1
|
Li X, Qian Y, Lu X, Xu M, He S, Zhang J, Song S. Iodine-131 radioembolization boosts the immune activation enhanced by icaritin/resiquimod in hepatocellular carcinoma. J Control Release 2025; 378:849-863. [PMID: 39730069 DOI: 10.1016/j.jconrel.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Transarterial radioembolization (TARE) is a recommended locoregional strategy for intermediate hepatocellular carcinoma (HCC), whereas, the effect is insufficient to reverse the immunosuppression tumor microenvironment, and the overall benefits for patients remain to be improved. In this study, a multifunctional microsphere (MS) 131I-ICT/R848-MS is developed to propose an approach combined with TARE, icaritin (ICT) and immune modulator resiquimod (R848). ICT and iodine-131 (131I) radiation can induce immunogenic cell death, which, in combination with R848, will boost dendritic cell (DC) maturation. Decellularized liver model and SPECT/CT imaging revealed high specificity and long retention of microspheres. Radioactive distribution of 131I in tumor on 7 d following 131I-MS injection was over 7 times of that in normal liver tissue (4.26 ± 1.21 % ID/g vs 0.57 ± 0.23 % ID/g). 131I-ICT/R848-MS embolization brought significant immune activation, where the ratio of cytotoxic T lymphocytes to regulatory T cells in tumor sites upregulated from 1.75 ± 0.20 to 24.31 ± 1.79, and DC maturation in lymph nodes increased from 8.90 ± 1.51 % to 34.70 ± 3.12 %. Enhanced anti-tumor efficacy with no relapse was proved in rat orthotopic N1S1 HCC models. These results demonstrated the great potential of this multifunctional embolic agent to treat HCC through transarterial radio-immuno-chemoembolization (TARICE).
Collapse
Affiliation(s)
- Xinyi Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Yuyi Qian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Xin Lu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Mingzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Lee E, Kale A, Gaspari AA. Toll-Like Receptors and Contact Dermatitis. Dermatitis 2025; 36:14-27. [PMID: 38778705 DOI: 10.1089/derm.2023.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Contact dermatitis (CD) is a common cutaneous inflammatory condition that affects millions of people worldwide. Xenobiotic agents are frequently encountered in substances used in everyday life, making it difficult to avoid personal and occupational exposure. Toll-like receptors (TLRs) are transmembrane receptors that modulate the innate immune system in response to tissue injury or infection. TLRs play a key role in the pathophysiology of contact dermatitis. TLR signaling is involved in three major forms of CD: protein CD, allergic contact dermatitis (ACD), and irritant CD. Of the 10 TLRs found in humans, three play an important role in ACD. This makes TLRs a useful potential therapeutic target to consider against CD. In this review, we discuss the role of TLRs in CD and summarize current and emerging treatments for CD that target TLRs.
Collapse
Affiliation(s)
- Emily Lee
- From the Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aditi Kale
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony A Gaspari
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Rahaman MH, Thygesen SJ, Maxwell MJ, Kim H, Mudai P, Nanson JD, Jia X, Vajjhala PR, Hedger A, Vetter I, Haselhorst T, Robertson AAB, Dymock B, Ve T, Mobli M, Stacey KJ, Kobe B. o-Vanillin binds covalently to MAL/TIRAP Lys-210 but independently inhibits TLR2. J Enzyme Inhib Med Chem 2024; 39:2313055. [PMID: 38416868 PMCID: PMC10903754 DOI: 10.1080/14756366.2024.2313055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/28/2024] [Indexed: 03/01/2024] Open
Abstract
Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.
Collapse
Affiliation(s)
- Md. Habibur Rahaman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael J. Maxwell
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Prerna Mudai
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Jeffrey D. Nanson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Andrew Hedger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | - Avril A. B. Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Brian Dymock
- Queensland Emory Drug Discovery Initiative, University of Queensland, Brisbane, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Steinmetz AR, Pierce M, Martini A, Tholomier C, Manyam G, Chen Y, Sood A, Duplisea JJ, Johnson BA, Czerniak BA, Lee BH, Jagannath C, Yla-Herttuala S, Parker NR, McConkey DJ, Dinney CP, Mokkapati S. Single-cell RNA sequencing analysis identifies acute changes in the tumor microenvironment induced by interferon α gene therapy in a murine bladder cancer model. Front Immunol 2024; 15:1387229. [PMID: 39559365 PMCID: PMC11570268 DOI: 10.3389/fimmu.2024.1387229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Nadofaragene firadenovec (Ad-IFNα/Syn3) is now approved for BCG-unresponsive bladder cancer (BLCA). IFNα is a pleiotropic cytokine that causes direct tumor cell killing via TRAIL-mediated apoptosis, angiogenesis inhibition, and activation of the innate and adaptive immune system. We established an immunocompetent murine BLCA model to study the effects of murine adenoviral IFNα (muAd-Ifnα) gene therapy on cancer cells and the tumor microenvironment using a novel murine equivalent of Nadofaragene firadenovec (muAd-Ifnα). Methods Tumors were induced by instilling MB49 cells into the bladders of mice; luciferase imaging confirmed tumor development. Mice were treated with adenovirus control (Ad-Ctrl; empty vector), or muAd-Ifnα (3x1011 VP/mL), and survival analysis was performed. For single-cell sequencing (scRNAseq) analysis (72h), bladders were harvested and treated with collagenase/hyaluronidase and TrypLE for cell dissociation. Single cells were suspended in PBS/1% FBS buffer; viability was assessed with Vicell cell counter. scRNAseq analysis was performed using 10X genomics 3' sequencing. Raw RNAseq data were pre-processed using Cell Ranger single-cell software. Seurat (R package) was used to normalize and cluster the scRNA data. Pooled differential gene expression analysis in specific cell clusters was performed with DESeq2. Results We identified 16 cell clusters based on marker expression which were grouped into epithelial (tumor), uroplakin-enriched, endothelial, T-cells, neutrophils, and macrophage clusters. Top differentially expressed genes between muAd-Ifnα and Ad-Ctrl were identified. Within the specific cell clusters, IPA analysis revealed significant differences between muAd-Ifnα and control. IFNα signaling and hypercytokinemia/chemokinemia were upregulated in all clusters. Cell death pathways were upregulated in tumor and endothelial clusters. T-cells demonstrated upregulation of the immunogenic cell death signaling pathway and a decrease in the Th2 pathway genes. Macrophages showed upregulation of PD1/PD-L1 pathways along with downregulation of macrophage activation pathways (alternate and classical). Multiplex immunofluorescence confirmed increased infiltration with macrophages in muAd-Ifnα treated tumors compared to controls. PD1/PD-L1 expression was reduced at 72h. Discussion This single-cell analysis builds upon our understanding of the impact of Ad-IFNα on tumor cells and other compartments of the microenvironment. These data will help identify mechanisms to improve patient selection and therapeutic efficacy of Nadofaragene firadenovec.
Collapse
Affiliation(s)
- Alexis R. Steinmetz
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Morgan Pierce
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alberto Martini
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Come Tholomier
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yan Chen
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Akshay Sood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan J. Duplisea
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Burles A. Johnson
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Bogdan A. Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Byron H. Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Nigel R. Parker
- A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Sahu R, Rawal RK. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension. PHYTOMEDICINE PLUS 2024; 4:100564. [DOI: 10.1016/j.phyplu.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Wang T, Song D, Li X, Luo Y, Yang D, Liu X, Kong X, Xing Y, Bi S, Zhang Y, Hu T, Zhang Y, Dai S, Shao Z, Chen D, Hou J, Ballestar E, Cai J, Zheng F, Yang JY. MiR-574-5p activates human TLR8 to promote autoimmune signaling and lupus. Cell Commun Signal 2024; 22:220. [PMID: 38589923 PMCID: PMC11000404 DOI: 10.1186/s12964-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Dan Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xuejuan Li
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing, 400038, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xiaoyan Liu
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shulin Bi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Tao Hu
- College of Medicine, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yunyun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Shuang Dai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Zhiqiang Shao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Jinpao Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Esteban Ballestar
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916, Spain
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian, 361005, China.
| | - Feng Zheng
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China.
- The Advanced Institute for Molecular Medicine, Dalian Medical University, Dalian, 116144, China.
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China.
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
| |
Collapse
|
9
|
Wang T, Gong X, Xia C, Kong W, Geng S, Jiang H, Xiao E, Wang H, Yu Y, Li C, Yuan K. An integrated transcriptomics and network pharmacology approach to explore the mechanism of Wang-Bi tablet against SAPHO syndrome. Int J Rheum Dis 2024; 27:e15077. [PMID: 38402418 DOI: 10.1111/1756-185x.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND SAPHO syndrome is recognized as a rare entity with damage to skin and bones due to inflammation. Currently, the treatment for SAPHO syndrome is still a challenge in clinical practice. In this study, an integrated transcriptomics and network pharmacology approach was applied to explore the therapeutic effect and mechanism of Wang-Bi tablet (WBT) on SAPHO syndrome. METHODS The main components of WBT and their targets, as well as the targets of SAPHO syndrome, were collected from databases. Network visualization was performed using Cytoscape software. The GO and KEGG enrichment analysis was executed by David dataset. Then, the molecular mechanism of WBT improving SAPHO syndrome was validated by transcriptomics of peripheral blood neutrophils in SAPHO syndrome. Finally, the above results were validated by molecular docking. RESULTS The Network Pharmacology results showed there are 152 core targets for WBT treatment on SAPHO syndrome. RNA-seq data showed 442 differentially expressed genes (DEGs) in peripheral blood neutrophils of SAPHO patients. Intriguingly, NIK/NF-kappaB-, MyD88-dependent toll-like receptor-, and MAPK pathway were included in the enrichment results of network pharmacology and RNA-seq. Moreover, we verified that the core components of WBT have good affinity with the core targets of NIK/NF-kappaB-, MyD88-dependent toll-like receptor-, and MAPK pathway by molecular docking. CONCLUSIONS This study illustrated that the possible mechanisms of WBT against SAPHO syndrome may be related to NIK/NF-kappaB-, MyD88-dependent toll-like receptor-, and MAPK pathway, and further experiments are needed to prove these predictions.
Collapse
Affiliation(s)
- Ting Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xun Gong
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Congmin Xia
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijia Kong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Shaohui Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hesong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yingcai Yu
- Department of Biochemistry, College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chen Li
- Department of Rheumatology, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Rodrigues CR, Balachandran Y, Aulakh GK, Singh B. TLR10: An Intriguing Toll-Like Receptor with Many Unanswered Questions. J Innate Immun 2024; 16:96-104. [PMID: 38246135 PMCID: PMC10861218 DOI: 10.1159/000535523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are one of the first pattern recognition receptors found in the innate immune system. The TLR family has 12 members (TLR1-TLR9, TLR11-TLR13) in mice and 10 members (TLR1-TLR10) in humans, with TLR10 being the latest identified. SUMMARY Considerable research has been performed on TLRs; however, TLR10 is known as an orphan receptor for the lack of information on its signalling, role, and ligands. Even though there are recent studies pointing towards the potential TLR10 ligands, their function and signalling pathway are yet to be determined. KEY MESSAGES This review gives an insight into recent findings on TLR10's pro- and anti-inflammatory properties, with the goal of outlining existing results and indicating future research topics on this receptor.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Yadu Balachandran
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gurpreet Kaur Aulakh
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Wei J, Zhang Y, Li H, Wang F, Yao S. Toll-like receptor 4: A potential therapeutic target for multiple human diseases. Biomed Pharmacother 2023; 166:115338. [PMID: 37595428 DOI: 10.1016/j.biopha.2023.115338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The immune response plays a pivotal role in the pathogenesis of diseases. Toll-like receptor 4 (TLR4), as an intrinsic immune receptor, exhibits widespread in vivo expression and its dysregulation significantly contributes to the onset of various diseases, encompassing cardiovascular disorders, neoplastic conditions, and inflammatory ailments. This comprehensive review centers on elucidating the architectural and distributive characteristics of TLR4, its conventional signaling pathways, and its mode of action in diverse disease contexts. Ultimately, this review aims to propose novel avenues and therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Jinrui Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Haopeng Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
12
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
13
|
Pang B, Zhao R, Peng B, Bao L, Geng Z, Li S, Xu Y, Zhou L, Guo S, Cui X, Sun J. Pharmacological effects and mechanism of Kaihoujian Throat Spray (children's type) in the treatment of pediatric acute pharyngitis and tonsillitis. Heliyon 2023; 9:e17802. [PMID: 37539230 PMCID: PMC10395134 DOI: 10.1016/j.heliyon.2023.e17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Context Kaihoujian Throat Spray children's type (KHJSC) is a Chinese medicine prescription for treating pediatric acute pharyngitis and tonsillitis (APT). However, its relevant mechanisms remain unclear. Objective To investigate the pharmacological effects of KHJSC on APT in vitro and in vivo, and explore the possible mechanism and target proteins. Materials and methods The antiviral and antibacterial effects in vitro were evaluated by IC50 and MICs. Thirty-six Japanese white rabbits were averagely divided into control group, model group, amoxicillin group and 3 dose groups of KHJSC (720, 540 and 360 μL/kg/d). The model rabbits were injected with β-hemolytic Streptococcus solution into the tonsils for 2 consecutive days. KHJSC treatment started on the third day. The whole blood, serum, tonsil tissues and pharyngeal mucosa tissues were collected for routine blood tests, proteomic, ELISA and other tests on the sixth day. Results The IC50 of KHJSC on HCoV-229E, influenza PR8 and Ad3 were 1.99, 1.99 and 4.49 mg/mL, respectively; MICs of MDR-PA, MRSA and β-hemolytic Streptococcus were 350, 350, and 175 mg/mL. KHJSC markedly decreased the number of white blood cells, lymphocytes, neutrophils, and the level of IL-1β, IL-5, IL-6, IL-18, TNF-α and MCP-1; increased the content of IL-2 and IFN-γ. Proteomic analysis and ELISA revealed that PI3K-Akt signaling pathway, NF-κB signaling pathway and Toll-like receptor signaling pathway were the potential mechanisms of KHJSC against APT. Discussion and conclusion These results provided the reference and scientific basis for the application of KHJSC in clinic and further mechanisms study.
Collapse
Affiliation(s)
- Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuran Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
14
|
Žilienė E, Inčiūra A, Ugenskienė R, Juozaitytė E. Pathomorphological Manifestations and the Course of the Cervical Cancer Disease Determined by Variations in the TLR4 Gene. Diagnostics (Basel) 2023; 13:1999. [PMID: 37370894 DOI: 10.3390/diagnostics13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Cervical cancer (CC) is often associated with human papillomavirus (HPV). Chronic inflammation has been described as one of the triggers of cancer. The immune system fights diseases, including cancer. The genetic polymorphism of pathogen recognition receptors potentially influences the infectious process, development, and disease progression. Many candidate genes SNPs have been contradictory demonstrated to be associated with cervical cancer by association studies, GWAS. TLR4 gene activation can promote antitumor immunity. It can also result in immunosuppression and tumor growth. Our study aimed to investigate eight selected polymorphisms of the TLR4 gene (rs10759932, rs1927906, rs11536898, rs11536865, rs10983755, rs4986790, rs4986791, rs11536897) and to determine the impact of polymorphisms in genotypes and alleles on the pathomorphological characteristics and progression in a group of 172 cervical cancer subjects with stage I-IV. Genotyping was performed by RT-PCR assay. We detected that the CA genotype and A allele of rs11536898 were significantly more frequent in patients with metastases (p = 0.026; p = 0.008). The multivariate logistic regression analysis confirmed this link to be significant. The effect of rs10759932 and rs11536898 on progression-free survival (PFS) and overall survival (OS) has been identified as important. In univariate and multivariate Cox analyses, AA genotype of rs11536898 was a negative prognostic factor for PFS (p = 0.024; p = 0.057, respectively) and OS (p = 0.008; p = 0.042, respectively). Rs11536898 C allele predisposed for longer PFS (univariate and multivariate: p = 0.025; p = 0.048, respectively) and for better OS (univariate and multivariate: p = 0.010; p = 0.043). The worse prognostic factor of rs10759932 in a univariate and multivariate Cox analysis for survival was CC genotype: shorter PFS (p = 0.032) and increased risk of death (p = 0.048; p = 0.015, respectively). The T allele of rs10759932 increased longer PFS (univariate and multivariate: p = 0.048; p = 0.019, respectively) and longer OS (univariate and multivariate: p = 0.037; p = 0.009, respectively). Our study suggests that SNPs rs10759932 and rs11536898 may have the potential to be markers contributing to the assessment of the cervical cancer prognosis. Further studies, preferably with larger groups of different ethnic backgrounds, are needed to confirm the results of the current study.
Collapse
Affiliation(s)
- Eglė Žilienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Inčiūra
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
15
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [DOI: https:/doi.org/10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
16
|
Xiong D, Song L, Chen Y, Jiao X, Pan Z. Salmonella Enteritidis activates inflammatory storm via SPI-1 and SPI-2 to promote intracellular proliferation and bacterial virulence. Front Cell Infect Microbiol 2023; 13:1158888. [PMID: 37325511 PMCID: PMC10266283 DOI: 10.3389/fcimb.2023.1158888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Salmonella Enteritidis is an important intracellular pathogen, which can cause gastroenteritis in humans and animals and threaten life and health. S. Enteritidis proliferates in host macrophages to establish systemic infection. In this study, we evaluated the effects of Salmonella pathogenicity island-1 (SPI-1) and SPI-2 to S. Enteritidis virulence in vitro and in vivo, as well as the host inflammatory pathways affected by SPI-1 and SPI-2. Our results show that S. Enteritidis SPI-1 and SPI-2 contributed to bacterial invasion and proliferation in RAW264.7 macrophages, and induced cytotoxicity and cellular apoptosis of these cells. S. Enteritidis infection induced multiple inflammatory responses, including mitogen-activated protein kinase (ERK-mediated) and Janus kinase-signal transducer and activator of transcript (STAT) (STAT2-mediated) pathways. Both SPI-1 and SPI-2 were necessary to induce robust inflammatory responses and ERK/STAT2 phosphorylation in macrophages. In a mouse infection model, both SPIs, especially SPI-2, resulted in significant production of inflammatory cytokines and various interferon-stimulated genes in the liver and spleen. Activation of the ERK- and STAT2-mediated cytokine storm was largely affected by SPI-2. S. Enteritidis ΔSPI-1-infected mice displayed moderate histopathological damage and drastically reduced bacterial loads in tissues, whereas only slight damage and no bacteria were observed in ΔSPI-2- and ΔSPI-1/SPI-2-infected mice. A survival assay showed that ΔSPI-1 mutant mice maintained a medium level of virulence, while SPI-2 plays a decisive role in bacterial virulence. Collectively, our findings indicate that both SPIs, especially SPI-2, profoundly contributed to S. Enteritidis intracellular localization and virulence by activating multiple inflammatory pathways.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Yushan Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Inami H, Mizutani T, Watanabe J, Hayashida H, Ito T, Terasawa T, Kontani T, Yamagishi H, Usuda H, Aoyama N, Imamura E, Ishikawa T. Design, synthesis, and pharmacological evaluation of N-(3-carbamoyl-1H-pyrazol-4-yl)-1,3-oxazole-4-carboxamide derivatives as interleukin-1 receptor-associated kinase 4 inhibitors with reduced potential for cytochrome P450 1A2 induction. Bioorg Med Chem 2023; 87:117302. [PMID: 37201454 DOI: 10.1016/j.bmc.2023.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical molecule in Toll-like receptor/interleukin-1 receptor signaling and an attractive therapeutic target for a wide range of inflammatory and autoimmune diseases as well as cancers. In our search for novel IRAK4 inhibitors, we conducted structural modification of a thiazolecarboxamide derivative 1, a lead compound derived from high-throughput screening hits, to elucidate structure-activity relationship and improve drug metabolism and pharmacokinetic (DMPK) properties. First, conversion of the thiazole ring of 1 to an oxazole ring along with introduction of a methyl group at the 2-position of the pyridine ring aimed at reducing cytochrome P450 (CYP) inhibition were conducted to afford 16. Next, modification of the alkyl substituent at the 1-position of the pyrazole ring of 16 aimed at improving CYP1A2 induction properties revealed that branched alkyl and analogous substituents such as isobutyl (18) and (oxolan-3-yl)methyl (21), as well as six-membered saturated heterocyclic groups such as oxan-4-yl (2), piperidin-4-yl (24, 25), and dioxothian-4-y (26), are effective for reducing induction potential. Representative compound AS2444697 (2) exhibited potent IRAK4 inhibitory activity with an IC50 value of 20 nM and favorable DMPK properties such as low risk of drug-drug interactions mediated by CYPs as well as excellent metabolic stability and oral bioavailability.
Collapse
Affiliation(s)
- Hiroshi Inami
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Tsuyoshi Mizutani
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Junko Watanabe
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hisashi Hayashida
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tomonori Ito
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takeshi Terasawa
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Toru Kontani
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hiroaki Yamagishi
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hiroyuki Usuda
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Naohiro Aoyama
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Emiko Imamura
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takeshi Ishikawa
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
18
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [PMID: 37172355 DOI: 10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 μs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
19
|
Mougin J, Lobanov V, Danion M, Roquigny R, Goardon L, Grard T, Morin T, Labbé L, Joyce A. Effects of dietary co-exposure to fungal and herbal functional feed additives on immune parameters and microbial intestinal diversity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108773. [PMID: 37105422 DOI: 10.1016/j.fsi.2023.108773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss). We investigated the impact of diet supplementation for 7 weeks on survival, growth performance, cellular, humoral, and molecular immune parameters, as well as the intestinal microbial composition of the fish. Uptake of herbal and fungal compounds influenced the expression of immune related genes, without generating an inflammatory response. Significant differences were detected in the spleen-tlr2 gene expression. Supplementation with herbal additives correlated with structural changes in the fish intestinal microbiota and enhanced overall intestinal microbial diversity. Results demonstrated that the different treatments had no adverse effect on growth performance and survival, suggesting the safety of the different feed additives at the tested concentrations. While the mechanisms and multifactorial interactions remain unclear, this study provides insights not only in regard to nutrition and safety of these compounds, but also how a combined immune and gut microbiota approach can shed light on efficacy of immunostimulant compounds for potential commercial inclusion as feed supplements.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Roxane Roquigny
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Lionel Goardon
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Laurent Labbé
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Choudhary SA, Patra D, Sinha A, Mazumder S, Pant R, Chouhan R, Jha AN, Prusty BM, Manna D, Das SK, Tikoo K, Pal D, Dasgupta S. A small molecule potent IRAK4 inhibitor abrogates lipopolysaccharide-induced macrophage inflammation in-vitro and in-vivo. Eur J Pharmacol 2023; 944:175593. [PMID: 36804543 DOI: 10.1016/j.ejphar.2023.175593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Increasing evidence supports vanillin and its analogs as potent toll-like receptor signaling inhibitors that strongly attenuate inflammation, though, the underlying molecular mechanism remains elusive. Here, we report that vanillin inhibits lipopolysaccharide (LPS)-induced toll-like receptor 4 activation in macrophages by targeting the myeloid differentiation primary-response gene 88 (MyD88)-dependent pathway through direct interaction and suppression of interleukin-1 receptor-associated kinase 4 (IRAK4) activity. Moreover, incubation of vanillin in cells expressing constitutively active forms of different toll-like receptor 4 signaling molecules revealed that vanillin could only able to block the ligand-independent constitutively activated IRAK4/1 or its upstream molecules-associated NF-κB activation and NF-κB transactivation along with the expression of various proinflammatory cytokines. A significant inhibition of LPS-induced IRAK4/MyD88, IRAK4/IRAK1, and IRAK1/TRAF6 association was evinced in response to vanillin treatment. Furthermore, mutations at Tyr262 and Asp329 residues in IRAK4 or modifications of 3-OMe and 4-OH side groups in vanillin, significantly reduced IRAK4 activity and vanillin function, respectively. Mice pretreated with vanillin followed by LPS challenge markedly impaired LPS-induced IRAK4 activation and inflammation in peritoneal macrophages. Thus, the present study posits vanillin as a novel and potent IRAK4 inhibitor and thus providing an opportunity for its therapeutic application in managing various inflammatory diseases.
Collapse
Affiliation(s)
- Saynaz A Choudhary
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Archana Sinha
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sayani Mazumder
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Biswa Mohan Prusty
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sajal K Das
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Suman Dasgupta
- Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
21
|
Kornilov FD, Shabalkina AV, Lin C, Volynsky PE, Kot EF, Kayushin AL, Lushpa VA, Goncharuk MV, Arseniev AS, Goncharuk SA, Wang X, Mineev KS. The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors. Nat Commun 2023; 14:1503. [PMID: 36932058 PMCID: PMC10023784 DOI: 10.1038/s41467-023-37042-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Toll-like receptors (TLRs) are the important participants of the innate immune response. Their spatial organization is well studied for the ligand-binding domains, while a lot of questions remain unanswered for the membrane and cytoplasmic regions of the proteins. Here we use solution NMR spectroscopy and computer simulations to investigate the spatial structures of transmembrane and cytoplasmic juxtamembrane regions of TLR2, TLR3, TLR5, and TLR9. According to our data, all the proteins reveal the presence of a previously unreported structural element, the cytoplasmic hydrophobic juxtamembrane α-helix. As indicated by the functional tests in living cells and bioinformatic analysis, this helix is important for receptor activation and plays a role, more complicated than a linker, connecting the transmembrane and cytoplasmic parts of the proteins.
Collapse
Affiliation(s)
- F D Kornilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - A V Shabalkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, Jilin, China
| | - P E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - E F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - A L Kayushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - V A Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - M V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - S A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| |
Collapse
|
22
|
Arora S, Tagde P, Alam S, Akram W, Naved T, Gupta S. Influence of toll-like receptor-4 antagonist on bacterial load of asthma in Swiss albino mice: targeting TLR4/MD2 complex pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32854-32865. [PMID: 36472742 DOI: 10.1007/s11356-022-24521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Air pollution and environmental issues significantly impact life, resulting in the emergence and exacerbation of allergic asthma and other chronic respiratory infections. The main objective of this study is to suppress allergic asthma by TAK-242 from lipopolysaccharide-induced airway inflammation primarily stimulating toll-like receptor-4, and also to determine the potential mechanism of asthma eradication. The TAK-242 anti-allergic action was assured through the ovalbumin murine model of asthma via bronchial hyperresponsiveness and inflammation of the respiration tract in a pre-existing allergic inflammation paradigm. Swiss albino mice were sensitized and then challenged by ovalbumin and lipopolysaccharide for 5 days straight. TAK-242 reaction was assessed by inflammatory cytokines, and inflammatory cell count was determined from blood serum and bronchoalveolar lavage fluid, as well as group-wise regular weight assessments. After ovalbumin, lipopolysaccharide infusion, toll-like receptor-4 agonists caused a substantial increase in airway hyperresponsiveness, specific cellular inflammation, histological alterations, and immune mediator synthesis, as well as dose-related body-weight variations. A decrease in lipopolysaccharide-induced leukocyte count and Th1/Th17 related cytokines, TNF-α, and IL-6 expression through the ELISA study was particularly noticeable. Finally in treated groups, TAK-242, a TLR4/MD2 complex inhibitor, reduced airway inflammation and histopathological changes, cytokine expression, and body-weight management. TAK-242 has been found in an ovalbumin allergic asthma model to be a potential inhibitor of lipopolysaccharide-induced respiratory infection.
Collapse
Affiliation(s)
- Swamita Arora
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| | - Sanjar Alam
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Wasim Akram
- R.V. Northland Institute of Pharmacy, Gautam Buddh Nagar, Ghaziabad, U.P. 203207, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida, U.P. 201303, India.
| |
Collapse
|
23
|
Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023; 12:659. [PMID: 36766186 PMCID: PMC9914031 DOI: 10.3390/foods12030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fungi-derived β-glucan, a type of glucopolysaccharide, has been shown to possess immune-modulatory properties in clinical settings. Studies have indicated that β-glucan derived from Ganoderma lucidum (commonly known as Reishi) holds particular promise in this regard, both in laboratory and in vivo settings. To further investigate the efficacy and safety of Reishi β-glucan in human subjects, a randomized, double-blinded, placebo-controlled clinical trial was conducted among healthy adult volunteers aged 18 to 55. Participants were instructed to self-administer the interventions or placebos on a daily basis for 84 days, with bloodwork assessments conducted at the beginning and end of the study. The results of the trial showed that subjects in the intervention group, who received Reishi β-glucan, exhibited a significant enhancement in various immune cell populations, including CD3+, CD4+, CD8+ T-lymphocytes, as well as an improvement in the CD4/CD8 ratio and natural killer cell counts when compared to the placebo group. Additionally, a statistically significant difference was observed in serum immunoglobulin A levels and natural killer cell cytotoxicity between the intervention and placebo groups. Notably, the intervention was found to be safe and well tolerated, with no statistically significant changes observed in markers of kidney or liver function in either group. Overall, the study provides evidence for the ability of Reishi β-glucan to modulate immune responses in healthy adults, thereby potentially bolstering their defense against opportunistic infections.
Collapse
Affiliation(s)
- Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Wei Liu
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242062, Taiwan
| | - Min-Feng Yang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chih Chang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Arora S, Gupta S, Akram W, Altyar AE, Tagde P. Effect of TLR3/dsRNA complex inhibitor on Poly(I:C)-induced airway inflammation in Swiss albino mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28118-28132. [PMID: 36394807 DOI: 10.1007/s11356-022-23987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rhinovirus infection frequently causes COPD and asthma exacerbations. Impaired anti-viral signaling and reduced viral clearance have both been seen in sick bronchial epithelium, potentially increasing exacerbations. Polyinosinic:polycytidylic acid (Poly(I:C)), a Toll-like receptor-3 (TLR3) ligand, has been shown to cause a viral exacerbation of severe asthma by detecting double-stranded RNA (dsRNA). The purpose of this work was to determine the effect of a TLR3/dsRNA complex inhibitor-Calbiochem drug in the prevention of Poly(I:C)-induced airway inflammation following TLR3 activation and to uncover a potential pathway for the cure of asthma through TLR3 inhibition. Mice were sensitized with Poly(I:C) as an asthma model before being challenged by PBS and ovalbumin (OVA) chemicals. The mice were administered a TLR3/dsRNA complex inhibitor. Throughout the trial, the mice's body weight was measured after each dosage. Biochemical methods are used to analyze the protein as well as enzyme composition in airway tissues. BALF specimens are stained using Giemsa to identify inflammatory cells and lung histopathology to determine morphological abnormalities in lung tissues. By using the ELISA approach, cytokine levels such as TNF-α, IL-13, IL-6, IL-5, and IgE antibody expression in lung tissue and blood serum were assessed. TLR3/dsRNA complex inhibitor drug significantly lowered the number of cells in BALF and also on Giemsa staining slides. It also downregulated the level of TNF-α and IL-6 in contrast to OVA and Poly(I:C) administered in animals. A TLR3/dsRNA complex inhibitor decreased the fraction of oxidative stress markers (MDA, GSH, GPx, and CAT) in lung tissues while keeping the mice's body weight constant during the treatment period. By decreasing alveoli, bronchial narrowing, smooth muscle hypertrophy, and granulocyte levels, the TLR3/dsRNA complex blocker significantly reduced the histopathological damage caused by OVA and Poly(I:C) compounds. In an animal model utilizing ovalbumin, TLR3/dsRNA complex inhibitors similarly reduced the bronchial damage produced by Poly(I:C). A novel TLR3/dsRNA complex inhibitor is expected to be employed in clinical studies since it suppresses airway inflammation without inducing antiviral approach resistance.
Collapse
Affiliation(s)
- Swamita Arora
- Amity Institute of Pharmacy, A -Block, Amity University, Sector-125, Noida, U.P., 201303, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, A -Block, Amity University, Sector-125, Noida, U.P., 201303, India
| | - Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi, 110062, India
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah, 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, A -Block, Amity University, Sector-125, Noida, U.P., 201303, India.
- PRISAL Foundation (Pharmaceutical Royal International Society), 462042, Bhopal, India.
| |
Collapse
|
25
|
Borrmann M, Brandes F, Kirchner B, Klein M, Billaud JN, Reithmair M, Rehm M, Schelling G, Pfaffl MW, Meidert AS. Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19. Front Immunol 2023; 14:1129766. [PMID: 36776845 PMCID: PMC9909741 DOI: 10.3389/fimmu.2023.1129766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.
Collapse
Affiliation(s)
- Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Rehm
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Department of Anesthesiology and intensive Care Medicine, Hospital Agatharied, Hausham, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Gustav Schelling,
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
26
|
You L, Huang L, Jang J, Hong YH, Kim HG, Chen H, Shin CY, Yoon JH, Manilack P, Sounyvong B, Lee WS, Jeon MJ, Lee S, Lee BH, Cho JY. Callerya atropurpurea suppresses inflammation in vitro and ameliorates gastric injury as well as septic shock in vivo via TLR4/MyD88-dependent cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154338. [PMID: 35921773 DOI: 10.1016/j.phymed.2022.154338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Callerya atropurpurea is a traditional plant in a tropical zone discovered to have anti-inflammatory functions. PURPOSE we want to investigate the mechanism related to anti-inflammation of C. atropurpurea ethanol extract (Ca-EE) both in vitro and in vivo. STUDY DESIGN Murine macrophage cells and mouse models for gastritis and septic shock were conducted to evaluate the abilities of Ca-EE in anti-inflammation. METHODS Ca-EE was tested by HPLC and LC-MS/MS. NO outcome was checked by Griess reagent test. Cell viabilities were evaluated using MTT assay. Inflammatory cytokines were determined via RT-PCR and ELISA. The mechanism of Ca-EE in anti-inflammation was investigated by luciferase reporter gene assay and immunoblot in transcription level and protein level respectively. Gastric injury and septic shock administrated with Ca-EE were studied by H&E, PCR, and immunoblot. RESULTS Ca-EE significantly decreased LPS-induced NO production, but hardly stimulated the expression of NO itself. It not only showed no cytotoxicity, but also protected cells from LPS damage. Moreover, Ca-EE decreased TLR4 expression, altered MyD88 recruitment and TRAF6, and suppressed the phospho-Src/PI3K/AKT. Ca-EE inhibited downstream signaling P38, JNK and NF-κB. Finally, Ca-EE alleviated HCl/EtOH-induced gastritis and LPS/poly (I:C)-induced septic shock through the previously mentioned signaling cascades. CONCLUSION Ca-EE exhibited an integrated and promising mechanism against TLR4-related inflammation, which shows potential for treating gastritis, septic shock, and other inflammatory diseases.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hongxi Chen
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, PO Box 2932, Vientiane, Laos
| | - Bounthan Sounyvong
- Department of Forestry, Ministry of Agriculture and Forestry, PO Box 2932, Vientiane, Laos
| | - Woo-Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
27
|
Haile CN, Varner KJ, Huijing X, Arora R, Orson FM, Kosten TR, Kosten TA. Active and Passive Immunization with an Anti-Methamphetamine Vaccine Attenuates the Behavioral and Cardiovascular Effects of Methamphetamine. Vaccines (Basel) 2022; 10:vaccines10091508. [PMID: 36146588 PMCID: PMC9503672 DOI: 10.3390/vaccines10091508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Methamphetamine use disorder (MUD) is a growing health concern with no FDA-approved treatment. The present series of studies build upon our previous work developing an anti-methamphetamine (MA) vaccine for MUD. We determined the effects of a formulation that included tetanus-toxoid (TT) conjugated to succinyl-methamphetamine (TT-SMA) adsorbed onto aluminum hydroxide (alum) in combination with the novel Toll-Like Receptor-5 agonist, entolimod. METHODS Mice were vaccinated (0, 3, 6 weeks) with TT-SMA+alum and various doses of entolimod to determine an optimal dose for enhancing immunogenicity against MA. Functional effects were then assessed using MA-induced locomotor activation in mice. Experiments using passive immunization of antibodies generated by the vaccine tested its ability to attenuate MA-induced cardiovascular effects and alter the reinforcing effects of MA in an MA-induced reinstatement of a drug seeking model of relapse in male and female rats. RESULTS Antibody levels peaked at 10 weeks following vaccination with TT-SMA+alum combined with entolimod (1, 3 and 10 μg). MA-induced locomotor activation was significantly attenuated in vaccinated vs. unvaccinated mice and antibody levels significantly correlated with ambulation levels. Passive immunization decreased mean arterial pressure following MA dosing in rats of both sexes but did not alter heart rate. Passive immunization also attenuated the ability of MA to reinstate extinguished drug-seeking behavior in male and female rats. Results support further development of this vaccine for relapse prevention for individuals with MUD.
Collapse
Affiliation(s)
- Colin N. Haile
- Department of Psychology/TIMES, University of Houston, Houston, TX 77204, USA
| | - Kurt J. Varner
- Department of Pharmacology and Experimental Therapeutics and the Cardiovascular Center of Excellence, LSUHSC, New Orleans, LA 70112, USA
| | - Xia Huijing
- Department of Pharmacology and Experimental Therapeutics and the Cardiovascular Center of Excellence, LSUHSC, New Orleans, LA 70112, USA
| | - Reetakshi Arora
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank M. Orson
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
- Immunology Allergy & Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas R. Kosten
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Therese A. Kosten
- Department of Psychology/TIMES, University of Houston, Houston, TX 77204, USA
- Correspondence:
| |
Collapse
|
28
|
Aydin P, Magden ZBA, Uzuncakmak SK, Halici H, Akgun N, Mendil AS, Mokhtare B, Cadirci E. Avanafil as a Novel Therapeutic Agent Against LPS-Induced Acute Lung Injury via Increasing CGMP to Downregulate the TLR4-NF-κB-NLRP3 Inflammasome Signaling Pathway. Lung 2022; 200:561-572. [PMID: 36040529 DOI: 10.1007/s00408-022-00564-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/14/2022] [Indexed: 01/16/2023]
Abstract
AIM We demonstrate the effect of PDE5 inhibitors in cases of acute lung injury via the relationship between cGMP/NO and the TLR4-NF-κB-NLRP3 pathway. MATERIALS AND METHODS This study was performed with 30 male Wistar albino rats. Lipopolysaccharide (LPS) was administered intratracheally to the rats and acute lung injury (ALI) was induced. Twelve hours after LPS administration, avanafil, prepared at suitable doses according to the body weights of the animals, was administered by oral gavage. Lung tissue samples of all groups were examined histopathologically and by immunochemical staining (IL-1β, iNOS, TLR4, and NF-κB). The iNOS, NLRP3, and IL-1B mRNA expression levels in the lung tissues were measured by RT-PCR. The left upper lobes of the rat lungs were dried at 70 °C for 48 h and lung water content was calculated. RESULT Statistically significant increases in iNOS, NLRP3, and IL-1β mRNA expressions were observed in the rats with ALI compared to the healthy controls (p < 0.0001). Those increased expressions were reduced at both doses of avanafil (p < 0.0001). This reduction was found to be greater at 20 mg/kg (p < 0.0001). IL-1β, iNOS, TLR4, and NF-κB immunopositivity was moderate/severe in the ALI group and mild in the group with ALI + avanafil at 20 mg/kg (p < 0.05). When the wet/dry lung ratios were calculated, a statistically significant increase was seen in the ALI group compared to the healthy rats (p < 0.05). That increase was decreased with both avanafil doses (p < 0.05). CONCLUSION We suggest that avanafil may prevent the progression of ALI and be effective in its treatment. We hope that this study will be supported by future clinical studies to yield a new indication for avanafil.
Collapse
Affiliation(s)
- Pelin Aydin
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey. .,Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey.
| | - Zeynep Berna Aksakalli Magden
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| | | | - Hamza Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey.,Department of Hınıs Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Nurullah Akgun
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Ataturk University Campus, Ataturk District, Erzurum, 25240, Yakutiye, Turkey
| |
Collapse
|
29
|
Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. BIOIMPACTS : BI 2022; 12:261-290. [PMID: 35677663 PMCID: PMC9124882 DOI: 10.34172/bi.2022.23896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
![]()
Immunotherapy is considered a promising approach for cancer treatment. An important strategy for cancer immunotherapy is the use of cancer vaccines, which have been widely used for cancer treatment. Despite the great potential of cancer vaccines for cancer treatment, their therapeutic effects in clinical settings have been limited. The main reason behind the lack of significant therapeutic outcomes for cancer vaccines is believed to be the immunosuppressive tumor microenvironment (TME). The TME counteracts the therapeutic effects of immunotherapy and provides a favorable environment for tumor growth and progression. Therefore, overcoming the immunosuppressive TME can potentially augment the therapeutic effects of cancer immunotherapy in general and therapeutic cancer vaccines in particular. Among the strategies developed for overcoming immunosuppression in TME, the use of toll-like receptor (TLR) agonists has been suggested as a promising approach to reverse immunosuppression. In this paper, we will review the application of the four most widely studied TLR agonists including agonists of TLR3, 4, 7, and 9 in cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Rostamizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramazani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanaifar
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in mammalian toll like receptor genes. Comput Biol Chem 2022; 97:107637. [DOI: 10.1016/j.compbiolchem.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
31
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
32
|
Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.
Collapse
|
33
|
Gao Q, Ma C, Meng S, Wang G, Xing Q, Xu Y, He X, Wang T, Cao Y. Exploration of molecular features of PCOS with different androgen levels and immune-related prognostic biomarkers associated with implantation failure. Front Endocrinol (Lausanne) 2022; 13:946504. [PMID: 36060967 PMCID: PMC9439868 DOI: 10.3389/fendo.2022.946504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. METHODS PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. RESULTS A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. CONCLUSION Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Shuyu Meng
- Molecular Pharmacology and Therapeutics, University of Minnesota, Twin Cities, MN, United States
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| |
Collapse
|
34
|
Osthole Inhibits Expression of Genes Associated with Toll-like Receptor 2 Signaling Pathway in an Organotypic 3D Skin Model of Human Epidermis with Atopic Dermatitis. Cells 2021; 11:cells11010088. [PMID: 35011650 PMCID: PMC8750192 DOI: 10.3390/cells11010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor (TLR) family signature has been linked to the etiopathology of atopic dermatitis (AD), a chronic inflammatory skin disease associated with skin barrier dysfunction and immune system imbalance. We aimed to investigate whether osthole (a plant-derived compound) can inhibit the genetic profile of key genes associated with TLR2 signaling (TIRAP, MyD88, IRAK1, TRAF6, IκBα, NFκB) after stimulation with LPS or histamine in a 3D in vitro model of AD. Overexpression of the aforementioned genes may directly increase the secretion of proinflammatory cytokines (CKs) and chemokines (ChKs), which may exacerbate the symptoms of AD. Relative gene expressions were quantified by qPCR and secretion of CKs and ChKs was evaluated by ELISA assay. LPS and histamine increased the relative expression of genes related to the TLR2 pathway, and osthole successfully reduced it. In summary, our results show that osthole inhibits the expression of genes associated with the TLR signaling pathway in a skin model of AD. Moreover, the secretion of CKs and ChKs after treatment of AD with osthole in a 3D skin model in vitro suggests the potential of osthole as a novel compound for the treatment of AD.
Collapse
|
35
|
Xu X, Zhang J, Chen L, Sun Y, Qing D, Xin X, Yan C. Alhagi pseudalhagi Extract Exerts Protective Effects Against Intestinal Inflammation in Ulcerative Colitis by Affecting TLR 4-Dependent NF-κB Signaling Pathways. Front Pharmacol 2021; 12:764602. [PMID: 34803708 PMCID: PMC8600043 DOI: 10.3389/fphar.2021.764602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 01/30/2023] Open
Abstract
Alhagi pseudalhagi Desv. Extract (APE) is the major active fraction extracted from the aerial part of Alhagi pseudalhagi Desv. In view of its application in Uyghur medicine, it may be beneficial for the treatment of ulcerative colitis (UC). The aim of the present study was to investigate the possible beneficial effects of APE on UC mice and detect the possible mechanisms underlying these effects. Methods: An acute UC model was established in mice using dextran sulfate sodium. Sixty mice were randomly divided into six groups: normal, UC model, sulfasalazine (200 mg/kg), high-dose APE (APE-H, 2.82 g/kg), middle-dose APE (APE-M, 1.41 g/kg), and low-dose APE (APE-L, 0.70 g/kg) groups. Drugs were administered by gavage for 10 days after the induction of colitis. Serum and colon tissue samples were collected from the mice during the experiment, and survival signs, body weight changes, disease activity index (DAI), colon length, and colon wet weight in mice were determined after the treatment. UC-induced damage, including inflammation and ulceration of colon mucosa, were observed by the naked eye as well as using hematoxylin and eosin staining (H&E) and scanning electron microscopy and scored according to Wallace and Keean’s criteria. We measured the levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10 in the serum and colon tissues using ELISA. Additionally, the relative protein levels of toll-like receptor 4 (TLR4), nuclear factor-kappa B p65 (NF-κB p65), phosphorylated NF-κB p65 at Ser536 (p-p65 Ser536), inhibitor kappa B-kinase ß (IK-Kβ), and phosphorylated IK-Kβ (Ser176/180) (p-IK-Kβ) in colonic mucosal epithelial tissues were detected using western blotting. The main functional components of APE were analyzed and confirmed by UPLC-MS/MS. Results: APE treatment repaired the UC-induced colon mucosa injury, reduced the weight loss, attenuated DAI, colon macroscopic damage index, and histological inflammation, and significantly downregulated the levels of inflammatory markers, including TNF-α, IL-1β, and IL-6, in the serum and colon tissues. Additionally, APE treatment reduced the levels of TLR4 and phosphorylation of p-NF-κB and p-IK-Kβ. The main components of APE are taxifolin, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxychromen-4-one, hyperoside, rutin, kaempferol, isorhamnetin, 7,8-dihydroxyflavone, and kaempferide. Conclusions: To the best of our knowledge, the present study is first to demonstrate that APE exerts a protective effect against intestinal inflammation in UC by affecting TLR4-dependent NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaoqin Xu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Liang Chen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Degang Qing
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Yan
- Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
36
|
Daldaban F, Karaca Bekdik İ, Aslan Ö, Akyüz B, Akçay A, Arslan K. Investigation of TLR1-9 genes and miR-155 expression in dogs infected with canine distemper. Comp Immunol Microbiol Infect Dis 2021; 79:101711. [PMID: 34601173 DOI: 10.1016/j.cimid.2021.101711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to determine the relationship of toll-like receptor (TLR) 1-9 genes and microRNA (miR) -155 expression levels with hematologic parameters in dogs diagnosed with canine distemper. In the study, two groups were used pre-treatment and post-treatment. Infected dogs were diagnosed with canine distemper with the help of a rapid test kit and Real Time-Polymerase Chain Reaction (RT-PCR). Based on the correlation coefficients between the expression levels of the genes examined within the scope of the study and hematologic values, a positive correlation was found between the TLR2 gene and the monocyte (MON) value and between the TLR4 gene and the platelet (PLT) value in the pre-treatment group. A strong positive correlation was identified between TLR3 and TLR9 genes and erythrocyte (RBC) and hemoglobin (HGB) values; between TLR5 gene and RBC, HGB and hematocrit (HCT) values and between TLR9 gene and RBC and HGB values in the post-treatment group, on the other hand, a positive correlation was found between TLR1 gene and MON and neutrophil (GRAN) values; between TLR3 gene and HCT value and between TLR9 gene and MON and HCT values. The study concluded that miR-155 and TLR8 gene were upregulated at a statistically significant level (P < 0.05) Post-treatment in dogs infected with canine distemper and there was a positive correlation between the upregulation of miR-155 and the upregulation of TLR8 in the same period. This result suggests that the upregulated miR-155 expression post-treatment increased TLR8 gene expression. In the light of these findings, it miR-155 may have the potential to be used in clinical practice in the treatment or prognosis of dogs infected with canine distemper.
Collapse
Affiliation(s)
- Fadime Daldaban
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| | - İlknur Karaca Bekdik
- Erciyes University, Faculty of Veterinary Medicine, Department of Internal Medicine, Kayseri, Turkey.
| | - Öznur Aslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Internal Medicine, Kayseri, Turkey.
| | - Bilal Akyüz
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| | - Aytaç Akçay
- Ankara University, Faculty of Veterinary Medicine, Department of Biostatistics, Ankara, Turkey.
| | - Korhan Arslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| |
Collapse
|
37
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
38
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Lushpa VA, Goncharuk MV, Lin C, Zalevsky AO, Talyzina IA, Luginina AP, Vakhrameev DD, Shevtsov MB, Goncharuk SA, Arseniev AS, Borshchevskiy VI, Wang X, Mineev KS. Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn 2+ ions. Commun Biol 2021; 4:1003. [PMID: 34429510 PMCID: PMC8385042 DOI: 10.1038/s42003-021-02532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response. While a lot is known about the structures of their extracellular parts, many questions are still left unanswered, when the structural basis of TLR activation is analyzed for the TLR intracellular domains. Here we report the structure and dynamics of TLR1 toll-interleukin like (TIR) cytoplasmic domain in crystal and in solution. We found that the TLR1-TIR domain is capable of specific binding of Zn with nanomolar affinity. Interactions with Zn are mediated by cysteine residues 667 and 686 and C667 is essential for the Zn binding. Potential structures of the TLR1-TIR/Zn complex were predicted in silico. Using the functional assays for the heterodimeric TLR1/2 receptor, we found that both Zn addition and Zn depletion affect the activity of TLR1, and C667A mutation disrupts the receptor activity. Analysis of C667 position in the TLR1 structure and possible effects of C667A mutation, suggests that zinc-binding ability of TLR1-TIR domain is critical for the receptor activation. Lushpa et al report the structure and dynamics of the TLR1 toll-interleukin like (TIR) cytoplasmic domain in both crystal and solution. They demonstrate that the TLR1 TIR domain is capable of specific binding of Zn with nanomolar affinity, which appears to be critical for receptor activation, and provide potential structures TLR1-TIR/Zn complex based on in silico data.
Collapse
Affiliation(s)
- Vladislav A Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Irina A Talyzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | | | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Valentin I Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
40
|
Bacterially Delivered miRNA-Mediated Toll-like Receptor 8 Gene Silencing for Combined Therapy in a Murine Model of Atopic Dermatitis: Therapeutic Effect of miRTLR8 in AD. Microorganisms 2021; 9:microorganisms9081715. [PMID: 34442794 PMCID: PMC8401271 DOI: 10.3390/microorganisms9081715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
In atopic dermatitis (AD), skin inflammation is caused by complex interactions between genetic disposition and aberrant innate/adaptive immune responses. Toll-like receptors (TLRs) are key molecules in the innate/adaptive immune response as they recognize various molecular motifs associated with pathogens. Among them, TLR8 is implicated in eczematous skin reactions. We investigated the combined therapeutic effects of TLR8 gene silencing by the bacterial delivery of miRNA. We used Salmonella as a vector to deliver TLR8 miRNA. The recombinant strain of Salmonella enterica subsp. enterica serovar Typhimurium (ST) expressing TLR8 miRNA (ST-miRTLR8) was prepared for knockdown of TLR8. After oral administration of ST-miRTLR8 into mice, we observed the cytokine levels, skin pathology and scratching behaviors in an AD-like mouse model. TLR8 down-regulation decreased macrophage-derived chemokine concentrations in activated human mast cells. Serum IgE and interleukin-4 production were suppressed whereas IFN-γ was induced after oral administration of ST-miRTLR8. Scratching behaviors and skin inflammation were also improved. In addition, attenuated S. typhimurium safely accumulated in mouse macrophages and showed adjuvant effects. This study shows that the recombinant miRNA that expresses the TLR8 miRNA has therapeutic effects by suppressing Th2 inflammation. TLR gene modulation using miRNA via Salmonella vectors will thus have a double-protective effect in the treatment of AD.
Collapse
|
41
|
Bobrovsky PA, Moroz VD, Lavrenova VN, Manuvera VA, Lazarev VN. Inhibition of Chlamydial Infection by CRISPR/Cas9-SAM Mediated Enhancement of Human Peptidoglycan Recognition Proteins Gene Expression in HeLa Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:1310-1318. [PMID: 33280575 DOI: 10.1134/s0006297920110036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The global problem of emerging resistance of microorganisms to antibiotics makes the search for new natural substances with antibacterial properties relevant. Such substances include peptidoglycan recognition proteins (PGLYRP), which are the components of the innate immunity of many organisms, including humans. These proteins have a unique mechanism of action that allows them to evade the resistance of bacteria to them, as well as to be active against both Gram-positive and Gram-negative bacteria. However, the use of antimicrobial recombinant proteins is not always advisable due to the complexity of local delivery of the proteins and their stability; in this regard it seems appropriate to activate the components of the innate immunity. The aim of this study was to increase the expression level of native peptidoglycan recognition protein genes in HeLa cells using genome-editing technology with synergistic activation mediators (CRISPR/Cas9-SAM) and evaluate antichlamydial effect of PGLYRP. We demonstrated activation of the chlamydial two-component gene system (ctcB-ctcC), which played a key role in the mechanism of action of the peptidoglycan recognition proteins. We generated the HeLa cell line transduced with lentiviruses encoding CRISPR/Cas9-SAM activation system with increased PGLYRP gene expression. It was shown that activation of the own peptidoglycan recognition proteins gene expression in the cell line caused inhibition of the chlamydial infection development. The proposed approach makes it possible to use the capabilities of innate immunity to combat infectious diseases caused by Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- P A Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - V D Moroz
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
42
|
Lüke F, Harrer DC, Hahn J, Grube M, Pukrop T, Herr W, Reichle A, Heudobler D. Continuous Complete Remission in Two Patients with Acute Lymphoblastic Leukemia and Severe Fungal Infection Following Short-Term, Dose-Reduced Chemotherapy. Front Pharmacol 2021; 12:599552. [PMID: 34149402 PMCID: PMC8206565 DOI: 10.3389/fphar.2021.599552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Spontaneous remission in acute lymphoblastic leukemia (ALL) is a rare phenomenon, which typically involves a pattern of feverish or septic disease followed by quick but mostly transient remission. We report on two male patients (46-year-old (pt. 1) and 19-year-old (pt. 2)) with CD20 positive, BCR-ABL negative common B-ALL. Patient 1 had received dexamethasone and cyclophosphamide (1.2 g) as a prephase therapy, followed by rituximab and a cumulative dose of 200 mg daunorubicin combined with 2 mg vincristine as an induction therapy. Patient 2 was treated with a reduced therapy regimen (Vincristine 1 mg, dexamethasone and 80 mg daunorubicin, 12-month mercaptopurine maintenance) due to (alcohol-related) toxic liver failure and pontine myelinolysis. Both patients developed severe septic disease just few days into induction treatment. Patient 1 suffered from pulmonary mycosis, which had to be resected eventually. Histological work-up revealed invasive mucor mycosis. Patient 2 presented with elevated serum aspergillus antigen and radiographic pulmonary lesions, indicative of pulmonary mycosis. In both patients, chemotherapy had to be interrupted and could not be resumed. Both patients recovered under broad antimicrobial, antifungal and prophylactic antiviral therapy and achieved molecular complete remission. At data cut-off remissions had been on-going for 34 months (pt. 1) and 8 years (pt. 2). Short-term, reduced intensity induction chemotherapy accompanied by severe fungal infections was followed by long-lasting continuous complete remissions in ALL. Thus, we hypothesize that infection-associated immunogenic responses may not only prevent early relapse of ALL but could also eradicate minimal residual disease. The effects of combined cytotoxic therapy and severe infection may also be mimicked by biomodulatory treatment strategies aiming at reorganizing pathologically altered cellular signaling networks. This could reduce toxicity and comorbidity in adult patients requiring leukemia treatment. Therefore, these two cases should encourage systematic studies on how leukemia stroma interaction can be harnessed to achieve long lasting control of ALL.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Matthias Grube
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Computational-Driven Epitope Verification and Affinity Maturation of TLR4-Targeting Antibodies. Int J Mol Sci 2021; 22:ijms22115989. [PMID: 34206009 PMCID: PMC8198660 DOI: 10.3390/ijms22115989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/29/2021] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody-antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.
Collapse
|
44
|
Müller L, Kuhn T, Koch M, Fuhrmann G. Stimulation of Probiotic Bacteria Induces Release of Membrane Vesicles with Augmented Anti-inflammatory Activity. ACS APPLIED BIO MATERIALS 2021; 4:3739-3748. [PMID: 35006804 DOI: 10.1021/acsabm.0c01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During infection, inflammation is an important contributor to tissue regeneration and healing, but it may also negatively affect these processes should chronic overstimulation take place. Similar issues arise in chronic inflammatory gastrointestinal diseases such as inflammatory bowel diseases or celiac disease, which show increasing incidences worldwide. For these dispositions, probiotic microorganisms, including lactobacilli, are studied as an adjuvant therapy to counterbalance gut dysbiosis. However, not all who are affected can benefit from the probiotic treatment, as immunosuppressed or hospitalized patients can suffer from bacteremia or sepsis when living microorganisms are administered. A promising alternative is the treatment with bacteria-derived membrane vesicles that confer similar beneficial effects as the progenitor strains themselves. Membrane vesicles from lactobacilli have shown anti-inflammatory therapeutic effects, but it remains unclear whether the stimulation of probiotics induces vesicles that are more efficient. Here, the influence of culture conditions on the anti-inflammatory characteristics of Lactobacillus membrane vesicles was investigated. We reveal that the culture conditions of two Lactobacillus strains, namely, L. casei and L. plantarum, can be optimized to increase the anti-inflammatory effect of their vesicles. Five different cultivation conditions were tested, including pH manipulation, agitation rate, and oxygen supply, and the produced membrane vesicles were characterized physico-chemically regarding size, yield, and zeta potential. We furthermore analyzed the anti-inflammatory effect of the purified vesicles in macrophage inflammation models. Compared to standard cultivation conditions, vesicles obtained from L. casei cultured at pH 6.5 and agitation induced the strongest interleukin-10 release and tumor necrosis factor-α reduction. For L. plantarum, medium adjusted to pH 5 had the most pronounced effect on the anti-inflammatory activity of their vesicles. Our results reveal that the anti-inflammatory effect of probiotic vesicles may be potentiated by expanding different cultivation conditions for lactobacilli. This study creates an important base for the utilization of probiotic membrane vesicles to treat inflammation.
Collapse
Affiliation(s)
- Lisann Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
45
|
Wang X, Liu Y, Han X, Zou G, Zhu W, Shen H, Liu H. Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorg Med Chem Lett 2021; 44:128101. [PMID: 33984476 DOI: 10.1016/j.bmcl.2021.128101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways play an important role in the innate immune system, protecting hosts against infections. However, a large body of evidence supports a close association between aberrant activation of those pathways and autoimmune and inflammatory diseases. Part II of the digest series on small molecule approaches to autoimmune and inflammatory diseases concentrates on recent advances with respect to small molecule antagonists or inhibitors of the nucleic acid sensing pathways, including endosomal TLRs, NLRP3 inflammasome and cGAS-STING.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yafei Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xingchun Han
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Ge Zou
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Wei Zhu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Haixia Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
46
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
47
|
Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P. Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction. Amino Acids 2021; 53:713-737. [PMID: 33885999 PMCID: PMC8128834 DOI: 10.1007/s00726-021-02978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
Pellino1 has been shown to regulate proinflammatory genes by activating the nuclear factor kappa B (NF-κB) and Toll-like receptor (TLR) signaling pathways, which are important in the pathological development of lipopolysaccharide (LPS)-induced myocarditis. However, it is still unknown whether silencing Pellino1 (si-Pellino1) has a therapeutic effect on this disease. Here, we showed that silencing Pellino1 can be a potential protective strategy for abnormal myocardial energy metabolism in LPS-induced myocarditis. We used liquid chromatography electrospray–ionization tandem mass spectrometry (LC–MS/MS) to analyze samples from si-Pellino1 neonatal rat cardiac myocytes (NRCMs) treated with LPS or left untreated. After normalization of the data, metabolite interaction analysis of matched KEGG pathway associations following si-Pellino1 treatment was applied, accompanied by interaction analysis of gene and metabolite associations after this treatment. Moreover, we used western blot (WB) and polymerase chain reaction (PCR) analyses to determine the expression of genes involved in regulating cardiac energy and energy metabolism in different groups. LC–MS-based metabolic profiling analysis demonstrated that si-Pellino1 treatment could alleviate or even reverse LPS-induced cellular damage by altering cardiomyocytes energy metabolism accompanied by changes in key genes (Cs, Cpt2, and Acadm) and metabolites (3-oxoocotanoyl-CoA, hydroxypyruvic acid, lauroyl-CoA, and NADPH) in NRCMs. Overall, our study unveiled the promising cardioprotective effect of silencing Pellino1 in LPS-induced myocarditis through fuel and energy metabolic regulation, which can also serve as biomarkers for this disease.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xufeng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
48
|
Gilanchi S, Zali H, Faranoush M, Rezaei Tavirani M, Shahriary K, Daskareh M. Identification of Candidate Biomarkers for Idiopathic Thrombocytopenic Purpura by Bioinformatics Analysis of Microarray Data. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:275-289. [PMID: 33841542 PMCID: PMC8019887 DOI: 10.22037/ijpr.2020.113442.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Idiopathic Thrombocytopenic Purpura (ITP) is a multifactorial disease with decreased count of platelet that can lead to bruising and bleeding manifestations. This study was intended to identify critical genes associated with chronic ITP. The gene expression profile GSE46922 was downloaded from the Gene Expression Omnibus database to recognize Differentially Expressed Genes (DEGs) by R software. Gene ontology and pathway analyses were performed by DAVID. The biological network was constructed using the Cytoscape. Molecular Complex Detection (MCODE) was applied for detecting module analysis. Transcription factors were identified by the PANTHER classification system database and the gene regulatory network was constructed by Cytoscape. One hundred thirty-two DEGs were screened from comparison newly diagnosed ITP than chronic ITP. Biological process analysis revealed that the DEGs were enriched in terms of positive regulation of autophagy and prohibiting apoptosis in the chronic phase. KEGG pathway analysis showed that the DEGs were enriched in the ErbB signaling pathway, mRNA surveillance pathway, Estrogen signaling pathway, and Notch signaling pathway. Additionally, the biological network was established, and five modules were extracted from the network. ARRB1, VIM, SF1, BUB3, GRK5, and RHOG were detected as hub genes that also belonged to the modules. SF1 also was identified as a hub-TF gene. To sum up, microarray data analysis could perform a panel of genes that provides new clues for diagnosing chronic ITP.
Collapse
Affiliation(s)
- Samira Gilanchi
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Mahyar Daskareh
- Department of Radiology, Ziyaian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
50
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor Expression Profiles in Koala ( Phascolarctos cinereus) Peripheral Blood Mononuclear Cells Infected with Multiple KoRV Subtypes. Animals (Basel) 2021; 11:ani11040983. [PMID: 33915914 PMCID: PMC8065587 DOI: 10.3390/ani11040983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a major pathogen of koala. Toll-like receptors (TLRs) are important innate immune component that are evolutionary conserved and play a crucial role in the early defense against invading pathogens. The expression profile of TLRs in KoRV infection in koalas is not characterized yet. Therefore, in this study, we characterized TLR expression patterns in koalas infected with KoRV-A only vs. KoRV-A with KoRV-B and/or -C. Using qRT-PCR, we measured TLR2–10 and TLR13 mRNA expression in peripheral blood mononuclear cells (PBMCs) and/or tissues from captive koalas in Japanese zoos. We observed variations in TLR expression in koalas with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C). The findings of this study might improve our current understanding of koala’s immune response to KoRV infection. Abstract Toll-like receptors (TLRs), evolutionarily conserved pattern recognition receptors, play an important role in innate immunity by recognizing microbial pathogen-associated molecular patterns. Koala retrovirus (KoRV), a major koala pathogen, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the expression profile of TLRs in koalas infected with KoRV-A and other subtypes is yet to characterize. Here, we investigated TLR expression profiles in koalas with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C). To this end, we cloned partial sequences for TLRs (TLR2–10 and TLR13), developed real-time PCR assays, and determined TLRs mRNA expression patterns in koala PBMCs and/or tissues. All the reported TLRs for koala were expressed in PBMCs, and variations in TLR expression were observed in koalas infected with exogenous subtypes (KoRV-B and KoRV-C) compared to the endogenous subtype (KoRV-A) only, which indicates the implications of TLRs in KoRV infection. TLRs were also found to be differentially expressed in koala tissues. This is the first report of TLR expression profiles in koala, which provides insights into koala’s immune response to KoRV infection that could be utilized for the future exploitation of TLR modulators in the maintenance of koala health.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|