induced by the lipase-triggered NPs dissociation, could easily enter into bacteria to take effects. DA-AZI NPs exhibited enhanced eradication activity against P. aeruginosa biofilms with a decrease of >99.999% of bacterial colonies, as well as remarkable inhibitory effects on the production of virulence factors and bacteria re-adhesion & biofilm re-formation. In a chronic pulmonary infection model, nebulization of DA-AZI NPs into infected mice resulted in prolonged retention and increased accumulation of the NPs in the infected sites of the lungs. Moreover, they significantly reduced the burden of P. aeruginosa, effectively alleviating lung tissue damages and inflammation. Overall, the proposed DA-AZI NPs highlight an innovative strategy for treating chronic pulmonary infection.
Collapse
Affiliation(s)
- Pengyu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, PR China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
16
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Kiyomiya K, Tomabechi R, Saito N, Watai K, Takada T, Shirasaka Y, Kishimoto H, Higuchi K, Inoue K. Macrolide and Ketolide Antibiotics Inhibit the Cytotoxic Effect of Trastuzumab Emtansine in HER2-Positive Breast Cancer Cells: Implication of a Potential Drug-ADC Interaction in Cancer Chemotherapy. Mol Pharm 2023; 20:6130-6139. [PMID: 37971309 DOI: 10.1021/acs.molpharmaceut.3c00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 μM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.
Collapse
Affiliation(s)
- Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenta Watai
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
18
|
Nakamura K, Fujita Y, Chen H, Somekawa K, Kashizaki F, Koizumi H, Takahashi K, Horita N, Hara Y, Muro S, Kaneko T. The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis. Diseases 2023; 11:152. [PMID: 37987263 PMCID: PMC10660475 DOI: 10.3390/diseases11040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a prevalent condition with fewer treatments available as the severity increases. Previous systematic reviews have demonstrated the benefits of long-term macrolide use. However, the therapeutic differences between different macrolides and the optimal duration of use remain unclear. Methods: A systematic review and meta-analysis were conducted to assess the effectiveness of long-term macrolide use in reducing COPD exacerbations, compare the therapeutic differences among macrolides, and determine the appropriate treatment duration. Four databases (PubMed, Cochrane Library, Web of Science, and ICHU-SHI) were searched until 20 March 2023, and a random-effects model was used to calculate the pooled effect. Results: The meta-analysis included nine randomized controlled trials involving 1965 patients. The analysis revealed an odds ratio (OR) of 0.34 (95% confidence interval [CI] 0.19, 0.59, p < 0.001) for the reduction in exacerbation frequency. Notably, only azithromycin or erythromycin showed suppression of COPD exacerbations. The ORs for reducing exacerbation frequency per year and preventing hospitalizations were -0.50 (95% CI: -0.81, -0.19; p = 0.001) and 0.60 (95% CI: 0.3, 0.97; p = 0.04), respectively. Statistical analyses showed no significant differences between three- and six-month macrolide prescriptions. However, studies involving a twelve-month prescription showed an OR of 0.27 (95% CI: 0.11, 0.68; p = 0.005; I2 = 81%). Although a significant improvement in St George's Respiratory Questionnaire (SGRQ) total scores was observed with a mean difference of -4.42 (95% CI: -9.0, 0.16; p = 0.06; I2 = 94%), the minimal clinically important difference was not reached. While no adverse effects were observed between the two groups, several studies have reported an increase in bacterial resistance. Conclusions: Long-term use of azithromycin or erythromycin suppresses COPD exacerbations, and previous studies have supported the advantages of a 12-month macrolide prescription over a placebo.
Collapse
Affiliation(s)
- Kazunori Nakamura
- Department of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto 861-4193, Japan;
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, Nara 634-8522, Japan; (Y.F.); (S.M.)
| | - Hao Chen
- Department of Pulmonology, Yokohama City University Hospital, Yokohama 236-0004, Japan; (K.S.); (Y.H.); (T.K.)
- Department of Respiratory Medicine, Yokohama Minami Kyousai Hospital, Yokohama 236-0037, Japan; (F.K.); (H.K.); (K.T.)
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Hospital, Yokohama 236-0004, Japan; (K.S.); (Y.H.); (T.K.)
| | - Fumihiro Kashizaki
- Department of Respiratory Medicine, Yokohama Minami Kyousai Hospital, Yokohama 236-0037, Japan; (F.K.); (H.K.); (K.T.)
| | - Harumi Koizumi
- Department of Respiratory Medicine, Yokohama Minami Kyousai Hospital, Yokohama 236-0037, Japan; (F.K.); (H.K.); (K.T.)
| | - Kenichi Takahashi
- Department of Respiratory Medicine, Yokohama Minami Kyousai Hospital, Yokohama 236-0037, Japan; (F.K.); (H.K.); (K.T.)
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama 236-0004, Japan;
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Hospital, Yokohama 236-0004, Japan; (K.S.); (Y.H.); (T.K.)
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara 634-8522, Japan; (Y.F.); (S.M.)
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Hospital, Yokohama 236-0004, Japan; (K.S.); (Y.H.); (T.K.)
| |
Collapse
|
19
|
Elkholy SE, Maher SA, Abd El-Hamid NR, Elsayed HA, Hassan WA, Abdelmaogood AKK, Hussein SM, Jaremko M, Alshawwa SZ, Alharbi HM, Imbaby S. The immunomodulatory effects of probiotics and azithromycin in dextran sodium sulfate-induced ulcerative colitis in rats via TLR4-NF-κB and p38-MAPK pathway. Biomed Pharmacother 2023; 165:115005. [PMID: 37327586 DOI: 10.1016/j.biopha.2023.115005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Ulcerative colitis (UC), a chronic autoimmune disease of the gut with a relapsing and remitting nature, considers a major health-care problem. DSS is a well-studied pharmacologically-induced model for UC. Toll-Like Receptor 4 (TLR4) and its close association with p-38-Mitogen-Activated Protein Kinase (p-38 MAPK) and nuclear factor kappa B (NF-κB) has important regulatory roles in inflammation and developing UC. Probiotics are gaining popularity for their potential in UC therapy. The immunomodulatory and anti-inflammatory role of azithromycin in UC remains a knowledge need. In the present rats-established UC, the therapeutic roles of oral probiotics (60 billion probiotic bacteria per kg per day) and azithromycin (40 mg per kg per day) regimens were evaluated by measuring changes in disease activity index, macroscopic damage index, oxidative stress markers, TLR4, p-38 MAPK, NF-κB signaling pathway in addition to their molecular downstream; tumor necrosis factor alpha (TNFα), interleukin (IL)1β, IL6, IL10 and inducible nitric oxide synthase (iNOS). After individual and combination therapy with probiotics and azithromycin regimens, the histological architecture of the UC improved with restoration of intestinal tissue normal architecture. These findings were consistent with the histopathological score of colon tissues. Each separate regimen lowered the remarkable TLR4, p-38 MAPK, iNOS, NF-κB as well as TNFα, IL1β, IL6 and MDA expressions and elevated the low IL10, glutathione and superoxide dismutase expressions in UC tissues. The combination regimen possesses the most synergistic beneficial effects in UC that, following thorough research, should be incorporated into the therapeutic approach in UC to boost the patients' quality of life.
Collapse
Affiliation(s)
- Shereen E Elkholy
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Shymaa Ahmad Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Noura R Abd El-Hamid
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Genetics unit, Histology and cell biology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba A Elsayed
- Microbiology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Wael Abdou Hassan
- Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Asmaa K K Abdelmaogood
- Clinical Pathology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Samar M Hussein
- Physiology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
20
|
Driscoll AJ, Haidara FC, Tapia MD, Deichsel EL, Samake OS, Bocoum T, Bailey JA, Fitzpatrick MC, Goldenberg RL, Kodio M, Moulton LH, Nasrin D, Onwuchekwa U, Shaffer AM, Sow SO, Kotloff KL. Antenatal, intrapartum and infant azithromycin to prevent stillbirths and infant deaths: study protocol for SANTE, a 2×2 factorial randomised controlled trial in Mali. BMJ Open 2023; 13:e067581. [PMID: 37648393 PMCID: PMC10471877 DOI: 10.1136/bmjopen-2022-067581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/24/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION In high mortality settings, prophylactic azithromycin has been shown to improve birth weight and gestational age at birth when administered antenatally, to reduce the incidence of neonatal infections when administered intrapartum, and to improve survival when administered in infancy. Questions remain regarding whether azithromycin can prevent stillbirths, and regarding the optimal strategy for the delivery of azithromycin to pregnant women and their infants. METHODS AND ANALYSIS Sauver avec l'Azithromycine en Traitant les Femmes Enceintes et les Enfants (SANTE) is a 2×2 factorial, individually randomised, placebo-controlled, double-masked trial in rural Mali. The primary aims are: (1A) to assess the efficacy of antenatal and intrapartum azithromycin on a composite outcome of stillbirths and infant mortality through 6-12 months and (1B) to assess the efficacy of azithromycin administered concurrently with the first and third doses of pentavalent vaccines (Penta-1/3) on infant mortality through 6-12 months. Pregnant participants (n=49 600) and their infants are randomised 1:1:1:1 to one of four treatment arms: (1) mother and infant receive azithromycin, (2) mother and infant receive placebo, (3) mother receives azithromycin and infant receives placebo or (4) mother receives placebo and infant receives azithromycin. Pregnant participants receive three single 2 g doses: two antepartum and one intrapartum. Infants receive a single 20 mg/kg dose at the Penta-1 and 3 visits. An additional cohort of 12 000 infants is recruited at the Penta-1 visit and randomised 1:1 to receive azithromycin or placebo at the same time points. The SANTE trial will inform guidelines and policies regarding the administration of antenatal and infant azithromycin using routine healthcare delivery platforms. ETHICS AND DISSEMINATION This trial was approved by the Institutional Review Board at the University of Maryland School of Medicine (Protocol #HP-00084242) and the Faculté de Médecine et d'Odonto-Stomatologie in Mali. The findings of this trial will be published in open access peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT03909737.
Collapse
Affiliation(s)
- Amanda J Driscoll
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily L Deichsel
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jason A Bailey
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Meagan C Fitzpatrick
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert L Goldenberg
- Obstetrics and Gynecology, Columbia University School of Medicine, New York, New York, USA
| | | | - Lawrence H Moulton
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dilruba Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Allison M Shaffer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Choo JM, Martin AM, Taylor SL, Sun E, Mobegi FM, Kanno T, Richard A, Burr LD, Lingman S, Martin M, Keating DJ, Mason AJ, Rogers GB. The Impact of Long-Term Macrolide Exposure on the Gut Microbiome and Its Implications for Metabolic Control. Microbiol Spectr 2023; 11:e0083123. [PMID: 37347185 PMCID: PMC10433835 DOI: 10.1128/spectrum.00831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intestinal commensal microbiology and whether any such changes affected systemic immune and metabolic regulation. In healthy adults exposed to 4 weeks of low-dose erythromycin or azithromycin, as used clinically, we observed consistent shifts in gut microbiome composition, with a reduction in microbial capacity related to carbohydrate metabolism and short-chain fatty acid biosynthesis. These changes were accompanied by alterations in systemic biomarkers relating to immune (interleukin 5 [IL-5], IL-10, monocyte chemoattractant protein 1 [MCP-1]) and metabolic (serotonin [5-HT], C-peptide) homeostasis. Transplantation of erythromycin-exposed murine microbiota into germ-free mice demonstrated that changes in metabolic homeostasis and gastrointestinal motility, but not systemic immune regulation, resulted from changes in intestinal microbiology caused by macrolide treatment. Our findings highlight the potential for long-term low-dose macrolide therapy to influence host physiology via alteration of the gut microbiome. IMPORTANCE Long-term macrolide therapy is widely used in chronic respiratory diseases although its antibacterial activity can also affect the gut microbiota, a key regulator of host physiology. Macrolide-associated studies on the gut microbiota have been limited to short antibiotic courses and have not examined its consequences for host immune and metabolic regulation. This study revealed that long-term macrolides depleted keystone bacteria and impacted host regulation, mediated directly by macrolide activity or indirectly by alterations to the gut microbiota. Understanding these macrolide-associated mechanisms will contribute to identifying the risk of long-term exposure and highlights the importance of targeted therapy for maintenance of the gut microbiota.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Alyce M. Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Steven L. Taylor
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Emily Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Fredrick M. Mobegi
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Tokuwa Kanno
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Alyson Richard
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Lucy D. Burr
- Department of Respiratory and Sleep Medicine, Mater Adult Hospital, Brisbane, Queensland, Australia
- Respiratory and Infectious Disease Research Group, Mater Research Institute, Brisbane, Queensland, Australia
| | - Stevie Lingman
- Department of Respiratory and Sleep Medicine, Mater Adult Hospital, Brisbane, Queensland, Australia
| | - Megan Martin
- Department of Respiratory and Sleep Medicine, Mater Adult Hospital, Brisbane, Queensland, Australia
| | - Damien J. Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Nutrition & Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Geraint B. Rogers
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
22
|
Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci 2023; 24:11038. [PMID: 37446214 DOI: 10.3390/ijms241311038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
23
|
Ryu G, Lee E, Park SI, Park M, Hong SD, Jung YG, Kim HY. The Mechanism of Action and Clinical Efficacy of Low-Dose Long-Term Macrolide Therapy in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24119489. [PMID: 37298439 DOI: 10.3390/ijms24119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Various chronic inflammatory airway diseases can be treated with low-dose, long-term (LDLT) macrolide therapy. LDLT macrolides can be one of the therapeutic options for chronic rhinosinusitis (CRS) due to their immunomodulatory and anti-inflammatory actions. Currently, various immunomodulatory mechanisms of the LDLT macrolide treatment have been reported, as well as their antimicrobial properties. Several mechanisms have already been identified in CRS, including reduced cytokines such as interleukin (IL)-8, IL-6, IL-1β, tumor necrosis factor-α, transforming growth factor-β, inhibition of neutrophil recruitment, decreased mucus secretion, and increased mucociliary transport. Although some evidence of effectiveness for CRS has been published, the efficacy of this therapy has been inconsistent across clinical studies. LDLT macrolides are generally believed to act on the non-type 2 inflammatory endotype of CRS. However, the effectiveness of LDLT macrolide treatment in CRS is still controversial. Here, we reviewed the immunological mechanisms related to CRS in LDLT macrolide therapy and the treatment effects according to the clinical situation of CRS.
Collapse
Affiliation(s)
- Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyu Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Song I Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Minhae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yong Gi Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hyo Yeol Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
24
|
Morán Blanco JI, Alvarenga Bonilla JA, Fremont-Smith P, Villar Gómez de Las Heras K. Antihistamines as an early treatment for Covid-19. Heliyon 2023; 9:e15772. [PMID: 37128299 PMCID: PMC10129342 DOI: 10.1016/j.heliyon.2023.e15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Infection with SARs-COV-2 results in COVID-19 disease. Between March 2020 and August 2021, 468 COVID-19 patients confirmed by PCR or antigen test, in Yepes, Spain, received early treatment with antihistamines, adding azithromycin in selected cases. The primary endpoint is the hospitalization rate of COVID-19 patients, and the secondary endpoints are ICU admission and mortality rates. All endpoints are compared with the official Spanish rates during the time period of the study. There were 20 hospital admissions (hospitalization rate 4,3%), 5 ICU admissions (ICU admission rate 1,1%) and 3 deaths (fatality rate of 0,6%). No patients in the study required follow up treatment, which suggest they did not develop long COVID. Results from this retrospective trail indicate that early treatment of SARS-COV-2 positive patients with antihistamines may reduce the odds of hospitalization (OR: 0.490, CI: 0.313-0.767, p-value: 0.001). Randomized controlled clinical trials are needed to further evaluate the effects of early antihistamine treatment of SARS-CoV-2 patients to prevent hospitalization, ICU admission, mortality and long-covid.
Collapse
Affiliation(s)
- Juan Ignacio Morán Blanco
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain
- Centro de Salud de Yepes, Toledo, Spain
| | | | | | - Karina Villar Gómez de Las Heras
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain
- Gerencia de Urgencias, Emergencias y Transporte Sanitario, Toledo, Spain
- Universidad de Alcalá de Henares, Facultad de Medicina y Ciencias de la Salud, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
25
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Ordine JVW, de Souza GM, Tamasco G, Virgilio S, Fernandes AFT, Silva-Rocha R, Guazzaroni ME. Metagenomic Insights for Antimicrobial Resistance Surveillance in Soils with Different Land Uses in Brazil. Antibiotics (Basel) 2023; 12:antibiotics12020334. [PMID: 36830245 PMCID: PMC9952835 DOI: 10.3390/antibiotics12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Land-use conversion changes soil properties and their microbial communities, which, combined with the overuse of antibiotics in human and animal health, promotes the expansion of the soil resistome. In this context, we aimed to profile the resistome and the microbiota of soils under different land practices. We collected eight soil samples from different locations in the countryside of São Paulo (Brazil), assessed the community profiles based on 16S rRNA sequencing, and analyzed the soil metagenomes based on shotgun sequencing. We found differences in the communities' structures and their dynamics that were correlated with land practices, such as the dominance of Staphylococcus and Bacillus genera in agriculture fields. Additionally, we surveyed the abundance and diversity of antibiotic resistance genes (ARGs) and virulence factors (VFs) across studied soils, observing a higher presence and homogeneity of the vanRO gene in livestock soils. Moreover, three β-lactamases were identified in orchard and urban square soils. Together, our findings reinforce the importance and urgency of AMR surveillance in the environment, especially in soils undergoing deep land-use transformations, providing an initial exploration under the One Health approach of environmental levels of resistance and profiling soil communities.
Collapse
Affiliation(s)
- João Vitor Wagner Ordine
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gabrielle Messias de Souza
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gustavo Tamasco
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Stela Virgilio
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Ana Flávia Tonelli Fernandes
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Rafael Silva-Rocha
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-33153680
| |
Collapse
|
27
|
Scutera S, Sparti R, Comini S, Menotti F, Musso T, Cuffini AM, Allizond V, Banche G. Dalbavancin Boosts the Ability of Neutrophils to Fight Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24032541. [PMID: 36768864 PMCID: PMC9917267 DOI: 10.3390/ijms24032541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are the most important cell type involved in the early nonspecific host response to bacterial pathogens. Staphylococcus aureus has evolved mechanisms to evade immune responses that contribute to its persistence in PMNs, and acquired resistance to several antimicrobials. Additionally, methicillin-resistant S. aureus (MRSA) is one of the most common causes of acute bacterial skin and skin-structure infections (ABSSSIs). Dalbavancin (DBV), a lipoglycopeptide, is indicated for the treatment of ABSSSIs, and has a broad spectrum of action against most microorganisms. Here, we sought to determine the effect of DBV on the neutrophil killing of MRSA and its potential immunomodulating activity. Our results revealed that DBV boosts MRSA killing by acting on both bacteria and PMNs. DBV pre-treatment of PMNs did not change the respiratory burst or degranulation, while an increased trend in neutrophil extracellular traps-associated elastase and in the production of TNFα and CXCL8 was revealed. In parallel, DBV caused a delay in the apoptosis of MRSA-infected neutrophils. In conclusion, we demonstrated a cooperative effect between the antimicrobial properties of PMNs and DBV, thus owing to their immunomodulatory activity. In the choice of the treatment management of serious S. aureus infections, DBV should be considered as an outstanding option since it reinforces PMNs pathogen clearance capability by exerting its effect directly, not only on MRSA but also on neutrophils.
Collapse
|
28
|
Yan Y, Wu L, Li X, Zhao L, Xu Y. Immunomodulatory role of azithromycin: Potential applications to radiation-induced lung injury. Front Oncol 2023; 13:966060. [PMID: 36969016 PMCID: PMC10030824 DOI: 10.3389/fonc.2023.966060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Radiation-induced lung injury (RILI) including radiation-induced pneumonitis and radiation-induced pulmonary fibrosis is a side effect of radiotherapy for thoracic tumors. Azithromycin is a macrolide with immunomodulatory properties and anti-inflammatory effects. The immunopathology of RILI that results from irradiation is robust pro-inflammatory responses with high levels of chemokine and cytokine expression. In some patients, pulmonary interstitial fibrosis results usually due to an overactive immune response. Growing clinical studies recently proposed that the anti-inflammatory and immunomodulatory effects of azithromycin may benefit patients with acute lung injury. It has been shown potential benefits for patients with RILI in preclinical studies. Azithromycin has a variety of immunomodulatory effect to improve the process of disease, including inhibition of pro-inflammatory cytokines production participating in the regulatory function of macrophages, changes in autophagy, and inhibition of neutrophil influx. We review the published evidence of mechanisms of azithromycin, and focus on the potential effect of azithromycin on the immune response to RILI.
Collapse
Affiliation(s)
- Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| |
Collapse
|
29
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
30
|
Bakadia BM, Boni BOO, Ahmed AAQ, Zheng R, Shi Z, Ullah MW, Lamboni L, Yang G. In Situ Synthesized Porous Bacterial Cellulose/Poly(Vinyl Alcohol)-Based Silk Sericin and Azithromycin Release System for Treating Chronic Wound Biofilm. Macromol Biosci 2022; 22:e2200201. [PMID: 35962940 DOI: 10.1002/mabi.202200201] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Chronic wounds are associated with infectious microbial complex communities called biofilms. The management of chronic wound infection is limited by the complexity of selecting an appropriate antimicrobial dressing with antibiofilm activity due to antimicrobial resistance in biofilms. Herein, the in situ developed bacterial cellulose/poly(vinyl alcohol) (BC-PVA) composite is ex situ modified with genipin-crosslinked silk sericin (SS) and azithromycin (AZM) (SSga). The composite is evaluated as a wound dressing material for preventing the development, dispersion, and/or eradication of microbial biofilm. FTIR spectroscopy confirms the intermolecular interactions between the components of BC-PVA@SSga scaffolds. The addition of PVA during BC production significantly increases the porosity from 53.5 ± 2.3 to 83.5 ± 2.9%, the pore size from 2.3 ± 1.9 to 16.8 ± 4.5 μm, the fiber diameter from 35.5 ± 10 to 120 ± 27.4 nm, and improves the thermal stability and flexibility. Studies using bacteria and fungi indicate high inhibition and disruption of biofilms upon AZM addition. In vitro biocompatibility analysis confirms the nontoxic nature of BC-PVA@SSga towards HaCaT and NIH3T3 cells, whereas the addition of SS enhanced cell proliferation. The developed BC-PVA@SSga accelerated wound healing in the infected mouse model, thus could be a promising wound dressing biomaterial. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Institut Superieur des Techniques Medicales de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg, 1710, South Africa
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Laboratoire de Biologie Moléculaire et Virologie, Institut National d'Hygiène-Togo, 26 Rue Nangbéto, Quartier Administratif- PO. Box 1396, Lomé, Togo
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
31
|
Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, Naz S, Ahmad B, Meyyazhagan A, Pushparaj K, Wan CC, Balasubramanian B, Rengasamy KR, Simal-Gandara J. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chem Biol Interact 2022; 365:110072. [PMID: 35952775 DOI: 10.1016/j.cbi.2022.110072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The sea is a vast ecosystem that has remained primarily unexploited and untapped, resulting in numerous organisms. Consequently, marine organisms have piqued the interest of scientists as an abundant source of natural resources with unique structural features and fascinating biological activities. Marine macrolide is a top-class natural product with a heavily oxygenated polyene backbone containing macrocyclic lactone. In the last few decades, significant efforts have been made to isolate and characterize macrolides' chemical and biological properties. Numerous macrolides are extracted from different marine organisms such as marine microorganisms, sponges, zooplankton, molluscs, cnidarians, red algae, tunicates, and bryozoans. Notably, the prominent macrolide sources are fungi, dinoflagellates, and sponges. Marine macrolides have several bioactive characteristics such as antimicrobial (antibacterial, antifungal, antimalarial, antiviral), anti-inflammatory, antidiabetic, cytotoxic, and neuroprotective activities. In brief, marine organisms are plentiful in naturally occurring macrolides, which can become the source of efficient and effective therapeutics for many diseases. This current review summarizes these exciting and promising novel marine macrolides in biological activities and possible therapeutic applications.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 94640, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Bashir Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruit &Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit & Vegetables, College of Agronomy, Jiangxi Agricultural University Nanchang, 330045, Jiangxi, China.
| | | | - Kannan Rr Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
32
|
Toledano-Osorio M, Vallecillo C, Toledano R, Aguilera FS, Osorio MT, Muñoz-Soto E, García-Godoy F, Vallecillo-Rivas M. A Systematic Review and Meta-Analysis of Systemic Antibiotic Therapy in the Treatment of Peri-Implantitis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116502. [PMID: 35682086 PMCID: PMC9180155 DOI: 10.3390/ijerph19116502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Research has been conducted into the advantages of the systemic administration of antibiotics. The aim of this systematic review and meta-analysis was to assess the efficacy of systemic antibiotic administration in the treatment of peri-implantitis in terms of bleeding on probing (BoP) and probing pocket depth (PPD). Literature searches were performed across PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) to identify randomized controlled trials and observational clinical studies. After peri-implantitis treatment, PPD was reduced by 0.1 mm (p = 0.58; IC 95% [-0.24, 0.47]), indicating a non-significant effect of antibiotic administration on PPD. The BoP odds ratio value was 1.15 (p = 0.5; IC 95% [0.75, 1.75]), indicating that the likelihood of bleeding is almost similar between the test and control groups. Secondary outcomes were found, such as reduced clinical attachment level, lower suppuration and recession, less bone loss, and a reduction in total bacterial counts. In the treatment of peri-implantitis, the systemic antibiotic application reduces neither PPD nor BoP. Therefore, the systemic administration of antibiotics, in the case of peri-implantitis, should be rethought in light of the present results, contributing to address the problem of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Department of Stomatology, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (F.S.A.); (E.M.-S.); (M.V.-R.)
| | - Cristina Vallecillo
- Department of Stomatology, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (F.S.A.); (E.M.-S.); (M.V.-R.)
- Correspondence: ; Tel.: +34-958-243-789
| | - Raquel Toledano
- Independent Researcher, 18071 Granada, Spain; (R.T.); (M.T.O.)
| | - Fátima S. Aguilera
- Department of Stomatology, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (F.S.A.); (E.M.-S.); (M.V.-R.)
| | - María T. Osorio
- Independent Researcher, 18071 Granada, Spain; (R.T.); (M.T.O.)
| | - Esther Muñoz-Soto
- Department of Stomatology, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (F.S.A.); (E.M.-S.); (M.V.-R.)
| | - Franklin García-Godoy
- Health Science Center, College of Dentistry, University of Tennessee, 875 Union Avenue, Memphis, TN 38103, USA;
| | - Marta Vallecillo-Rivas
- Department of Stomatology, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (F.S.A.); (E.M.-S.); (M.V.-R.)
| |
Collapse
|
33
|
Venditto VJ, Feola DJ. Delivering macrolide antibiotics to heal a broken heart - And other inflammatory conditions. Adv Drug Deliv Rev 2022; 184:114252. [PMID: 35367307 PMCID: PMC9063468 DOI: 10.1016/j.addr.2022.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Drug carriers to deliver macrolide antibiotics, such as azithromycin, show promise as antibacterial agents. Macrolide drug carriers have largely focused on improving the drug stability and pharmacokinetics, while reducing adverse reactions and improving antibacterial activity. Recently, macrolides have shown promise in treating inflammatory conditions by promoting a reparative effect and limiting detrimental pro-inflammatory responses, which shifts the immunologic setpoint from suppression to balance. While macrolide drug carriers have only recently been investigated for their ability to modulate immune responses, the previous strategies that deliver macrolides for antibacterial therapy provide a roadmap for repurposing the macrolide drug carriers for therapeutic interventions targeting inflammatory conditions. This review describes the antibacterial and immunomodulatory activity of macrolides, while assessing the past in vivo evaluation of drug carriers used to deliver macrolides with the intention of presenting a case for increased effort to translate macrolide drug carriers into the clinic.
Collapse
|
34
|
Recent Trends in the Epidemiology, Diagnosis, and Treatment of Macrolide-Resistant Mycoplasma pneumoniae. J Clin Med 2022; 11:jcm11071782. [PMID: 35407390 PMCID: PMC8999570 DOI: 10.3390/jcm11071782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Among Mycoplasma pneumoniae (MP) is one of the major pathogens causing lower respiratory tract infection. Macrolide-resistant Mycoplasma pneumoniae (MRMP) isolates have been increasing and has become a global concern, especially in East Asian countries. This affects the treatment of MP infection; that is, some patients with MRMP infections fever cannot be controlled despite macrolide therapy. Therefore, alternative therapies, including secondary antimicrobials, including tetracyclines, fluoroquinolones, or systemic corticosteroids, were introduced. However, there are insufficient data on these alternative therapies. Thus, this article provides reviews of the recent trends in the epidemiology, diagnosis, and treatment of MRMP.
Collapse
|
35
|
Factors Determining Plasticity of Responses to Drugs. Int J Mol Sci 2022; 23:ijms23042068. [PMID: 35216184 PMCID: PMC8877660 DOI: 10.3390/ijms23042068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird’s eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.
Collapse
|