1
|
Deng ZQ, Si XC, Song JB, Li JY, Sun L, Dang X, Zhao M, Feng YC, Liu FX. Behavioral manifestations and underlying mechanisms of amphetamine in constructing animal models of mania: a comprehensive review. Front Neurosci 2025; 19:1544311. [PMID: 40415893 PMCID: PMC12098516 DOI: 10.3389/fnins.2025.1544311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Mania is a mind disorder with heightened emotions, etc. Amphetamine (AMPH), a drug with central nervous system excitatory effects, can disrupt neurotransmitter release and metabolism, causing mania. AMPH-induced animal models of mania show increased risk and reward-seeking behaviors and excessive locomotion like mania patients, verifiable by tests like Elevated Plus Maze (EPM). It also impacts neurotransmitter balance in different brain regions, aligning with the imbalance in mania patients. Multiple signaling pathways including extracellular regulated protein kinases and others are involved, and their altered activities link to mania symptoms. In the AMPH-induced mania model, regions like the frontal cortex have increased oxidative stress and inflammatory response. Moreover, AMPH changes neurotrophin levels, potentially causing neuronal damage and cognitive impairment. In summary, the AMPH-induced mania animal model is crucial for studying mania's pathogenesis. However, further in-depth studies on neurotransmitter regulation, signaling pathway intervention, and neurotrophic factors are needed to develop more effective and personalized treatment plans.
Collapse
Affiliation(s)
- Zi-Qi Deng
- Department of Neuropsychiatric Psychology, Hospital of Encephalopathy, The First Affiliated Hospital of Traditional Henan University of Chinese Medicine, Zhengzhou, China
- Institute of Management and Science University, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Chen Si
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-Bin Song
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Yao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan university of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- Department of Neuropsychiatric Psychology, Hospital of Encephalopathy, The First Affiliated Hospital of Traditional Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Chen Feng
- Department of Neuropsychiatric Psychology, Hospital of Encephalopathy, The First Affiliated Hospital of Traditional Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan university of Chinese Medicine, Zhengzhou, China
| | - Fei-Xiang Liu
- Department of Neuropsychiatric Psychology, Hospital of Encephalopathy, The First Affiliated Hospital of Traditional Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
The role of hippocampal 5-HT 1D and 5-HT 1F receptors on learning and memory in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02411-x. [PMID: 36749399 DOI: 10.1007/s00210-023-02411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
Serotonin is a neurotransmitter, which is involved in memory via its receptors. The 5-HT1D and 5-HT1F receptors mainly exist in the hippocampus, which plays an important role in memory processing. However, few studies have assessed the effect of these serotonin receptors on memory. We evaluated the effect of a 5-HT1D receptor agonist, PNU142633, 5-HT1D receptor antagonist, BRL15572 hydrochloride, and 5-HT1F receptor agonist, LY344864, on the recognition and avoidance memory in the hippocampus area. Fifty adult male Wistar rats weighing 200-250 g were divided into the control, sham-operated, PNU, BRL, and LY groups (n=10 per group). Bilateral guide cannulas were implanted into the dentate gyrus area of the hippocampus. The drugs were administered at the dose of 1 μg/μl before the novel object recognition (NOR) and passive avoidance learning (PAL) tests. The results showed that in the NOR test, the administration of PNU and LY had no significant effect on recognition index; however, the recognition index was increased by BRL. In the PAL test, the administration of PNU had no significant effect on recognition index, but the administration of BRL and LY increased the time spent in the dark compartment of the apparatus and decreased the step-through latency into the dark compartment apparatus. It can be concluded that the inhibition of the hippocampal 5-HT1D receptor improved cognition memory but impaired avoidance memory. Activation of the hippocampal 5-HT1F receptor had no effect on cognitive memory but impaired avoidance memory.
Collapse
|
3
|
Cheng Z, Su J, Zhang K, Jiang H, Li B. Epigenetic Mechanism of Early Life Stress-Induced Depression: Focus on the Neurotransmitter Systems. Front Cell Dev Biol 2022; 10:929732. [PMID: 35865627 PMCID: PMC9294154 DOI: 10.3389/fcell.2022.929732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has an alarmingly high prevalence worldwide. A growing body of evidence indicates that environmental factors significantly affect the neural development and function of the central nervous system and then induce psychiatric disorders. Early life stress (ELS) affects brain development and has been identified as a major cause of depression. It could promote susceptibility to stress in adulthood. Recent studies have found that ELS induces epigenetic changes that subsequently affect transcriptional rates of differentially expressed genes. The epigenetic modifications involved in ELS include histone modifications, DNA methylation, and non-coding RNA. Understanding of these genetic modifications may identify mechanisms that may lead to new interventions for the treatment of depression. Many reports indicate that different types of ELS induce epigenetic modifications of genes involved in the neurotransmitter systems, such as the dopaminergic system, the serotonergic system, the gamma-aminobutyric acid (GABA)-ergic system, and the glutamatergic system, which further regulate gene expression and ultimately induce depression-like behaviors. In this article, we review the effects of epigenetic modifications on the neurotransmitter systems in depression-like outcomes produced by different types of ELS in recent years, aiming to provide new therapeutic targets for patients who suffer from depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Kai Zhang
- Central Laboratory, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Huiyi Jiang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Huiyi Jiang, ; Bingjin Li,
| |
Collapse
|
4
|
Cai X, Liu H, Feng B, Yu M, He Y, Liu H, Liang C, Yang Y, Tu L, Zhang N, Wang L, Yin N, Han J, Yan Z, Wang C, Xu P, Wu Q, Tong Q, He Y, Xu Y. A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nat Neurosci 2022; 25:646-658. [PMID: 35501380 PMCID: PMC9926508 DOI: 10.1038/s41593-022-01062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2022] [Indexed: 12/18/2022]
Abstract
Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.
Collapse
Affiliation(s)
- Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lina Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zili Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Tsitsipa E, Rogers J, Casalotti S, Belessiotis-Richards C, Zubko O, Weil RS, Howard R, Bisby JA, Reeves S. Selective 5HT3 antagonists and sensory processing: a systematic review. Neuropsychopharmacology 2022; 47:880-890. [PMID: 35017671 PMCID: PMC8882165 DOI: 10.1038/s41386-021-01255-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/04/2022]
Abstract
Ondansetron is a selective serotonin (5HT3) receptor antagonist that is under evaluation as an adjunctive treatment for schizophrenia, and a novel treatment for hallucinations in Parkinson's disease. Ondansetron reverses sensory gating deficits and improves visuoperceptual processing in animal models of psychosis, but it is unclear to what extent preclinical findings have been replicated in humans. We systematically reviewed human studies that evaluated the effects of ondansetron and other 5HT3 receptor antagonists on sensory gating deficits or sensory processing. Of 11 eligible studies, eight included patients with schizophrenia who were chronically stable on antipsychotic medication; five measured sensory gating using the P50 suppression response to a repeated auditory stimulus; others included tests of visuoperceptual function. Three studies in healthy participants included tests of visuoperceptual and sensorimotor function. A consistent and robust finding (five studies) was that ondansetron and tropisetron (5HT3 antagonist and α7-nicotinic receptor partial agonist) improved sensory gating in patients with schizophrenia. Tropisetron also improved sustained visual attention in non-smoking patients. There was inconsistent evidence of the effects of 5HT3 antagonists on other measures of sensory processing, but interpretation was limited by the small number of studies, methodological heterogeneity and the potential confounding effects of concomitant medication in patients. Despite these limitations, we found strong evidence that selective 5HT3 antagonists (with or without direct α7-nicotinic partial agonist effects) improved sensory gating. Future studies should investigate how this relates to potential improvement in neurocognitive symptoms in antipsychotic naive patients with prodromal or milder symptoms, in order to understand the clinical implications.
Collapse
Affiliation(s)
- Eirini Tsitsipa
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - Jonathan Rogers
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK ,grid.415717.10000 0001 2324 5535South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX UK
| | - Sebastian Casalotti
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - Clara Belessiotis-Richards
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - Olga Zubko
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - Rimona S. Weil
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR UK ,grid.83440.3b0000000121901201Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR UK ,grid.436283.80000 0004 0612 2631Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3AR UK
| | - Robert Howard
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - James A. Bisby
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T7NF, UK.
| |
Collapse
|
6
|
He Y, Cai X, Liu H, Conde KM, Xu P, Li Y, Wang C, Yu M, He Y, Liu H, Liang C, Yang T, Yang Y, Yu K, Wang J, Zheng R, Liu F, Sun Z, Heisler L, Wu Q, Tong Q, Zhu C, Shu G, Xu Y. 5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Mol Psychiatry 2021; 26:7211-7224. [PMID: 34290371 PMCID: PMC8776930 DOI: 10.1038/s41380-021-01220-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Obesity is primarily a consequence of consuming calories beyond energetic requirements, but underpinning drivers have not been fully defined. 5-Hydroxytryptamine (5-HT) neurons in the dorsal Raphe nucleus (5-HTDRN) regulate different types of feeding behavior, such as eating to cope with hunger or for pleasure. Here, we observed that activation of 5-HTDRN to hypothalamic arcuate nucleus (5-HTDRN → ARH) projections inhibits food intake driven by hunger via actions at ARH 5-HT2C and 5-HT1B receptors, whereas activation of 5-HTDRN to ventral tegmental area (5-HTDRN → VTA) projections inhibits non-hunger-driven feeding via actions at 5-HT2C receptors. Further, hunger-driven feeding gradually activates ARH-projecting 5-HTDRN neurons via inhibiting their responsiveness to inhibitory GABAergic inputs; non-hunger-driven feeding activates VTA-projecting 5-HTDRN neurons through reducing a potassium outward current. Thus, our results support a model whereby parallel circuits modulate feeding behavior either in response to hunger or to hunger-independent cues.
Collapse
Affiliation(s)
- Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krisitine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Yongxiang Li
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tingting Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julia Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rong Zheng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Lora Heisler
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Trofimova I. Contingent Tunes of Neurochemical Ensembles in the Norm and Pathology: Can We See the Patterns? Neuropsychobiology 2021; 80:101-133. [PMID: 33721867 DOI: 10.1159/000513688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Progress in the development of DSM/ICD taxonomies has revealed limitations of both label-based and dimensionality approaches. These approaches fail to address the contingent, nonlinear, context-dependent, and transient nature of those biomarkers linked to specific symptoms of psychopathology or to specific biobehavioural traits of healthy people (temperament). The present review aims to highlight the benefits of a functional constructivism approach in the analysis of neurochemical biomarkers underlying temperament and psychopathology. METHOD A review was performed. RESULTS Eight systems are identified, and 7 neurochemical ensembles are described in detail. None of these systems is represented by a single neurotransmitter; all of them work in ensembles with each other. The functionality and relationships of these systems are presented here in association with their roles in action construction, with brief examples of psychopathology. The review introduces formal symbols for these systems to facilitate their more compact analysis in the future. CONCLUSION This analysis demonstrates the possibility of constructivism-based unifying taxonomies of temperament (in the framework of the neurochemical model functional ensemble of temperament) and classifications of psychiatric disorders. Such taxonomies would present the biobehavioural individual differences as consistent behavioural patterns generated within a formally structured space of parameters related to the generation of behaviour.
Collapse
Affiliation(s)
- Irina Trofimova
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,
| |
Collapse
|
8
|
Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem Res 2021; 46:3273-3285. [PMID: 34409523 DOI: 10.1007/s11064-021-03430-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023]
Abstract
Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress (CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corticosterone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as depression which induce memory impairment.
Collapse
|
9
|
Low serum uric acid levels are associated with the nonmotor symptoms and brain gray matter volume in Parkinson's disease. Neurol Sci 2021; 43:1747-1754. [PMID: 34405296 PMCID: PMC8860949 DOI: 10.1007/s10072-021-05558-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
Background Uric acid (UA) plays a protective role in Parkinson’s disease (PD). To date, studies on the relationship between serum UA levels and nonmotor symptoms and brain gray matter volume in PD patients have been rare. Methods Automated enzymatic analysis was used to determine serum UA levels in 68 healthy controls and 88 PD patients, including those at the early (n = 56) and middle-late (n = 32) stages of the disease. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Image acquisition was performed using a Siemens MAGNETOM Prisma 3 T MRI scanner. Results Serum UA levels in early stage PD patients were lower than those in healthy controls, and serum UA levels in the middle-late stage PD patients were lower than those in the early stage PD patients. Serum UA levels were significantly negatively correlated with the disease course, dysphagia, anxiety, depression, apathy, and cognitive dysfunction. ROC assessment confirmed that serum UA levels had good predictive accuracy for PD with dysphagia, anxiety, depression, apathy, and cognitive dysfunction. Furthermore, UA levels were significantly positively correlated with gray matter volume in whole brain. Conclusions This study shows that serum UA levels were correlated with the nonmotor symptoms of dysphagia, anxiety, depression, apathy, and cognitive dysfunction and the whole-brain gray matter volume. That is the first report examining the relationships between serum UA and clinical manifestations and imaging features in PD patients.
Collapse
|
10
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
11
|
Molecular Cloning and Functional Characterization of Three 5-HT Receptor Genes ( HTR1B, HTR1E, and HTR1F) in Chickens. Genes (Basel) 2021; 12:genes12060891. [PMID: 34207786 PMCID: PMC8230051 DOI: 10.3390/genes12060891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.
Collapse
|
12
|
Li A, Li R, Ouyang P, Li H, Wang S, Zhang X, Wang D, Ran M, Zhao G, Yang Q, Zhu Z, Dong H, Zhang H. Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci Ther 2021; 27:941-950. [PMID: 33973716 PMCID: PMC8265942 DOI: 10.1111/cns.13656] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 12/04/2022] Open
Abstract
Aims General anesthesia has been widely applied in surgical or nonsurgical medical procedures, but the mechanism behind remains elusive. Because of shared neural circuits of sleep and anesthesia, whether serotonergic system, which is highly implicated in modulation of sleep and wakefulness, regulates general anesthesia as well is worth investigating. Methods Immunostaining and fiber photometry were used to assess the neuronal activities. Electroencephalography spectra and burst‐suppression ratio (BSR) were used to measure anesthetic depth and loss or recovery of righting reflex to indicate the induction or emergence time of general anesthesia. Regulation of serotonergic system was achieved through optogenetic, chemogenetic, or pharmacological methods. Results We found that both Fos expression and calcium activity were significantly decreased during general anesthesia. Activation of 5‐HT neurons in the dorsal raphe nucleus (DRN) decreased the depth of anesthesia and facilitated the emergence from anesthesia, and inhibition deepened the anesthesia and prolonged the emergence time. Furthermore, agonism or antagonism of 5‐HT 1A or 2C receptors mimicked the effect of manipulating DRN serotonergic neurons. Conclusion Our results demonstrate that 5‐HT neurons in the DRN play a regulative role of general anesthesia, and activation of serotonergic neurons could facilitate emergence from general anesthesia partly through 5‐HT 1A and 2C receptors.
Collapse
Affiliation(s)
- Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengrong Ouyang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingzi Ran
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenghua Zhu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haopeng Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
RNA editing of the 5-HT2C receptor in the central nucleus of the amygdala is involved in resilience behavior. Transl Psychiatry 2021; 11:137. [PMID: 33627618 PMCID: PMC7904784 DOI: 10.1038/s41398-021-01252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023] Open
Abstract
Post-traumatic-stress-disorder (PTSD) is a stress-related condition that may develop after exposure to a severe trauma-event. One of the core brain areas that is considered to be a key regulatory region of PTSD is the amygdala. Specifically, the central amygdala (CeA) is involved in emotion processing and associative fear learning memory, two main circuits involved in PTSD. Long term dysregulation of trauma-related emotional processing may be caused by neuroadaptations that affect gene expression. The adenosine-(A) to-inosine (I) RNA editing machinery is a post-transcriptional process that converts a genomic encoded A to I and is critical for normal brain function and development. Such editing has the potential to increase the transcriptome diversity, and disruption of this process has been linked to various central nervous system disorders. Here, we employed a unique animal model to examine the possibility that the RNA editing machinery is involved in PTSD. Detection of RNA editing specifically in the CeA revealed changes in the editing pattern of the 5-HT2C serotonin receptor (5-HT2CR) transcript accompanied by dynamic changes in the expression levels of the ADAR family enzymes (ADAR and ADARb1). Deamination by ADAR and ADARb1 enzymes induces conformational changes in the 5-HT2CR that decrease the G-protein-coupling activity, agonist affinity, and thus serotonin signaling. Significantly, a single intra-CeA administration of a 5-HT2CR pharmacological antagonist produced a robust alleviation of PTSD-like behaviors (that was maintained for three weeks) as well as single systemic treatment. This work may suggest the way to a new avenue in the understanding of PTSD regulation.
Collapse
|
14
|
Zhang F, Yang M, Xiao T, Hua Y, Chen Y, Xu S, Ni C. SLC6A4 gene L/S polymorphism and susceptibility to pulmonary arterial hypertension: a meta-analysis. J Int Med Res 2020; 48:300060520935309. [PMID: 32962488 PMCID: PMC7520923 DOI: 10.1177/0300060520935309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective To investigate the association between the solute carrier family 6 member 4 (SLC6A4) gene L/S polymorphism and pulmonary arterial hypertension (PAH). Methods The relevant literature was retrieved from the PubMed® database and the data were extracted. STATA® version 12.0 software was used to calculate pooled odds ratios (ORs) and 95% confidence intervals (CI). Results Eight case–control studies qualified for inclusion in the meta-analysis. These studies included 1215 cases and 936 control subjects. There was no significant association between the SLC6A4 gene L/S polymorphism and PAH risk in the total population (LL versus SS: OR 1.83, 95% CI 0.95, 3.51; LS versus SS: OR 1.37, 95% CI 0.93, 2.02; dominant model: OR 1.38, 95% CI 0.97, 1.97; recessive model: OR 1.54, 95% CI 0.84, 2.83). Subgroup analysis based on study quality scores and Hardy–Weinberg equilibrium also showed no significant association. Conclusion The findings of this meta-analysis suggest that the SLC6A4 gene L/S polymorphism is unlikely to be related to PAH risk. Well-designed studies with more participants will be required to validate these results.
Collapse
Affiliation(s)
- Feng Zhang
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Meiming Yang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Ting Xiao
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Hua
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Chen
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Shasha Xu
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Chunping Ni
- School of Nursing, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
15
|
Goutaudier R, Coizet V, Carcenac C, Carnicella S. Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. PLoS One 2020; 15:e0238156. [PMID: 32946510 PMCID: PMC7500623 DOI: 10.1371/journal.pone.0238156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) represent a technical revolution in integrative neuroscience. However, the first used ligands exhibited dose-dependent selectivity for their molecular target, leading to potential unspecific effects. Compound 21 (C21) was recently proposed as an alternative, but in vivo characterization of its properties is not sufficient yet. Here, we evaluated its potency to selectively modulate the activity of nigral dopaminergic (DA) neurons through the canonical DREADD receptor hM4Di using TH-Cre rats. In males, 1 mg.kg-1 of C21 strongly increased nigral neurons activity in control animals, indicative of a significant off-target effect. Reducing the dose to 0.5 mg.kg-1 circumvented this unspecific effect, while activated the inhibitory DREADDs and selectively reduced nigral neurons firing. In females, 0.5 mg.kg-1 of C21 induced a transient and residual off-target effect that may mitigated the inhibitory DREADDs-mediated effect. This study raises up the necessity to test selectivity and efficacy of chosen ligands for each new experimental condition.
Collapse
Affiliation(s)
- Raphaël Goutaudier
- Institut national de la santé et de la recherche médicale, Grenoble Institut des Neurosciences, U1216, Université, Grenoble Alpes, Grenoble, France
| | - Véronique Coizet
- Institut national de la santé et de la recherche médicale, Grenoble Institut des Neurosciences, U1216, Université, Grenoble Alpes, Grenoble, France
| | - Carole Carcenac
- Institut national de la santé et de la recherche médicale, Grenoble Institut des Neurosciences, U1216, Université, Grenoble Alpes, Grenoble, France
| | - Sebastien Carnicella
- Institut national de la santé et de la recherche médicale, Grenoble Institut des Neurosciences, U1216, Université, Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
17
|
Lewis MW, Jones RT, Davis MT. Exploring the impact of trauma type and extent of exposure on posttraumatic alterations in 5-HT1A expression. Transl Psychiatry 2020; 10:237. [PMID: 32678079 PMCID: PMC7366706 DOI: 10.1038/s41398-020-00915-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The long-term behavioral, psychological, and neurobiological effects of exposure to potentially traumatic events vary within the human population. Studies conducted on trauma-exposed human subjects suggest that differences in trauma type and extent of exposure combine to affect development, maintenance, and treatment of a variety of psychiatric syndromes. The serotonin 1-A receptor (5-HT1A) is an inhibitory G protein-coupled serotonin receptor encoded by the HTR1A gene that plays a role in regulating serotonin release, physiological stress responding, and emotional behavior. Studies from the preclinical and human literature suggest that dysfunctional expression of 5-HT1A is associated with a multitude of psychiatric symptoms commonly seen in trauma-exposed individuals. Here, we synthesize the literature, including numerous preclinical studies, examining differences in alterations in 5-HT1A expression following trauma exposure. Collectively, these findings suggest that the impact of trauma exposure on 5-HT1A expression is dependent, in part, on trauma type and extent of exposure. Furthermore, preclinical and human studies suggest that this observation likely applies to additional molecular targets and may help explain variation in trauma-induced changes in behavior and treatment responsivity. In order to understand the neurobiological impact of trauma, including the impact on 5-HT1A expression, it is crucial to consider both trauma type and extent of exposure.
Collapse
|
18
|
Ochi T, Vyalova NM, Losenkov IS, Paderina DZ, Pozhidaev IV, Loonen AJM, Simutkin GG, Bokhan NA, Ivanova SA, Wilffert B. Limited Associations Between 5-HT Receptor Gene Polymorphisms and Treatment Response in Antidepressant Treatment-Free Patients With Depression. Front Pharmacol 2019; 10:1462. [PMID: 31956308 PMCID: PMC6951408 DOI: 10.3389/fphar.2019.01462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder has become a prominent cause of disability, as lifetime prevalence has increased to ~15% in the Western world. Pharmacological effects of serotonin (5-hydroxytryptamine, 5-HT) are mediated through 5-hydroxytryptamine receptor (5-HTR) binding. Serotonin regulation of amygdala activity is attained through activation of three 5-HT2 family receptor subtypes, 5-HT2A, 5-HT2B, and 5-HT2C. Specifically, HT2A and the HT2C receptors have similar gross cerebral distribution and function, with higher constitutive activity found in HT2C than in HT2A. We investigated the possible association of 5-HTR gene polymorphisms to specific and non-specific antidepressant treatment responses in treatment-free patients in Siberia. 156 patients, aged between 18-70 years and clinically diagnosed with depressive disorders, were treated with antidepressants for 4 weeks. Patients were genotyped for a subset of 29 SNPs from the following 5-HT Receptor genes: HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B and HTR6. Primary outcome was measured by differences in Hamilton Depression Rating Scale (ΔHAM-D 17) scores between baseline/week two, week two/week four and baseline/week four. Univariate linear regression was initially conducted to determine the 5-HTR SNPs to be studied within the multiple linear regression. Multiple linear regression analyses over the three time periods were conducted for ΔHAM-D 17 with independent factors including: age, gender, depression diagnosis, antidepressant treatment and selected 5-HTR SNPs. We found improved ∆HAM-D 17 in patients taking tricyclic antidepressants (0-4 weeks: B = 4.85, p = 0.0002; 0-2 weeks: B = 3.58, p = 0.002) compared to patients taking SSRIs. Over the course of study, significant associations between 5-HT receptors SNPs and antidepressant response were not identified.
Collapse
Affiliation(s)
- Taichi Ochi
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Natalya M. Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Innokentiy S. Losenkov
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Diana Z. Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Anton J. M. Loonen
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- GGZ Westelijk Noord-Brabant, Policy Office for Quality and Innovation of Care (BZI), Halsteren, Netherlands
| | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
- School of Non-Destructive Testing and Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Bob Wilffert
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev 2019; 40:1092-1107. [PMID: 30901029 PMCID: PMC6624793 DOI: 10.1210/er.2018-00283] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Julian M Yabut
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Justin D Crane
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Alexander E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Waliul I Khan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Yang K, Wang C, Sun T. The Roles of Intracellular Chaperone Proteins, Sigma Receptors, in Parkinson's Disease (PD) and Major Depressive Disorder (MDD). Front Pharmacol 2019; 10:528. [PMID: 31178723 PMCID: PMC6537631 DOI: 10.3389/fphar.2019.00528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Sigma receptors, including Sigma-1 receptors and Sigma-2 receptors, are highly expressed in the CNS. They are intracellular chaperone proteins. Sigma-1 receptors localize mainly at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM). Upon stimulation, they translocate from MAM to plasma membrane (PM) and nucleus, where they interact with many proteins and ion channels. Sigma-1 receptor could interact with itself to form oligomers, its oligomerization states affect its ability to interact with client proteins including ion channels and BiP. Sigma-1 receptor shows high affinity for many unrelated and structurally diverse ligands, but the mechanism for this diverse drug receptor interaction remains unknown. Sigma-1 receptors also directly bind many proteins including G protein-coupled receptors (GPCRs) and ion channels. In recent years, significant progress has been made in our understanding of roles of the Sigma-1 receptors in normal and pathological conditions, but more studies are still required for the Sigma-2 receptors. The physiological roles of Sigma-1 receptors in the CNS are discussed. They can modulate the activity of many ion channels including voltage-dependent ion channels including Ca2+, Na+, K+ channels and NMDAR, thus affecting neuronal excitability and synaptic activity. They are also involved in synaptic plasticity and learning and memory. Moreover, the activation of Sigma receptors protects neurons from death via the modulation of ER stress, neuroinflammation, and Ca2+ homeostasis. Evidences about the involvement of Sigma-1 receptors in Parkinson’s disease (PD) and Major Depressive Disorder (MDD) are also presented, indicating Sigma-1 receptors might be promising targets for pharmacologically treating PD and MDD.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
21
|
Belmer A, Beecher K, Jacques A, Patkar OL, Sicherre F, Bartlett SE. Axonal Non-segregation of the Vesicular Glutamate Transporter VGLUT3 Within Serotonergic Projections in the Mouse Forebrain. Front Cell Neurosci 2019; 13:193. [PMID: 31133811 PMCID: PMC6523995 DOI: 10.3389/fncel.2019.00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
A subpopulation of raphe 5-HT neurons expresses the vesicular glutamate transporter VGLUT3 with the co-release of glutamate and serotonin proposed to play a pivotal role in encoding reward- and anxiety-related behaviors. Serotonin axons are identifiable by immunolabeling of either serotonin (5-HT) or the plasma membrane 5-HT transporter (SERT), with SERT labeling demonstrated to be only partially overlapping with 5-HT staining. Studies investigating the colocalization or segregation of VGLUT3 within SERT or 5-HT immunolabeled boutons have led to inconsistent results. Therefore, we combined immunohistochemistry, high resolution confocal imaging, and 3D-reconstruction techniques to map and quantify the distribution of VGLUT3 immunoreactive boutons within 5-HT vs. SERT-positive axons in various regions of the mouse forebrain, including the prefrontal cortex, nucleus accumbens core and shell, bed nucleus of the stria terminalis, dorsal striatum, lateral septum, basolateral and central amygdala, and hippocampus. Our results demonstrate that about 90% of 5-HT boutons are colocalized with SERT in almost all the brain regions studied, which therefore reveals that VGLUT3 and SERT do not segregate. However, in the posterior part of the NAC shell, we confirmed the presence of a subtype of 5-HT immunoreactive axons that lack the SERT. Interestingly, about 90% of the 5-HT/VGLUT3 boutons were labeled for the SERT in this region, suggesting that VGLUT3 is preferentially located in SERT immunoreactive 5-HT boutons. This work demonstrates that VGLUT3 and SERT cannot be used as specific markers to classify the different subtypes of 5-HT axons.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omkar L Patkar
- QIMR Berghofer Medical Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Florian Sicherre
- Biologie Integrative et Physiologie, Université Pierre et Marie Curie, Paris, France
| | - Selena E Bartlett
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Sharif MH, Talebnejad MR, Rastegar K, Khalili MR, Nowroozzadeh MH. Oral fluoxetine in the management of amblyopic patients aged between 10 and 40 years old: a randomized clinical trial. Eye (Lond) 2019; 33:1060-1067. [PMID: 30783259 DOI: 10.1038/s41433-019-0360-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The objective of this study is to assess the efficacy of oral fluoxetine therapy in improving the visual function of amblyopic patients aged between 10 and 40 years old. METHODS In this double-blinded, randomized, controlled trial (IRCT2016052428046N1; registered retrospectively), 40 eligible participants with anisometropic or mixed amblyopia were randomly assigned to either fluoxetine or placebo groups. Participants with anisometropia and logMAR best spectacle-corrected visual acuity (BSCVA) worse than 0.2 logMAR in the amblyopic eye or at least a two-line of difference in the BSCVA between the fellow eyes were included. Participants with significant ocular or systemic diseases were excluded. In both groups, the better eye of each patient was patched for 4-6 h a day during the study period. Participants in the treatment group were treated with oral fluoxetine for 3 months. Change in the Snellen BSCVA (after 3 months) was regarded as the primary outcome measure. RESULTS Data from 20 participants in the fluoxetine group and 15 participants from the placebo group were analyzed (aged 11-37 years). The magnitude of improvement in visual acuity (from baseline to 3 months after treatment) was significantly higher in the fluoxetine group (0.240 ± 0.068 logMAR; 2.4 line-gain) compared with the control group (0.120 ± 0.086 logMAR; 1.2 line-gain). CONCLUSIONS This study suggests beneficial effects of fluoxetine in the management of adult and adolescent amblyopia.
Collapse
Affiliation(s)
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Karim Rastegar
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Allen DC, Ford MM, Grant KA. Cross-Species Translational Findings in the Discriminative Stimulus Effects of Ethanol. Curr Top Behav Neurosci 2019; 39:95-111. [PMID: 28341943 PMCID: PMC5612861 DOI: 10.1007/7854_2017_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The progress on understanding the pharmacological basis of ethanol's discriminative stimulus effects has been substantial, but appears to have plateaued in the past decade. Further, the cross-species translational efforts are clear in laboratory animals, but have been minimal in human subject studies. Research findings clearly demonstrate that ethanol produces a compound stimulus with primary activity through GABA and glutamate receptor systems, particularly ionotropic receptors, with additional contribution from serotonergic mechanisms. Further progress should capitalize on chemogenetic and optogenetic techniques in laboratory animals to identify the neural circuitry involved in mediating the discriminative stimulus effects of ethanol. These infrahuman studies can be guided by in vivo imaging of human brain circuitry mediating ethanol's subjective effects. Ultimately, identifying receptors systems, as well as where they are located within brain circuitry, will transform the use of drug discrimination procedures to help identify possible treatment or prevention strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Daicia C Allen
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Matthew M Ford
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Kathleen A Grant
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
24
|
Mirghani SJ, Peeri M, Yaghoobpour Yekani O, Zamani M, Feizolahi F, Nikbin S, Derakhshideh A, Mousavi N, Khojasteh Z, Nasrollahi Z, Khorasani E, Ghodousi Johari E, Afshar T, Azarbayjani MA. Role or Synergistic Interaction of Adenosine and Vitamin D3 Alongside High-Intensity Interval Training and Isocaloric Moderate Intensity Training on Metabolic Parameters: Protocol for an Experimental Study. JMIR Res Protoc 2019; 8:e10753. [PMID: 30698527 PMCID: PMC6372933 DOI: 10.2196/10753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is known as one of the major causes of epidemiologic diseases worldwide; therefore, the introduction of treatment strategies by medical professionals, such as the use of various medicines and exercise programs to reduce fat or prevent obesity, is on the rise. Recently, researchers have shown special interest in assessing the effect of lipolytic adenosine and vitamin D deficiency, as well as the effect of exercise, on decreasing body fat percentage. OBJECTIVE This study has been designed to examine the effect of adenosine and vitamin D3 injections, in conjunction with high-intensity interval training and isocaloric moderate-intensity training, on the metabolic parameters of obesity induced by a high-fat diet. METHODS This is an experimental study using 92 Wistar rats. At 6 weeks of age, the rats' weights will be recorded, after which they will have 1 week to adapt to their new environment before being divided into 12 groups. The rats will participate in a 2-stage experimental intervention, including a 13-week fattening diet phase followed by a 12-week exercise training phase consisting of an exercise program and the injection of adenosine and vitamin D3. Groups 1 and 2 will have a normal diet, and the other groups will have a diet of 40% fat, with free access to food and water up to the second half of the second stage of the study (end of the sixth week of training). After termination of the interventions, tissue collection and molecular assessments (blood for biochemical, tissues for gene expression analyses, and anthropometrical indexes) will be performed. RESULTS The project was initiated in April 2017 and completed in December 2017. Data analysis is under way, and the first results are expected to be submitted for publication in November 2018. CONCLUSIONS We hypothesize that weight loss-induced molecular changes and upregulation will be observed in line with an increase in lipolysis and beta oxidation in muscle and fat tissue as a result of performing isocaloric training in drug-receiving rats and groups on a high-fat diet. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/10753.
Collapse
Affiliation(s)
- Seyed Javad Mirghani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Omid Yaghoobpour Yekani
- Department of Exercise Physiology, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Masoud Zamani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Foad Feizolahi
- Department of Physical Education and Sport Science, Islamic Azad University, Karaj Branch, Karaj, Islamic Republic of Iran
| | - Sina Nikbin
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Armin Derakhshideh
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Niloufar Mousavi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Zohreh Khojasteh
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Zeynab Nasrollahi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Elya Khorasani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Elham Ghodousi Johari
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Tayebeh Afshar
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Islamic Republic of Iran
| |
Collapse
|
25
|
Bennabi D, Haffen E, Van Waes V. Vortioxetine for Cognitive Enhancement in Major Depression: From Animal Models to Clinical Research. Front Psychiatry 2019; 10:771. [PMID: 31780961 PMCID: PMC6851880 DOI: 10.3389/fpsyt.2019.00771] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Vortioxetine has already shown its efficacy in the acute and long-term treatment of major depressive disorder (MDD) and its potential interest in the prevention of relapse. The aim of this study was to review the current status of knowledge regarding its cognitive effects. Methods: We conducted a review of key data obtained from preclinical behavioral models and clinical trials in MDD focusing on vortioxetine-induced cognitive changes. Results: In animals, acute and chronic administration of vortioxetine improves performance on objective measures that cover a broad range of cognitive domains. In human, vortioxetine appears to be a useful treatment option in MDD patients with cognitive dysfunction. Conclusion: Vortioxetine constitutes a promising treatment for treatment of cognitive impairment in MDD, but its place in the therapeutic armamentarium still needs to be determined.
Collapse
Affiliation(s)
- Djamila Bennabi
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
26
|
Halcomb M, Argyriou E, Cyders MA. Integrating Preclinical and Clinical Models of Negative Urgency. Front Psychiatry 2019; 10:324. [PMID: 31191369 PMCID: PMC6541698 DOI: 10.3389/fpsyt.2019.00324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Overwhelming evidence suggests that negative urgency is robustly associated with rash, ill-advised behavior, and this trait may hamper attempts to treat patients with substance use disorder. Research applying negative urgency to clinical treatment settings has been limited, in part, due to the absence of an objective, behavioral, and translational model of negative urgency. We suggest that development of such a model will allow for determination of prime neurological and physiological treatment targets, the testing of treatment effectiveness in the preclinical and the clinical laboratory, and, ultimately, improvement in negative-urgency-related treatment response and effectiveness. In the current paper, we review the literature on measurement of negative urgency and discuss limitations of current attempts to assess this trait in human models. Then, we review the limited research on animal models of negative urgency and make suggestions for some promising models that could lead to a translational measurement model. Finally, we discuss the importance of applying objective, behavioral, and translational models of negative urgency, especially those that are easily administered in both animals and humans, to treatment development and testing and make suggestions on necessary future work in this field. Given that negative urgency is a transdiagnostic risk factor that impedes treatment success, the impact of this work could be large in reducing client suffering and societal costs.
Collapse
Affiliation(s)
- Meredith Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, Indianapolis, IN, United States
| | - Evangelia Argyriou
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Melissa A Cyders
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| |
Collapse
|
27
|
Trofimova I. Functionality versus dimensionality in psychological taxonomies, and a puzzle of emotional valence. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170167. [PMID: 29483351 PMCID: PMC5832691 DOI: 10.1098/rstb.2017.0167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
This paper applies evolutionary and functional constructivism approaches to the discussion of psychological taxonomies, as implemented in the neurochemical model Functional Ensemble of Temperament (FET). FET asserts that neurochemical systems developed in evolution to regulate functional-dynamical aspects of construction of actions: orientation, selection (integration), energetic maintenance, and management of automatic behavioural elements. As an example, the paper reviews the neurochemical mechanisms of interlocking between emotional dispositions and performance capacities. Research shows that there are no specific neurophysiological systems of positive or negative affect, and that emotional valence is rather an integrative product of many brain systems during estimations of needs and the capacities required to satisfy these needs. The interlocking between emotional valence and functional aspects of performance appears to be only partial since all monoamine and opioid receptor systems play important roles in non-emotional aspects of behaviour, in addition to emotionality. This suggests that the Positive/Negative Affect framework for DSM/ICD classifications of mental disorders oversimplifies the structure of non-emotionality symptoms of these disorders. Contingent dynamical relationships between neurochemical systems cannot be represented by linear statistical models searching for independent dimensions (such as factor analysis); nevertheless, these relationships should be reflected in psychological and psychiatric taxonomies.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Irina Trofimova
- CILab, Department of Psychiatry and Behavioral Neurosciences, McMaster University, 92 Bowman Street, Hamilton, Ontario, Canada L8S 2T6
- OISE, Department of Applied Psychology & Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Kumar R, Jade D, Gupta D. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: combination of 2D/3D similarity screening, molecular docking and molecular dynamics. J Biomol Struct Dyn 2018; 37:931-943. [PMID: 29468945 DOI: 10.1080/07391102.2018.1444509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
5-HydroxyTriptamine 2A antagonists are potential targets for treatment of various cerebrovascular and cardiovascular disorders. In this study, we have developed and performed a unique screening pipeline for filtering ZINC database compounds on the basis of similarities to known antagonists to determine novel small molecule antagonists of 5-HydroxyTriptamine 2A. The screening pipeline is based on 2D similarity, 3D dissimilarity and a combination of 2D/3D similarity. The shortlisted compounds were docked to a 5-HydroxyTriptamine 2A homology-based model, and complexes with low binding energies (287 complexes) were selected for molecular dynamics (MD) simulations in a lipid bilayer. The MD simulations of the shortlisted compounds in complex with 5-HydroxyTriptamine 2A confirmed the stability of the complexes and revealed novel interaction insights. The receptor residues S239, N343, S242, S159, Y370 and D155 predominantly participate in hydrogen bonding. π-π stacking is observed in F339, F340, F234, W151 and W336, whereas hydrophobic interactions are observed amongst V156, F339, F234, V362, V366, F340, V235, I152 and W151. The known and potential antagonists shortlisted by us have similar overlapping molecular interaction patterns. The 287 potential 5-HydroxyTriptamine 2A antagonists may be experimentally verified.
Collapse
Key Words
- , tanimoto coefficient
- 2D similarity
- 2D, two-dimensional space
- 2D/3D screening
- 3D similarity
- 3D, three-dimensional space
- 5HT
- 5HT, 5-HydroxyTryptamine
- ADHD, attention deficit hyperactivity disorders
- BLAST, basic local alignment search tool
- CNS, central nervous system
- Cl ions, chloride ions
- DOPE, discrete optimized protein energy
- G-protein coupled receptor
- GPCRs, G protein-coupled receptors
- HB, hydrogen bond
- HBA, hydrogen bond acceptors
- HBD, hydrogen bond donors
- JC virus, John Cunningham virus
- Ki, equilibrium dissociation constant for the ligand
- LBVS, ligand-based virtual screening
- MD, molecular dynamic
- MSD, mean square displacement
- MW, molecular weight
- NHB, number of hydrogen bonds
- OCD, obsessive compulsive disorder
- P5/P95, percentile calculation
- PAINS, Pan assay interference compounds
- PDB, protein data bank
- PLIP, protein–ligand interaction profiler
- PME, Particle Mesh Ewald
- PNS, peripheral nervous system
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- RMSD, root mean square deviation
- RMSF, root mean square fluctuations
- Rg, radius of gyration
- SASA, solvent accessible surface area
- SCA, stochastic clustering algorithm
- SD, steepest descent
- SDF, structure data file
- SPC, single point charge
- SPD, simple point charge
- SSE, secondary structure elements
- Sn-1/sn-2, Stereospecific number
- TM, Transmembrane
- TPSA, topological polar surface area
- drug discovery
- fs, femtosecond
- kJ/mol, kilo Joule per mol
- kcal/mol, kilocalorie per mole sn-1
- ligand-based virtual screening
- nm, nanomolar
- ns, nanosecond
- Å Ångström
- β2-AR, β2 adrenergic receptor
- μM, micromolar
Collapse
Affiliation(s)
- Rakesh Kumar
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| | - Dhananjay Jade
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| | - Dinesh Gupta
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| |
Collapse
|
29
|
Guryn R, Staszewski M, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. Non-Imidazole Histamine H₃ Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules 2018; 23:molecules23020326. [PMID: 29401659 PMCID: PMC6017745 DOI: 10.3390/molecules23020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
H₃ receptors present on histaminergic and non-histaminergic neurons, act as autoreceptors or heteroreceptors controlling neurotransmitter release and synthesis. Previous, studies have found that the compound N-methyl-N-3-phenylalkyl-2-[2-(4-n-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethan-1-amine (ADS-531, 2c) exhibits high in vitro potency toward H₃ guinea pig jejunal receptors, with pA₂ = 8.27. To optimize the structure of the lead compound ADS-531, a series of 5-substituted-2-thiazol-4-n-propylpiperazines 3 were synthesized and subjected to in vitro pharmacological characterization; the alkyl chain between position 2 of the thiazole ring and the terminal secondary N-methylamino function was elongated from three to four methylene groups and the N-methylamino functionality was substituted by benzyl-, 2-phenylethyl-, and 3-phenyl-propyl- moieties. SAR studies on novel non-imidazole, 5-substituted-2-thiazol-4-n-propyl-piperazines 3 showed that the most active compound 3a (pA₂ = 8.38), additionally possessed a weak competitive H₁-antagonistic activity. Therefore, compound ADS-531, which did not exhibit any H₁-antagonistic activity, was chosen for further evaluation for its affinity to the recombinant rat and human histamine H₃ receptors (rH₃R and hH₃R, respectively). ADS-531 exhibited nanomolar affinity for both rH₃R and hH₃R receptors. It was also shown that, ADS-531 given subchronically to rats (s.c. 3 mg/kg, 5 days) penetrated the brain, where it affected dopamine, noradrenaline and serotonin concentration; however, it did not affect histamine concentration nor feeding behavior.
Collapse
Affiliation(s)
- Roman Guryn
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland.
| | - Daniel McNaught Flores
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Wiesława Agnieszka Fogel
- Department of Hormone Biochemistry, Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland.
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-145 Łódź, Poland.
| |
Collapse
|
30
|
Lowe P, Krivoy A, Porffy L, Henriksdottir E, Eromona W, Shergill SS. When the drugs don't work: treatment-resistant schizophrenia, serotonin and serendipity. Ther Adv Psychopharmacol 2018; 8:63-70. [PMID: 29344345 PMCID: PMC5761908 DOI: 10.1177/2045125317737003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Treatment-resistant schizophrenia is a serious clinical problem. We adopt a systems-level approach positing a greater role for cognitive control mechanisms in the development of psychotic symptoms and illustrate the clinical application of this via a case report of treatment-resistant patients treated successfully with adjunct pro-cognitive serotonergic medication.
Collapse
Affiliation(s)
- Penelope Lowe
- National Psychosis Service, South London and Maudsley NHS Foundation Trust, UK
| | - Amir Krivoy
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lilla Porffy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Erna Henriksdottir
- National Psychosis Service, South London and Maudsley NHS Foundation Trust, UK. University of Iceland, Iceland
| | - Whiskey Eromona
- National Psychosis Service, South London and Maudsley NHS Foundation Trust, UK. Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sukhwinder S Shergill
- National Psychosis Service, South London and Maudsley NHS Foundation Trust, UK. Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
31
|
Presynaptic serotonin 5-HT1B/D receptor-mediated inhibition of glycinergic transmission to the frog spinal motoneurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:329-337. [DOI: 10.1007/s00359-017-1244-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
32
|
Hussein UK, Hassan NEHY, Elhalwagy MEA, Zaki AR, Abubakr HO, Nagulapalli Venkata KC, Jang KY, Bishayee A. Ginger and Propolis Exert Neuroprotective Effects against Monosodium Glutamate-Induced Neurotoxicity in Rats. Molecules 2017; 22:E1928. [PMID: 29117134 PMCID: PMC6150236 DOI: 10.3390/molecules22111928] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022] Open
Abstract
Central nervous system cytotoxicity is linked to neurodegenerative disorders. The objective of the study was to investigate whether monosodium glutamate (MSG) neurotoxicity can be reversed by natural products, such as ginger or propolis, in male rats. Four different groups of Wistar rats were utilized in the study. Group A served as a normal control, whereas group B was orally administered with MSG (100 mg/kg body weight, via oral gavage). Two additional groups, C and D, were given MSG as group B along with oral dose (500 mg/kg body weight) of either ginger or propolis (600 mg/kg body weight) once a day for two months. At the end, the rats were sacrificed, and the brain tissue was excised and levels of neurotransmitters, ß-amyloid, and DNA oxidative marker 8-OHdG were estimated in the brain homogenates. Further, formalin-fixed and paraffin-embedded brain sections were used for histopathological evaluation. The results showed that MSG increased lipid peroxidation, nitric oxide, neurotransmitters, and 8-OHdG as well as registered an accumulation of ß-amyloid peptides compared to normal control rats. Moreover, significant depletions of glutathione, superoxide dismutase, and catalase as well as histopathological alterations in the brain tissue of MSG-treated rats were noticed in comparison with the normal control. In contrast, treatment with ginger greatly attenuated the neurotoxic effects of MSG through suppression of 8-OHdG and β-amyloid accumulation as well as alteration of neurotransmitter levels. Further improvements were also noticed based on histological alterations and reduction of neurodegeneration in the brain tissue. A modest inhibition of the neurodegenerative markers was observed by propolis. The study clearly indicates a neuroprotective effect of ginger and propolis against MSG-induced neurodegenerative disorders and these beneficial effects could be attributed to the polyphenolic compounds present in these natural products.
Collapse
Affiliation(s)
- Usama K Hussein
- Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt.
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University, Hospital and Research Institute for Endocrine Sciences, Jeonju 54896, Korea.
| | - Nour El-Houda Y Hassan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt.
| | - Manal E A Elhalwagy
- Faculty of Science, Al Faisaliah Campus, King Abdulaziz University, Jeddah 21453, Saudi Arabia.
| | - Amr R Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef 62511, Egypt.
| | - Huda O Abubakr
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt.
| | | | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University, Hospital and Research Institute for Endocrine Sciences, Jeonju 54896, Korea.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| |
Collapse
|
33
|
Zheng H, Onoda K, Wada Y, Mitaki S, Nabika T, Yamaguchi S. Serotonin-1A receptor C-1019G polymorphism affects brain functional networks. Sci Rep 2017; 7:12536. [PMID: 28970569 PMCID: PMC5624925 DOI: 10.1038/s41598-017-12913-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is strongly implicated in major depression and other affective disorders due to its negative regulation of serotonin neurone firing rates. Behavioural and clinical studies have repeatedly reported that the −1019G allele carries a high susceptibility for affective disorders. However, the underlying pathophysiology remains unknown. Here, we employed a genetic neuroimaging strategy in 99 healthy human subjects to explore the effect of serotonin-1A receptor polymorphism on brain resting-state functional connectivity (FC). We used functional magnetic resonance imaging, along with a seed-based approach, to identify three main brain networks: the default mode network (DMN), the salience network (SN) and the central executive network. We observed a significant decrease in the FC of the DMN within the dorsolateral and ventromedial prefrontal cortices in G-carriers. Furthermore, compared with the C-homozygote group, we observed decreased FC of the SN within the ventromedial prefrontal cortex and subgenual anterior cingulate cortex in the G-carrier group. Our results indicate that 5-HT1A receptor genetic polymorphism modulates the activity of resting-state FC within brain networks including the DMN and SN. These genotype-related alterations in brain networks and FC may provide novel insights into the neural mechanism underlying the predisposition for affective disorders in G allele carriers.
Collapse
Affiliation(s)
- Haixia Zheng
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Keiichi Onoda
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yasuko Wada
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Shingo Mitaki
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
34
|
Guo JD, O'Flaherty BM, Rainnie DG. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala. Neuropharmacology 2017; 126:224-232. [PMID: 28899729 DOI: 10.1016/j.neuropharm.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT1B receptor agonist CP93129, but not by the 5-HT1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT1B receptor antagonist GR55562, but not affected by the 5-HT1A receptor antagonist WAY 100635 or the 5-HT2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT1B receptors.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Brendan M O'Flaherty
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Rainnie
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Hamid HA, Ramli ANM, Yusoff MM. Indole Alkaloids from Plants as Potential Leads for Antidepressant Drugs: A Mini Review. Front Pharmacol 2017; 8:96. [PMID: 28293192 PMCID: PMC5328930 DOI: 10.3389/fphar.2017.00096] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/14/2017] [Indexed: 01/19/2023] Open
Abstract
Depression is the most common illness observed in the elderly, adults, and children. Antidepressants prescribed are usually synthetic drugs and these can sometimes cause a wide range of unpleasant side effects. Current research is focussed on natural products from plants as they are a rich source of potent new drug leads. Besides Hypericum perforatum (St. John’s wort), the plants studied include Passiflora incarnata L. (passion flower), Mitragyna speciosa (kratom), Piper methysticum G. Forst (kava) and Valeriana officinalis L. Harman, harmol, harmine, harmalol and harmaline are indole alkaloids isolated from P. incarnata, while mitragynine is isolated from M. speciosa. The structure of isolated compounds from P. methysticum G. Forst and V. officinalis L. contains an indole moiety. The indole moiety is related to the neurotransmitter serotonin which is widely implicated for brain function and cognition as the endogenous receptor agonist. An imbalance in serotonin levels may influence mood in a way that leads to depression. The moiety is present in a number of antidepressants already on the market. Hence, the objective of this review is to discuss bioactive compounds containing the indole moiety from plants that can serve as potent antidepressants.
Collapse
Affiliation(s)
- Hazrulrizawati A Hamid
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Gambang, Malaysia
| | - Aizi N M Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Gambang, Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Gambang, Malaysia
| |
Collapse
|
36
|
Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain. Genes (Basel) 2017; 8:genes8010014. [PMID: 28054990 PMCID: PMC5295009 DOI: 10.3390/genes8010014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 02/02/2023] Open
Abstract
Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia.
Collapse
Affiliation(s)
- Sern-Yih Cheah
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Bruce R Lawford
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
- Discipline of Psychiatry, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia.
| | - Ross McD Young
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Charles P Morris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Joanne Voisey
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
37
|
Jaehne EJ, Ameti D, Paiva T, van den Buuse M. Investigating the Role of Serotonin in Methamphetamine Psychosis: Unaltered Behavioral Effects of Chronic Methamphetamine in 5-HT 1A Knockout Mice. Front Psychiatry 2017; 8:61. [PMID: 28473777 PMCID: PMC5397502 DOI: 10.3389/fpsyt.2017.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Methamphetamine (Meth) is a widely abused stimulant drug, but this abuse is associated with an increased risk of developing psychosis. In addition to its well-known action on brain dopamine, Meth also affects serotonergic (5-HT) neurons. The aim of this study was to investigate this role in mice, which lack one of the main serotonin receptors, the 5-HT1A receptor, which has been implicated in both schizophrenia and Meth-induced psychosis. Male and female wild-type or 5-HT1A knockout (KO) mice received daily treatment with increasing doses of methamphetamine from 6 to 9 weeks of age (1-4 mg/kg/day twice a day). At least 2 weeks after the last injection, the mice underwent a battery of behavioral tests focusing on psychosis-related behaviors, including Meth-induced hyperactivity, prepulse inhibition (PPI), social interaction, elevated plus maze (EPM), and Y-maze. Meth pretreatment resulted in significantly increased hyperlocomotion in response to an acute Meth challenge, but this effect was independent of genotype. Chronic Meth treatment resulted in decreased levels of anxiety in the EPM in both sexes, as well as increased startle responses in female mice only, again independent of genotype. 5-HT1A KO mice showed an increased locomotor response to acute Meth in both sexes, as well as increased PPI and decreased startle responses in female mice only, independent of Meth pretreatment. In conclusion, the effects of chronic Meth appear unaffected by the absence of the 5-HT1A receptor. These results do not support a role of the 5-HT1A receptor in Meth-induced psychosis.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Dzeneta Ameti
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Tehani Paiva
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- Department Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
38
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
39
|
Pandhare A, Pappu AS, Wilms H, Blanton MP, Jansen M. The antidepressant bupropion is a negative allosteric modulator of serotonin type 3A receptors. Neuropharmacology 2016; 113:89-99. [PMID: 27671323 DOI: 10.1016/j.neuropharm.2016.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Abstract
The FDA-approved antidepressant and smoking cessation drug bupropion is known to inhibit dopamine and norepinephrine reuptake transporters, as well as nicotinic acetylcholine receptors (nAChRs) which are cation-conducting members of the Cys-loop superfamily of ion channels, and more broadly pentameric ligand-gated ion channels (pLGICs). In the present study, we examined the ability of bupropion and its primary metabolite hydroxybupropion to block the function of cation-selective serotonin type 3A receptors (5-HT3ARs), and further characterized bupropion's pharmacological effects at these receptors. Mouse 5-HT3ARs were heterologously expressed in HEK-293 cells or Xenopus laevis oocytes for equilibrium binding studies. In addition, the latter expression system was utilized for functional studies by employing two-electrode voltage-clamp recordings. Both bupropion and hydroxybupropion inhibited serotonin-gated currents from 5-HT3ARs reversibly and dose-dependently with inhibitory potencies of 87 μM and 112 μM, respectively. Notably, the measured IC50 value for hydroxybupropion is within its therapeutically-relevant concentrations. The blockade by bupropion was largely non-competitive and non-use-dependent. Unlike its modulation at cation-selective pLGICs, bupropion displayed no significant inhibition of the function of anion-selective pLGICs. In summary, our results demonstrate allosteric blockade by bupropion of the 5-HT3AR. Importantly, given the possibility that bupropion's major active metabolite may achieve clinically relevant concentrations in the brain, our novel findings delineate a not yet identified pharmacological principle underlying its antidepressant effect.
Collapse
Affiliation(s)
- Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aneesh Satya Pappu
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; The Clark Scholar Program, Texas Tech University, Lubbock, TX 79409, USA.
| | - Henrik Wilms
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Michael Paul Blanton
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
40
|
Shuyu Capsules Relieve Premenstrual Syndrome Depression by Reducing 5-HT 3AR and 5-HT 3BR Expression in the Rat Brain. Neural Plast 2016; 2016:7950781. [PMID: 27725889 PMCID: PMC5048033 DOI: 10.1155/2016/7950781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of the Shuyu capsule on 5-HT3AR and 5-HT3BR expression in a rat model of premenstrual syndrome (PMS) depression and on 5-HT3AR and 5-HT3BR expression and hippocampal neuron 5-HT3 channel current were investigated, to elucidate its mechanism of action against PMS depression. PMS depression model rats were divided into depression and Shuyu- and fluoxetine-treated groups, which were compared to control rats for frontal lobe and hippocampal 5-HT3AR and 5-HT3BR expression and behavior. The depressed model rats displayed symptoms of depression, which were reduced in treated and normal control rats. Frontal lobe and hippocampal 5-HT3AR and 5-HT3BR levels were significantly higher in the model versus the control group and were significantly lower in the Shuyu group. As compared to control rats, the 5-HT3R channel current in the model group was significantly higher; the 5-HT3R channel current in hippocampal neurons treated with serum from Shuyu group rats was significantly lower than that in those treated with model group serum. Thus, PMS depression may be related to 5-HT3AR and 5-HT3BR expression and increased 5-HT3 channel current. Shuyu capsules rectified abnormal 5-HT3AR and 5-HT3BR expression and 5-HT3 channel current changes in a rat model; this finding may provide insight into treating PMS depression.
Collapse
|
41
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
42
|
Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci 2016; 51:50-72. [PMID: 27165448 PMCID: PMC4930157 DOI: 10.1016/j.ijdevneu.2016.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been a mainstay pharmacological treatment for women experiencing depression during pregnancy and postpartum for the past 25 years. SSRIs act via blockade of the presynaptic serotonin transporter and result in a transient increase in synaptic serotonin. Long-lasting changes in cellular function such as serotonergic transmission, neurogenesis, and epigenetics, are thought to underlie the therapeutic benefits of SSRIs. In recent years, though, growing evidence in clinical and preclinical settings indicate that offspring exposed to SSRIs in utero or as neonates exhibit long-lasting behavioral adaptions. Clinically, children exposed to SSRIs in early life exhibit increased internalizing behavior reduced social behavior, and increased risk for depression in adolescence. Similarly, rodents exposed to SSRIs perinatally exhibit increased traits of anxiety- or depression-like behavior. Furthermore, certain individuals appear to be more susceptible to early life SSRI exposure than others, suggesting that perinatal SSRI exposure may pose greater risks for negative outcome within certain populations. Although SSRIs trigger a number of intracellular processes that likely contribute to their therapeutic effects, early life antidepressant exposure during critical neurodevelopmental periods may elicit lasting negative effects in offspring. In this review, we cover the basic development and structure of the serotonin system, how the system is affected by early life SSRI exposure, and the behavioral outcomes of perinatal SSRI exposure in both clinical and preclinical settings. We review recent evidence indicating that perinatal SSRI exposure perturbs the developing limbic system, including altered serotonergic transmission, neurogenesis, and epigenetic processes in the hippocampus, which may contribute to behavioral domains (e.g., sociability, cognition, anxiety, and behavioral despair) that are affected by perinatal SSRI treatment. Identifying the molecular mechanisms that underlie the deleterious behavioral effects of perinatal SSRI exposure may highlight biological mechanisms in the etiology of mood disorders. Moreover, because recent studies suggest that certain individuals may be more susceptible to the negative consequences of early life SSRI exposure than others, understanding mechanisms that drive such susceptibility could lead to individualized treatment strategies for depressed women who are or plan to become pregnant.
Collapse
Affiliation(s)
| | - Sarah M Clinton
- Department of Psychiatry, University of Alabama-Birmingham, USA.
| |
Collapse
|
43
|
Švob Štrac D, Pivac N, Mück-Šeler D. The serotonergic system and cognitive function. Transl Neurosci 2016; 7:35-49. [PMID: 28123820 PMCID: PMC5017596 DOI: 10.1515/tnsci-2016-0007] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/22/2016] [Indexed: 01/23/2023] Open
Abstract
Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD). The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT) as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic) system in cognitive function, particularly in AD and schizophrenia. The role of the 5-HTergic system in cognition is modulated by the activity and function of 5-HT receptors (5-HTR) classified into seven groups, which differ in structure, action, and localization. Many 5-HTR are located in the regions linked to various cognitive processes. Preclinical studies using animal models of learning and memory, as well as clinical in vivo (neuroimaging) and in vitro (post-mortem) studies in humans have shown that alterations in 5-HTR activity influence cognitive performance. The current evidence implies that reduced 5-HT neurotransmission negatively influences cognitive functions and that normalization of 5-HT activity may have beneficial effects, suggesting that 5-HT and 5-HTR represent important pharmacological targets for cognition enhancement and restoration of impaired cognitive performance in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
44
|
You IJ, Wright SR, Garcia-Garcia AL, Tapper AR, Gardner PD, Koob GF, David Leonardo E, Bohn LM, Wee S. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking. Neuropsychopharmacology 2016; 41:1210-22. [PMID: 26324408 PMCID: PMC4793105 DOI: 10.1038/npp.2015.268] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022]
Abstract
Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction.
Collapse
Affiliation(s)
- In-Jee You
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA,Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA,Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA, Tel: +1 508 455 4293, Fax: +1 508 455 4281, E-mail:
| | - Sherie R Wright
- Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA
| | | | - Andrew R Tapper
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul D Gardner
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA,National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA
| | - Sunmee Wee
- Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA
| |
Collapse
|
45
|
Goitia B, Rivero-Echeto MC, Weisstaub NV, Gingrich JA, Garcia-Rill E, Bisagno V, Urbano FJ. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors. J Neurochem 2015; 136:526-35. [PMID: 26484945 DOI: 10.1111/jnc.13398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and thus facilitating GABA release.
Collapse
Affiliation(s)
- Belén Goitia
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (DFBMC) Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - María Celeste Rivero-Echeto
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (DFBMC) Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Grupo de Neurociencia de Sistemas, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO), UBA, Ciudad de Buenos Aires, Argentina
| | - Jay A Gingrich
- Division of Developmental Neuroscience, Columbia University and the NYSPI, Sackler Institute for Developmental Psychobiology, New York City, New York, USA
| | - Edgar Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Verónica Bisagno
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Francisco J Urbano
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (DFBMC) Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
46
|
Joo K, Rhie DJ, Jang HJ. Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:523-31. [PMID: 26557019 PMCID: PMC4637355 DOI: 10.4196/kjpp.2015.19.6.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/15/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, γ-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.
Collapse
Affiliation(s)
- Kayoung Joo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Duck-Joo Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea. ; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea. ; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
47
|
Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945217. [PMID: 26413131 PMCID: PMC4564644 DOI: 10.1155/2015/945217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation.
Collapse
|
48
|
Gantz SC, Levitt ES, Llamosas N, Neve KA, Williams JT. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA. Cell Rep 2015; 12:944-54. [PMID: 26235617 DOI: 10.1016/j.celrep.2015.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/16/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022] Open
Abstract
Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Erica S Levitt
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Nerea Llamosas
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Kim A Neve
- Research Service, VA Portland Health Care System and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
49
|
Anastasio NC, Stutz SJ, Fink LHL, Swinford-Jackson SE, Sears RM, DiLeone RJ, Rice KC, Moeller FG, Cunningham KA. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity. ACS Chem Neurosci 2015; 6:1248-58. [PMID: 26120876 DOI: 10.1021/acschemneuro.5b00094] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.
Collapse
Affiliation(s)
| | | | | | | | - Robert M. Sears
- Department
of Psychiatry, Yale University, New Haven, Connecticut 06520, United States
| | - Ralph J. DiLeone
- Department
of Psychiatry, Yale University, New Haven, Connecticut 06520, United States
| | - Kenner C. Rice
- Chemical
Biology Research Branch, National Institute on Drug Abuse, DHHS/NIH/NIDA, Bethesda, Maryland 20892, United States
| | - F. Gerard Moeller
- Department
of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | | |
Collapse
|
50
|
Narayan AL, Virupaksha HS, Thejaswi G, Saraswathy GR, Madhavan V, Thyloth M. A Case Report on Varenicline Induced Delirium in an Alcohol and Nicotine Dependent Patient. Indian J Psychol Med 2015; 37:355-7. [PMID: 26664090 PMCID: PMC4649805 DOI: 10.4103/0253-7176.162926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Varenicline is a smoking cessation agent. Varenicline acts as a partial agonist of α4β2 neuronal nicotinic acetylcholine receptor and prevents nicotine binding to the same. It also causes dopamine (DA) stimulation that decreases craving and symptoms of dependence. A 40-year-old male diagnosed with alcohol and nicotine dependence syndrome was treated with 1 mg of varenicline for 3 days. Patient developed episodes of transient delirium within 15-30 min after administration of varenicline. Patient was disoriented and did not respond relevantly. Patient would have disorientation and would respond irrelevantly and was unable to recall the event completely. There were no features suggestive of seizures. The episodes resolved after the medication was stopped. Varenicline, with its partial agonistic effect on nicotinergic receptors, stimulates the release of multiple neurotransmitters including DA. DA dysregulation is probably responsible for the development of neuropsychiatric adverse reactions due to varenicline. This is the first case report to the best of our knowledge reporting varenicline induced dilirium. In this case, the adverse event was found in an alcohol and nicotine dependent patient undergoing treatment. It is essential to monitor uncommon adverse effects as this can cause significant morbidity.
Collapse
Affiliation(s)
- A. Lakshmi Narayan
- Department of Pharmacy Practice, M.S. Ramaiah College of Pharmacy, Bengaluru, Karnataka, India
| | - H. S. Virupaksha
- Department of Psychiatry, M.S. Ramaiah Medical College, Bengaluru, Karnataka, India
| | - G. Thejaswi
- Department of Pharmacy Practice, M.S. Ramaiah College of Pharmacy, Bengaluru, Karnataka, India
| | - G. R. Saraswathy
- Department of Pharmacy Practice, M.S. Ramaiah College of Pharmacy, Bengaluru, Karnataka, India
| | - V. Madhavan
- Department of Pharmacy Practice, M.S. Ramaiah College of Pharmacy, Bengaluru, Karnataka, India
| | - Murali Thyloth
- Department of Psychiatry, M.S. Ramaiah Medical College, Bengaluru, Karnataka, India
| |
Collapse
|