1
|
Maris BR, Grama A, Pop TL. Drug-Induced Liver Injury-Pharmacological Spectrum Among Children. Int J Mol Sci 2025; 26:2006. [PMID: 40076629 PMCID: PMC11901067 DOI: 10.3390/ijms26052006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Drug-induced liver injury (DILI) is one of the main causes of acute liver failure in children. Its incidence is probably underestimated, as specific diagnostic tools are currently lacking. Over 1000 known drugs cause DILI, and the list is expanding. The aim of this review is to describe DILI pathogenesis and emphasize the drugs accountable for child DILI in order to aid its recognition. Intrinsic DILI is well described in terms of mechanism, incriminated drugs, and toxic dose. Conversely, idiosyncratic DILI (iDILI) is unpredictable, occurring as a result of a particular response to drug administration, and its occurrence cannot be foreseen in clinical studies. Half of pediatric iDILI cases are linked to antibiotics, mostly amoxicillin-clavulanate, in the immune-allergic group, while autoimmune DILI is the hallmark of minocycline and nitrofurantoin. Secondly, antiepileptics are responsible for 20% of pediatric iDILI cases, children being more prone to iDILI caused by these agents than adults. A similar tendency was observed in anti-tuberculosis drugs, higher incidences being reported in children below three years old. Current data show growing cases of iDILI related to antineoplastic agents, atomoxetine, and albendazole, so that it is advisable for clinicians to maintain a high index of suspicion regarding iDILI.
Collapse
Affiliation(s)
- Bianca Raluca Maris
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Das SK, Mishra R, Samanta A, Shil D, Roy SD. Deep learning: A game changer in drug design and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2025; 103:101-120. [PMID: 40175037 DOI: 10.1016/bs.apha.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The lengthy and costly drug discovery process is transformed by deep learning, a subfield of artificial intelligence. Deep learning technologies expedite the procedure, increasing treatment success rates and speeding life-saving procedures. Deep learning stands out in target identification and lead selection. Deep learning greatly accelerates initial stage by analyzing large datasets of biological data to identify possible therapeutic targets and rank targeted drug molecules with desired features. Predicting possible adverse effects is another significant challenge. Deep learning offers prompt and efficient assistance with toxicology prediction in a very short time, deep learning algorithms can forecast a new drug's possible harm. This enables to concentrate on safer alternatives and steer clear of late-stage failures brought on by unanticipated toxicity. Deep learning unlocks the possibility of drug repurposing; by examining currently available medications, it is possible to find whole new therapeutic uses. This method speeds up development of diseases that were previously incurable. De novo drug discovery is made possible by deep learning when combined with sophisticated computational modeling, it can create completely new medications from the ground. Deep learning can recommend and direct towards new drug candidates with high binding affinities and intended therapeutic effects by examining molecular structures of disease targets. This provides focused and personalized medication. Lastly, drug characteristics can be optimized with aid of deep learning. Researchers can create medications with higher bioavailability and fewer toxicity by forecasting drug pharmacokinetics. In conclusion, deep learning promises to accelerate drug development, reduce costs, and ultimately save lives.
Collapse
Affiliation(s)
- Sushanta Kumar Das
- Mata Gujri College of Pharmacy, Mata Gujri University, Kishanganj, Bihar, India.
| | - Rahul Mishra
- Pharmacokinetics Scientist, Phase 1 Clinical Trial, Celerion IMC, Rose Street, Lincoln, NE, United States
| | - Amit Samanta
- Mata Gujri College of Pharmacy, Mata Gujri University, Kishanganj, Bihar, India
| | - Dibyendu Shil
- Mata Gujri College of Pharmacy, Mata Gujri University, Kishanganj, Bihar, India
| | - Saumendu Deb Roy
- Mata Gujri College of Pharmacy, Mata Gujri University, Kishanganj, Bihar, India
| |
Collapse
|
3
|
Zhao B, Ye J, Zhao W, Liu X, Lan H, Sun J, Chen J, Cai X, Wei Q, Zhou Q, Zhang Z, Wu Y, Yang Y, Cao P. 6-Shogaol Derived from Ginger Inhibits Intestinal Crypt Stem Cell Differentiation and Contributes to Irritable Bowel Syndrome Risk. RESEARCH (WASHINGTON, D.C.) 2024; 7:0524. [PMID: 39512446 PMCID: PMC11542252 DOI: 10.34133/research.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Dietary factors play a crucial role in irritable bowel syndrome (IBS) pathogenesis. Therefore, the dietary contraindications for patients with IBS require further supplementation. Recent investigations have revealed that ginger consumption may pose a risk of aggravating the symptoms and incidence of IBS; however, the specific mechanism remains unknown. In this study, we developed experimental IBS and intestinal organoid differentiation screening models to elucidate the mechanisms underlying the ginger-mediated exacerbation of IBS symptoms. Subsequently, we used a knockout approach combined with click chemistry as well as virus infection to identify the toxic components of ginger and the target mechanism. Our results showed that a daily intake of 90 to 300 mg/kg ginger (equivalent to a human daily dose of 0.6 to 2 g per person) may pose a risk of exacerbating IBS symptoms. Furthermore, a component derived from 6-gingerol (ginger's main ingredient) through in vivo gastric acid and heat processing inhibited the formation of the eIF3 transcription initiation complex by covalently binding to the Cys58 site of eIF3A, a key factor regulating intestinal crypt stem cell differentiation, further reducing the goblet cell number and related mucus layer thickness and increasing lipopolysaccharide infiltration and low-grade inflammation in the ileum crypts, thereby exacerbating the symptoms of IBS in mice. Our study suggests that dietary ginger aggravates IBS and provides safety evaluation methods for the proper use of foods in specific populations.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ye
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People’s Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China
| | - Jiao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyun Wei
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhou
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengwei Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuze Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zelter A, Riffle M, Shteynberg DD, Zhong G, Riddle EB, Hoopmann MR, Jaschob D, Moritz RL, Davis TN, MacCoss MJ, Isoherranen N. Detection and Quantification of Drug-Protein Adducts in Human Liver. J Proteome Res 2024; 23:5143-5152. [PMID: 39442081 PMCID: PMC11537226 DOI: 10.1021/acs.jproteome.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Covalent protein adducts formed by drugs or their reactive metabolites are risk factors for adverse reactions, and inactivation of cytochrome P450 (CYP) enzymes. Characterization of drug-protein adducts is limited due to lack of methods identifying and quantifying covalent adducts in complex matrices. This study presents a workflow that combines data-dependent and data-independent acquisition (DDA and DIA) based liquid chromatography with tandem mass spectrometry (LC-MS/MS) to detect very low abundance adducts resulting from CYP mediated drug metabolism in human liver microsomes (HLMs). HLMs were incubated with raloxifene as a model compound and adducts were detected in 78 proteins, including CYP3A and CYP2C family enzymes. Experiments with recombinant CYP3A and CYP2C enzymes confirmed adduct formation in all CYPs tested, including CYPs not subject to time-dependent inhibition by raloxifene. These data suggest adducts can be benign. DIA analysis showed variable adduct abundance in many peptides between livers, but no concomitant decrease of unadducted peptides. This study sets a new standard for adduct detection in complex samples, offering insights into the human adductome resulting from reactive metabolite exposure. The methodology presented will aid mechanistic studies to identify, quantify and differentiate between adducts that result in adverse drug reactions and those that are benign.
Collapse
Affiliation(s)
- Alex Zelter
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Guo Zhong
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Ellen B. Riddle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Daniel Jaschob
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Trisha N. Davis
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Nina Isoherranen
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Ford M, Thomson PJ, Snoeys J, Meng X, Naisbitt DJ. Selective HLA Class II Allele-Restricted Activation of Atabecestat Metabolite-Specific Human T-Cells. Chem Res Toxicol 2024; 37:1712-1727. [PMID: 39348529 PMCID: PMC11497358 DOI: 10.1021/acs.chemrestox.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Elevations in hepatic enzymes were detected in several trial patients exposed to the Alzheimer's drug atabecestat, which resulted in termination of the drug development program. Characterization of hepatic T-lymphocyte infiltrates and diaminothiazine (DIAT) metabolite-responsive, human leukocyte antigen (HLA)-DR-restricted, CD4+ T-lymphocytes in the blood of patients confirmed an immune pathogenesis. Patients with immune-mediated liver injury expressed a restricted panel of HLA-DRB1 alleles including HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01. Thus, the objectives of this study were to (i) generate DIAT-responsive T-cell clones from HLA-genotyped drug-naive donors, (ii) characterize pathways of DIAT-specific T-cell activation, and (iii) assess HLA allele restriction of the DIAT-specific T-cell response. Sixteen drug-naive donors expressing the HLA-DR molecules outlined above were recruited, and T-cell clones were generated. Cellular phenotype, function, and HLA-allele restriction were assessed using culture assays. Peptides displayed by HLA class II molecules in the presence and absence of atabecestat were analyzed by mass spectrometry. Several DIAT-responsive CD4+ clones, displaying no reactivity toward the parent drug, were successfully generated from donors expressing HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 but not from other donors expressing other HLA-DRB1 alleles. T-cell clones were activated following direct binding of DIAT to HLA-DR proteins expressed on the surface of antigen presenting cells. DIAT binding did not alter the HLA-DRB1 peptide binding repertoire, indicative of a binding interaction with the HLA-associated peptide rather than with the HLA protein itself. DIAT-specific T-cell responses displayed HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 restriction. These data demonstrate that DIAT displays a degree of selectivity toward HLA protein and associated peptides, with expression of certain alleles increasing and that of others decreasing, the likelihood that a drug-specific T-cell response develops.
Collapse
Affiliation(s)
- Megan Ford
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Paul J. Thomson
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
- AstraZeneca,
The Discovery Centre, Cambridge Biomedical
Campus, Cambridge CB2 0AA, U.K.
| | - Jan Snoeys
- Translational
PK PD and Investigative Toxicology, Janssen
Research & Development, Division of Janssen Pharmaceutica NV, Beerse 2340, Belgium
| | - Xiaoli Meng
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Dean J. Naisbitt
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
6
|
Weissberger D, Stenzel MH, Hunter L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024; 29:4949. [PMID: 39459317 PMCID: PMC11510600 DOI: 10.3390/molecules29204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies.
Collapse
Affiliation(s)
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Cho T, Hayes A, Henderson JT, Uetrecht J. The use of PD-1 functional knockout rats to study idiosyncratic adverse reactions to nevirapine. Toxicol Sci 2024; 200:382-393. [PMID: 38767978 DOI: 10.1093/toxsci/kfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Idiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1-/- mice are more susceptible to drug-induced liver injury, but PD-1-/- mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1-/- mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs.
Collapse
Affiliation(s)
- Tiffany Cho
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anthony Hayes
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey T Henderson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
8
|
Şahin S, Aydın AÇ, Göçmen AY, Kaymak E. Evaluation of the protective effect of losartan in acetaminophen-induced liver and kidney damage in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5067-5078. [PMID: 38194107 PMCID: PMC11166798 DOI: 10.1007/s00210-023-02937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Acetaminophen is widely used among humans as an antipyretic and analgesic. In this study, the protective effect of losartan in hepatotoxicity and nephrotoxicity induced by acetaminophen in mice was investigated owing to its anti-inflammatory and antioxidant effects. An injection of a single dose of 500 mg/kg (i.p.) acetaminophen was administered to induce hepatotoxicity and nephrotoxicity in Groups VI-X. Losartan at doses of 1 mg/kg (Group VII), 3 mg/kg (Group VIII), and 10 mg/kg (Groups III, V, IX, and X) was injected intraperitoneally twice, at 1 and 12 h after the acetaminophen injection. Additionally, a 4 mg/kg dose of GW9662 (peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist) was injected intraperitoneally 30 min before the losartan injections in Groups V and X. At the end of 24 h, the mice were euthanized, and blood, liver, and kidney tissue samples were collected. Levels of AST, ALT, creatinine, and oxidative stress markers including TBARS, SOD, CAT, GPx, TAS, TOS, GSH, and GSSG, along with pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-10, IL-17, and TNF-α, were measured using ELISA kits. Additionally, a histological evaluation of the tissue samples was performed. Acetaminophen causes increases in the levels of AST, ALT, creatinine, TBARS, TOS, GSSG, IL-1β, IL-6, IL-8, IL-10, IL-17, and TNF-α in serum, liver, and kidney tissue. Meanwhile, it led to a decrease in the levels of SOD, CAT, GPx, TAS, and GSH. Losartan injection reversed oxidative and inflammatory damage induced by acetaminophen. Histopathological changes in liver and kidney tissue were alleviated by losartan. The substance GW9662 increased the protective effect of losartan. In light of all the data obtained from our study, it can be said that losartan has a protective effect on liver and kidney damage induced by acetaminophen due to its antioxidant and anti-inflammatory effects. In terms of the study, losartan was found to be an alternative substance that could protect people from the harmful effects of acetaminophen.
Collapse
Affiliation(s)
- Serkan Şahin
- Department of Medical Pharmacology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey.
| | - Ayça Çakmak Aydın
- Department of Medical Pharmacology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ayşe Yeşim Göçmen
- Department of Biochemistry, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Emin Kaymak
- Department of Histology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
9
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
10
|
Qian J, Feng C, Wu Z, Yang Y, Gao X, Zhu L, Liu Y, Gao Y. Phytochemistry, pharmacology, toxicology and detoxification of Polygonum multiflorum Thunb.: a comprehensive review. Front Pharmacol 2024; 15:1427019. [PMID: 38953108 PMCID: PMC11215120 DOI: 10.3389/fphar.2024.1427019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Background Polygonum multiflorum Thunb. (PM), a kind of perennial plant, belongs to the genus Polygonum of the family polygonaceae.The dry root of PM (also called Heshouwu), is a traditional Chinese medicine, which has a series of functions and is widely used in clinic for hair lossing, aging, and insomnia. While, PM also has some toxicity, its clinical drug safety has been concerned. In this paper, the chemical components, toxic mechanisms and detoxification strategies of PM were reviewed in order to provide evidence for its clinical application. Materials and methods We conducted a systematic review of published literature of PM, including English and Chinese databases, such as PubMed, Web of Science, CNKI, and Wanfang. Results PM contains a variety of chemical compounds, including stilbenes, quinones, flavonoids, phospholipids, and has many pharmacological activities such as anti-aging, wound healing, antioxidant, and anti-inflammatory properties. The PE has certain therapeutic effect, and it has certain toxicity like hepatotoxicity, nephrotoxicity, and embryotoxicity at the same time, but.these toxic effects could be effectively reduced by processing and compatibility. Conclusion It is necessary to further explore the pharmacological and toxicological mechanisms of the main active compounds of PE.This article provides scientific basis for the safe clinical application of PM.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuanmei Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingyan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
11
|
Ehelepola NDB, Ranathunga RMDC, Abeysundara AB, Jayawardana HMRP, Nanayakkara PSK. Super-refractory status epilepticus, rhabdomyolysis, central hyperthermia and cardiomyopathy attributable to spinal anesthesia: a case report and review of literature. BMC Anesthesiol 2024; 24:132. [PMID: 38582882 PMCID: PMC10998312 DOI: 10.1186/s12871-024-02485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND There are only six past reports of super-refractory status epilepticus induced by spinal anesthesia. None of those patients have died. Only < 15 mg of bupivacaine was administered to all six of them and to our case. Pathophysiology ensuing such cases remains unclear. CASE PRESENTATION A 27 year old gravida 2, para 1, mother at 37 weeks of gestation came to the operating theater for an elective cesarean section. She had no significant medical history other than controlled hypothyroidism and one episode of food allergy. Her current pregnancy was uneventful. Her American Society of Anesthesiologists (ASA) grade was 2. She underwent spinal anesthesia and adequate anesthesia was achieved. After 5-7 min she developed a progressive myoclonus. After delivery of a healthy baby, she developed generalized tonic clonic seizures that continued despite the induction of general anesthesia. She had rhabdomyolysis, one brief cardiac arrest and resuscitation, followed by stress cardiomyopathy and central hyperthermia. She died on day four. There were no significant macroscopic or histopathological changes in her brain that explain her super refractory status epilepticus. Heavy bupivacaine samples of the same batch used for this patient were analyzed by two specialized laboratories. National Medicines Quality Assurance Laboratory of Sri Lanka reported that samples failed to confirm United States Pharmacopeia (USP) dextrose specifications and passed other tests. Subsequently, Therapeutic Goods Administration of Australia reported that the drug passed all standard USP quality tests applied to it. Nonetheless, they have detected an unidentified impurity in the medicine. CONCLUSIONS After reviewing relevant literature, we believe that direct neurotoxicity by bupivacaine is the most probable cause of super-refractory status epilepticus. Super-refractory status epilepticus would have led to her other complications and death. We discuss probable patient factors that would have made her susceptible to neurotoxicity. The impurity in the drug detected by one laboratory also would have contributed to her status epilepticus. We propose several possible mechanisms that would have led to status epilepticus and her death. We discuss the factors that shall guide investigators on future such cases. We suggest ways to minimize similar future incidents. This is an idiosyncratic reaction as well.
Collapse
Affiliation(s)
- N D B Ehelepola
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka.
| | | | - A B Abeysundara
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - P S K Nanayakkara
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
12
|
Agarwal N. 'Double whammy': An Unusual Co-occurrence of Idiosyncratic phenytoin-induced agranulocytosis and acute liver failure in a child. Trop Doct 2024; 54:195-196. [PMID: 38280373 DOI: 10.1177/00494755241227472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Idiosyncratic adverse events to phenytoin therapy, such as agranulocytosis and acute liver failure, though rare, may be life-threatening. Simultaneous occurrence of both adverse events is exceedingly rare; only two cases have been reported in the literature to date. We describe such a case in a 15-year-old girl. Prompt haematological and hepatic recovery occurred after discontinuation of the drug. Given the widespread use of phenytoin in seizure disorders, clinicians prescribing this drug should be aware of its potential complications. Early recognition can considerably improve outcomes.
Collapse
Affiliation(s)
- Neha Agarwal
- Associate Professor, Pediatrics, GSVM Medical College, Kanpur, UP, India
| |
Collapse
|
13
|
Sun C, Zhang M, Guan C, Li W, Peng Y, Zheng J. In vitro and in vivo metabolic activation and hepatotoxicity of chlorzoxazone mediated by CYP3A. Arch Toxicol 2024; 98:1095-1110. [PMID: 38369618 DOI: 10.1007/s00204-023-03674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 μM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 μM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.
Collapse
Affiliation(s)
- Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chunjing Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| |
Collapse
|
14
|
Koga T, Sahara Y, Ohtani T, Yosuke K, Umehara K. Possible nonimmunological toxicological mechanisms of vesnarinone-associated agranulocytosis in HL-60 cells: role of reduced glutathione as cytotoxic defense. J Toxicol Sci 2024; 49:95-103. [PMID: 38432956 DOI: 10.2131/jts.49.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.
Collapse
Affiliation(s)
- Toshihisa Koga
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Yuko Sahara
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Tadaaki Ohtani
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Kaneko Yosuke
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Ken Umehara
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
15
|
Aoki S. Elucidating the Mechanisms Underlying Interindividual Differences in the Onset of Adverse Drug Reactions. Biol Pharm Bull 2024; 47:1079-1086. [PMID: 38825461 DOI: 10.1248/bpb.b24-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
16
|
Jung YH, Kim JH. Feature-Based Molecular Networking Combined with Multivariate Analysis for the Characterization of Glutathione Adducts as a Smoking Gun of Bioactivation. Anal Chem 2023; 95:17450-17457. [PMID: 37976220 DOI: 10.1021/acs.analchem.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Feature-based molecular networking (FBMN) is a powerful analytical tool for mass spectrometry (MS)-based untargeted metabolomics data analysis. FBMN plays an important role in drug metabolism studies, enabling the visualization of complex metabolomics data to achieve metabolite characterization. In this study, we propose a strategy for the characterization of glutathione (GSH) adducts formed via in vitro metabolic activation using FBMN assisted by multivariate analysis (MVA). Acetaminophen was used as a model substrate for method development, and the practical potential of the method was investigated by its application to 2-aminophenol (2-AP) and 2,4-dinitrochlorobenzene (DNCB). Two 2-AP GSH adducts and one DNCB GSH adduct were successfully characterized by forming networks with GSH even though the mass spectral information obtained for the parent compound was deficient. False positives were effectively filtered out by the variable influence on projection cutoff criteria obtained from orthogonal partial least-squares-discriminant analysis. The GSH adducts formed by enzymatic or nonenzymatic reactions were intuitively distinguished by the pie chart of FBMN results. In summary, our approach effectively characterizes GSH adducts, which serve as compelling evidence of bioactivation. It can be widely utilized to enhance risk assessment in the context of drug metabolism.
Collapse
Affiliation(s)
- Young-Heun Jung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
18
|
Affolter VK. Cytotoxic dermatitis: Review of the interface dermatitis pattern in veterinary skin diseases. Vet Pathol 2023; 60:770-782. [PMID: 37650259 DOI: 10.1177/03009858231195080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Interface dermatitis or lichenoid interface dermatitis refers to a cutaneous inflammatory pattern in which keratinocyte cell death is the essential feature. These terms have evolved from the originally described lichenoid tissue reaction. These lesions are the basis for an important group of skin diseases in animals and people where cytotoxic T-cell-mediated epidermal damage is a major pathomechanism. Yet, for largely historical reasons these commonly used morphological diagnostic terms do not reflect the essential nature of the lesion. An emphasis on subsidiary lesions, such as the presence of a lichenoid band, and definitions based on anatomical features, such as location at the dermo-epidermal location, may cause confusion and even misdiagnosis. This review covers historical aspects of the terminology, including the origin of terms such as "lichenoid." The types of cell death involved and the histopathologic lesions are described. Etiopathogenesis is discussed in terms of aberrations of immune/inflammatory mechanisms focusing on cutaneous lupus erythematosus, erythema multiforme, and Stevens-Johnson syndrome/toxic epidermal necrolysis. Mechanisms have most extensively been studied in humans and laboratory animals and the discussion is centered on these species. As interface dermatitis is firmly entrenched in dermatological parlance, rather than using "cytotoxic" as its substitute, the terminologies "interface cytotoxic dermatitis" and "panepidermal cytotoxic dermatitis" are recommended, based on location and extent of epithelium affected.
Collapse
|
19
|
Hardy RE, Chung I, Yu Y, Loh SHY, Morone N, Soleilhavoup C, Travaglio M, Serreli R, Panman L, Cain K, Hirst J, Martins LM, MacFarlane M, Pryde KR. The antipsychotic medications aripiprazole, brexpiprazole and cariprazine are off-target respiratory chain complex I inhibitors. Biol Direct 2023; 18:43. [PMID: 37528429 PMCID: PMC10391878 DOI: 10.1186/s13062-023-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 08/03/2023] Open
Abstract
Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.
Collapse
Affiliation(s)
- Rachel E Hardy
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Clement Soleilhavoup
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Marco Travaglio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Riccardo Serreli
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kelvin Cain
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luis M Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Kenneth R Pryde
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
20
|
Kim JW, Grounds BE, Van Bokkem KC, Raiciulescu S, Spitzer TL. Impact of Oral Ovulatory Induction Medications Among Female Military Members and Military Beneficiaries. Mil Med 2023; 188:e2530-e2535. [PMID: 36260066 DOI: 10.1093/milmed/usac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Twelve percent of reproductive aged females in the United States have utilized fertility services, and it is estimated that 25% of infertility patients have ovulatory dysfunction. Clomiphene and letrozole are currently first-line treatment options for ovulatory dysfunction. These are both disqualifying medications in the U.S. Navy and Air Force for duties that involve flying. These medication restrictions could reduce the likelihood of female aviators seeking infertility treatment. This pilot study seeks to evaluate the severity of common side effects in order to provide recommendations to the current aeromedical guidelines. MATERIALS AND METHODS An anonymous survey was provided to all active duty and dependent patients who presented to the infertility clinic at a single military medical center for a mid-cycle scan from February 2021 to February 2022. The survey included demographic, treatment cycle, medication type, medication dose, and the presence and severity of common adverse reactions. The provider additionally recorded the number of dominant follicles that were noted at the time of ultrasound. The Kruskal-Wallis test was used to analyze the severity of adverse effects, and chi-square analysis was used to compare the difference in symptoms from previous cycles. RESULTS A total of 569 surveys were collected. Of the participants, 45.4% were military members and 3.5% worked in the field of aviation. Letrozole was prescribed to 88.7% of the patients. Less than 3% reported severe or debilitating side effects. There was no difference in presence or severity when comparing the cycle number. CONCLUSIONS The majority of side effects for oral ovulation induction medications were described as slight or mild. Therefore, this study provides evidence-based data of severity side effects that could be used to guide the waiver process and improve readiness for female aviators in the military.
Collapse
Affiliation(s)
- Ji Won Kim
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Gynecologic Surgery and Obstetrics, Brooke Army Medical Center, Fort Sam Houston, TX 78234,USA
| | - Benjamin E Grounds
- Department of Gynecologic Surgery and Obstetrics, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Kelsey C Van Bokkem
- Department of Gynecologic Surgery and Obstetrics, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Sorana Raiciulescu
- Department of Preventative Medicine and Biostatistics, Brooke Army Medical Center, Fort Sam Houston, TX 78234, USA
| | - Trimble L Spitzer
- Department of Gynecologic Surgery and Obstetrics, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| |
Collapse
|
21
|
Elzagallaai AA, Rieder MJ. Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions. Expert Rev Clin Pharmacol 2023; 16:1187-1199. [PMID: 38018416 DOI: 10.1080/17512433.2023.2289543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Delayed drug hypersensitivity reactions (DDHRs) represent a major health problem. They are unpredictable and can cause life-long disability or even death. The pathophysiology of DDHRs is complicated, multifactorial, and not well understood mainly due to the lack of validated animal models or in vitro systems. The role of the immune system is well demonstrated but its exact pathophysiology still a matter of debate. AREA COVERED This review summarizes the current understanding of DDHRs pathophysiology and abridges the available new evidence supporting each hypothesis. A comprehensive literature search for relevant publications was performed using PubMed, Google Scholar, and Medline databases with no date restrictions and focusing on the most recent 10 years. EXPERT OPINION Although multiple milestones have been achieved in our understanding of DDHRs pathophysiology as a result of the development of useful experimental models, many questions are yet to be fully answered. A deeper understanding of the mechanistic basis of DDHRs would not only facilitate the development of robust and reliable diagnostic assays for diagnosis, but would also inform therapy by providing specific target(s) for immunomodulation and potentially permit pre-therapeutic risk assessment to pursue the common goal of safe and effective drug therapy.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Paediatrics and Physiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Poulsen-Silva E, Gordillo-Fuenzalida F, Atala C, Moreno AA, Otero MC. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023; 13:805. [PMID: 37512512 PMCID: PMC10383681 DOI: 10.3390/metabo13070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Lichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.
Collapse
Affiliation(s)
- Erick Poulsen-Silva
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| |
Collapse
|
23
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
24
|
Ali SE, Meng X, Kafu L, Hammond S, Zhao Q, Ogese M, Sison-Young R, Jones R, Chan B, Livoti L, Sun Y, Sun L, Liu H, Topping A, Goldring C, Zhang F, Naisbitt DJ. Detection of Hepatic Drug Metabolite-Specific T-Cell Responses Using a Human Hepatocyte, Immune Cell Coculture System. Chem Res Toxicol 2023; 36:390-401. [PMID: 36812109 PMCID: PMC10031640 DOI: 10.1021/acs.chemrestox.2c00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 02/24/2023]
Abstract
Drug-responsive T-cells are activated with the parent compound or metabolites, often via different pathways (pharmacological interaction and hapten). An obstacle to the investigation of drug hypersensitivity is the scarcity of reactive metabolites for functional studies and the absence of coculture systems to generate metabolites in situ. Thus, the aim of this study was to utilize dapsone metabolite-responsive T-cells from hypersensitive patients, alongside primary human hepatocytes to drive metabolite formation, and subsequent drug-specific T-cell responses. Nitroso dapsone-responsive T-cell clones were generated from hypersensitive patients and characterized in terms of cross-reactivity and pathways of T-cell activation. Primary human hepatocytes, antigen-presenting cells, and T-cell cocultures were established in various formats with the liver and immune cells separated to avoid cell contact. Cultures were exposed to dapsone, and metabolite formation and T-cell activation were measured by LC-MS and proliferation assessment, respectively. Nitroso dapsone-responsive CD4+ T-cell clones from hypersensitive patients were found to proliferate and secrete cytokines in a dose-dependent manner when exposed to the drug metabolite. Clones were activated with nitroso dapsone-pulsed antigen-presenting cells, while fixation of antigen-presenting cells or omission of antigen-presenting cells from the assay abrogated the nitroso dapsone-specific T-cell response. Importantly, clones displayed no cross-reactivity with the parent drug. Nitroso dapsone glutathione conjugates were detected in the supernatant of hepatocyte immune cell cocultures, indicating that hepatocyte-derived metabolites are formed and transferred to the immune cell compartment. Similarly, nitroso dapsone-responsive clones were stimulated to proliferate with dapsone, when hepatocytes were added to the coculture system. Collectively, our study demonstrates the use of hepatocyte immune cell coculture systems to detect in situ metabolite formation and metabolite-specific T-cell responses. Similar systems should be used in future diagnostic and predictive assays to detect metabolite-specific T-cell responses when synthetic metabolites are not available.
Collapse
Affiliation(s)
- Serat-E Ali
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
- Proteintech
Group, 4th Floor, 196
Deansgate, Manchester M3
3WF, U.K.
| | - Xiaoli Meng
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Laila Kafu
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Sean Hammond
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
- Apconix
Alderley Park, Alderley
Edge, Cheshire SK10 4TG, U.K.
| | - Qing Zhao
- Shandong
Provincial Hospital for Skin Diseases & Shandong Provincial Institute
of Dermatology and Venereology, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Monday Ogese
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Rowena Sison-Young
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Robert Jones
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
- Department
of Hepatobiliary Surgery, Aintree University
Hospital, Liverpool University Hospitals, NHS Foundation Trust, Liverpool L9 7AL, U.K.
| | - Benjamin Chan
- Department
of Hepatobiliary Surgery, Aintree University
Hospital, Liverpool University Hospitals, NHS Foundation Trust, Liverpool L9 7AL, U.K.
| | - Lucia Livoti
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Yonghu Sun
- Shandong
Provincial Hospital for Skin Diseases & Shandong Provincial Institute
of Dermatology and Venereology, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong
Provincial Hospital for Skin Diseases & Shandong Provincial Institute
of Dermatology and Venereology, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong
Provincial Hospital for Skin Diseases & Shandong Provincial Institute
of Dermatology and Venereology, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Anthony Topping
- School of
Engineering, The Quadrangle, The University
of Liverpool, Brownlow
Hill, Liverpool L69 3GH, U.K.
| | - Christopher Goldring
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| | - Furen Zhang
- Shandong
Provincial Hospital for Skin Diseases & Shandong Provincial Institute
of Dermatology and Venereology, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dean John Naisbitt
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K.
| |
Collapse
|
25
|
Relevance of Pharmacogenomics to the Safe Use of Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12030425. [PMID: 36978292 PMCID: PMC10044203 DOI: 10.3390/antibiotics12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
There has been widespread implementation of pharmacogenomic testing to inform drug prescribing in medical specialties such as oncology and cardiology. Progress in using pharmacogenomic tests when prescribing antimicrobials has been more limited, though a relatively large number of pharmacogenomic studies on aspects such as idiosyncratic adverse drug reactions have now been performed for this drug class. Currently, there are recommendations in place from either National Regulatory Agencies and/or specialist Pharmacogenomics Advisory Groups concerning genotyping for specific variants in MT-RNR1 and CYP2C19 before prescribing aminoglycosides and voriconazole, respectively. Numerous additional pharmacogenomic associations have been reported concerning antimicrobial-related idiosyncratic adverse drug reactions, particularly involving specific HLA alleles, but, to date, the cost-effectiveness of genotyping prior to prescription has not been confirmed. Polygenic risk score determination has been investigated to a more limited extent but currently suffers from important limitations. Despite limited progress to date, the future widespread adoption of preemptive genotyping and genome sequencing may provide pharmacogenomic data to prescribers that can be used to inform prescribing and increase the safe use of antimicrobials.
Collapse
|
26
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Applications of covalent chemistry in targeted protein degradation. Chem Soc Rev 2022; 51:9243-9261. [PMID: 36285735 PMCID: PMC9669245 DOI: 10.1039/d2cs00362g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) and targeted covalent inhibitors (TCIs) are currently two exciting strategies in the fields of chemical biology and drug discovery. Extensive research in these two fields has been conducted, and significant progress in these fields has resulted in many clinical candidates, some of which have been approved by FDA. Recently, a novel concept termed covalent PROTACs that combine these two strategies has emerged and gained an increasing interest in the past several years. Herein, we briefly review and highlight the mechanism and advantages of TCIs and PROTACs, respectively, and the recent development of covalent PROTACs using irreversible and reversible covalent chemistry.
Collapse
Affiliation(s)
- Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Hanfeng Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Ran Cheng
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
28
|
Saito T, Usui T, Inada H, Miyawaki I, Mizuno K, Ikeda M, Iwata N. Clozapine-specific proliferative response of peripheral blood-derived mononuclear cells in Japanese patients with clozapine-induced agranulocytosis. J Psychopharmacol 2022; 36:1087-1094. [PMID: 35861221 DOI: 10.1177/02698811221112937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although clozapine-induced granulocytopenia (CIG) is less severe than clozapine-induced agranulocytosis (CIA), and some patients with CIG may not go on to develop serious complications, clozapine is discontinued in cases of both CIA and CIG. Understanding the pathogenic mechanisms of CIA/CIG could provide better management of clozapine therapy. Recently, as a mechanistic insight into adaptive immune systems, European groups reported clozapine-specific proliferative responses and clozapine-specific T cells using blood taken from patients with CIA and/or CIG. AIMS The aims of our study are to support this mechanistic evidence and to investigate the difference in the lymphocyte response to clozapine between patients with CIG and those with CIA. METHODS Lymphocyte stimulation tests (LSTs) were conducted using CD25-positive cell-depleted peripheral blood-derived mononuclear cells (PBMCs) isolated from blood of four Japanese patients with CIA, four patients with CIG, and nine clozapine-tolerant subjects. RESULTS Three of four patients with CIA and one of four patients with CIG showed proliferative responses to clozapine with a stimulation index of greater than 2. In contrast, none of the nine clozapine-tolerant subjects showed any response to clozapine. Olanzapine did not stimulate PBMCs of patients with CIA, patients with CIG, or clozapine-tolerant subjects. CONCLUSIONS Clozapine- and CIA-specific lymphocyte reactions in a Japanese population provided supportive evidence that the pathogenesis of CIA is based on adaptive immune reactions. In addition, patients with CIG who show a positive response to an LST may at the very least not be chosen for clozapine-rechallenge and further prospective studies are desirable to verify this hypothesis.
Collapse
Affiliation(s)
- Takeo Saito
- Department of Psychiatry, School of Medicine, Fujita Health University, Aichi, Japan
| | - Toru Usui
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Hiroshi Inada
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | | | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Aichi, Japan
| |
Collapse
|
29
|
Elzagallaai AA, Abuzgaia AM, Del Pozzo-Magaña BR, Loubani E, Rieder MJ. The role of in vitro testing in pharmacovigilance for ß-lactam-induced serum sickness-like reaction: A pilot study. Front Pharmacol 2022; 13:945545. [PMID: 36110527 PMCID: PMC9468642 DOI: 10.3389/fphar.2022.945545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Current pharmacovigilance (PV) methods for detection of adverse drug reactions (ADRs) fail to capture rare immune-mediated drug hypersensitivity reactions (DHRs) due to their scarcity and the lack of clear diagnostic criteria. Drug-induced serum sickness-like reactions (SSLRs) are rare type of DHRs that occur in susceptible patients 1–3 weeks after exposure to the culprit drug with ß-lactam antibiotics being the most associated drugs. The diagnosis of drug induced SSLR is difficult due to the lack of safe and reliable diagnostic tests for identifying the culprit drug. The lymphocyte toxicity assay (LTA) is an in vitro test used as a diagnostic tool for drug hypersensitivity reactions (DHRs). Objective: To evaluate the role of the LTA test for diagnosing and capturing SSLR due to ß-lactam antibiotics in a cohort of patients. Methods: Patients were recruited from patients referred to the Drug Hypersensitivity Clinic at Clinic at London Health Science Centre with suspicion of drug allergy. Twenty patients (10 males and 10 females) were selected to be tested to confirm diagnosis. Demographic data was collected form the patents and blood samples were withdrawn from all patients and from 20 healthy controls. The LTA test was performed on all subjects and data is expressed as percentage increase in cell death compared to control (vehicle without the drug). Results: In the result of LTA tests performed on samples from the selected 20 patients. There was a significant (p < 0.05) concentration-dependent increase in cell death in cells isolated from patients as compared to cells from healthy controls when incubated with the drug in the presence of phenobarbitone-induced rat liver microsomes. Conclusion: Giving its safety and good predictive value the LTA test has very strong potential to be a useful diagnostic tool for ß-lactam-induced SSLR. The test procedure is relatively simple and not overly costly. Further studies including other drug classes are needed to evaluate the utility of the LTA test for SSLR due to other drugs.
Collapse
Affiliation(s)
- Abdelbaset A. Elzagallaai
- Departments of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Awatif M. Abuzgaia
- Departments of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Blanca R. Del Pozzo-Magaña
- Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Eman Loubani
- Departments of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michael J. Rieder
- Departments of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- *Correspondence: Michael J. Rieder,
| |
Collapse
|
30
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
31
|
Chong LH, Ching T, Farm HJ, Grenci G, Chiam KH, Toh YC. Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions. LAB ON A CHIP 2022; 22:1890-1904. [PMID: 35348137 DOI: 10.1039/d1lc01140e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adverse cutaneous reactions are potentially life-threatening skin side effects caused by drugs administered into the human body. The availability of a human-specific in vitro platform that can prospectively screen drugs and predict this risk is therefore of great importance to drug safety. However, since adverse cutaneous drug reactions are mediated by at least 2 distinct mechanisms, both involving systemic interactions between liver, immune and dermal tissues, existing in vitro skin models have not been able to comprehensively recapitulate these complex, multi-cellular interactions to predict the skin-sensitization potential of drugs. Here, we report a novel in vitro drug screening platform, which comprises a microfluidic multicellular coculture array (MCA) to model different mechanisms-of-action using a collection of simplistic cellular assays. The resultant readouts are then integrated with a machine-learning algorithm to predict the skin sensitizing potential of systemic drugs. The MCA consists of 4 cell culture compartments connected by diffusion microchannels to enable crosstalk between hepatocytes that generate drug metabolites, antigen-presenting cells (APCs) that detect the immunogenicity of the drug metabolites, and keratinocytes and dermal fibroblasts, which collectively determine drug metabolite-induced FasL-mediated apoptosis. A single drug screen using the MCA can simultaneously generate 5 readouts, which are integrated using support vector machine (SVM) and principal component analysis (PCA) to classify and visualize the drugs as skin sensitizers or non-skin sensitizers. The predictive performance of the MCA and SVM classification algorithm is then validated through a pilot screen of 11 drugs labelled by the US Food and Drug Administration (FDA), including 7 skin-sensitizing and 4 non-skin sensitizing drugs, using stratified 4-fold cross-validation (CV) on SVM. The predictive performance of our in vitro model achieves an average of 87.5% accuracy (correct prediction rate), 75% specificity (prediction rate of true negative drugs), and 100% sensitivity (prediction rate of true positive drugs). We then employ the MCA and the SVM training algorithm to prospectively identify the skin-sensitizing likelihood and mechanism-of-action for obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist which has undergone clinical trials for non-alcoholic steatohepatitis (NASH) with well-documented cutaneous side effects.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Terry Ching
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Hui Jia Farm
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Gianluca Grenci
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
32
|
Freitas M, Lima Capela T, Macedo Silva V, Arieira C, Cúrdia Gonçalves T, Dias de Castro F, Moreira MJ, Firmino-Machado J, Cotter J. Finding Predictors of Azathioprine-Induced Pancreatitis in Patients With Inflammatory Bowel Disease. Pancreas 2022; 51:288-294. [PMID: 35584388 DOI: 10.1097/mpa.0000000000002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Azathioprine (AZA)-induced pancreatitis (AIP) is a common, idiosyncratic adverse effect whose incidence and risk factors data in inflammatory bowel disease (IBD) patients are not fully clarified. We aimed to establish the incidence, clinical course and identify risk factors for AIP. METHODS A retrospective study including all IBD patients on AZA between January 2013 and July 2020 was conducted. Patients with AIP were considered. RESULTS Azathioprine-induced pancreatitis occurred in 33 patients (7.5%; 442 patients on AZA). The mean time receiving AZA until AIP was 25 days, with a mean dose of 88 mg. All patients had a mild course of disease, which resolved with suspension of AZA and with no complications. Smoking (P = 0.02), single daily dose of AZA (P < 0.001), and concomitant budesonide (P = 0.001) were risk factors for AIP. In multivariate analysis, concomitant treatment with budesonide (odds ratio, 5.3; P = 0.002) and single daily dose of AZA (odds ratio, 3.8; P = 0.002) were the only predictors of AIP. CONCLUSIONS Although AIP was a relatively common adverse effect, it presented a mild course in all patients. Smoking, concomitant use of budesonide, and single-dose regimen of AZA should be avoided in IBD patients treated with AZA.
Collapse
|
33
|
Dursun AD, Saricam E, Sariyildiz GT, Iscanli MD, Cantekin ÖF. The Evaluation of Oxidative Stress in the Young Adults with COVID-19 mRNA Vaccines Induced Acute Pericarditis- Myopericarditis. Int J Gen Med 2022; 15:161-167. [PMID: 35023954 PMCID: PMC8747758 DOI: 10.2147/ijgm.s347977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background During COVID-19 pandemic, several vaccines have been developed such as mRNA vaccines. However, acute pericarditis and myocarditis/myopericarditis cases have been described after mRNA vaccination. The mechanism for the development of cardiac involvement is unknown. Potential mechanism for oxidative stress associated with vaccine-induced heart involvement is unidentified. This study aimed to examine the role of oxidative stress and the heart involvement in young adults vaccinated with COVID-19 mRNA vaccines. Methods In this cross-sectional study, a total of 23 participants were included and 10 of these participants were asymptomatic patients (control group). Comparison of the cardiac involvement and control group was made by using troponin I, C-reactive protein (hsCRP), D-dimer levels, and oxidative stress tests including nitric oxide, and imaging techniques (ECG, echocardiography, cardiovascular magnetic resonance). Results The median age of acute pericarditis group (10 patients) was 22 years (Q1-Q3: 18.5–31), and the mean age was 24.4±7.5 years. The median age of myopericarditis group (3 patients) was 22 years (Q1–Q3 18.0–25.0), and the mean age was 21.6 ±3.5 years. All the myopericarditis cases were male. The patients with myopericarditis had higher troponin I level, hsCRP, and D-dimer levels (troponin I level; 1600.00 ng/mL; D-dimer; 1.20 μg/mL, hsCRP; 3.0 mg/L, respectively; p < 0.05). Serum nitric oxide levels and OSI (total oxidant status, H2O2/total antioxidant status) were lower in myopericarditis group than the control and acute pericarditis group (p < 0.05). This shows inflammatory and procoagulant state. Conclusion Vaccine-induced myopericarditis cases are associated with oxidative stress test abnormality (abnormal NO, OSI levels). However, there is no relationship between NO levels and other oxidative stress tests difference in vaccine-induced acute pericarditis. It is thought that vaccine-induced pericarditis and myopericarditis could have different pathogenesis. This could make it necessary to reassess the second dose of vaccination for vaccine-induced cardiac involvement cases.
Collapse
Affiliation(s)
- Ali Dogan Dursun
- Department of Physiology, Atılım University School of Medicine, Ankara, Turkey.,Check-Up Center, Home Care Services, Medicana International Ankara Hospital, Ankara, Turkey
| | - Ersin Saricam
- Department of Cardiology, Medicana International Ankara Hospital, Ankara, Turkey.,Department of Cardiology, Atılım University School of Medicine, Ankara, Turkey
| | - Gulcin Turkmen Sariyildiz
- Department of General Surgery, Medicana International Ankara Hospital, Ankara, Turkey.,Operating Room Services, Vocational School of Health Services, Atılım University, Ankara, Turkey
| | - Murat Doğan Iscanli
- Department of Emergency Medicine, Medicana International Ankara Hospital, Ankara, Turkey.,Department of Emergency Medicine, Atılım University School of Medicine, Ankara, Turkey
| | - Ömer Faruk Cantekin
- Faculty of Health Sciences, Department of Social Work, Gazi University, Ankara, Turkey
| |
Collapse
|
34
|
Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. J Pers Med 2022; 12:jpm12010040. [PMID: 35055355 PMCID: PMC8781935 DOI: 10.3390/jpm12010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Type B adverse drug reactions (ADRs) are unpredictable based on the drug’s pharmacology and represent a key challenge in pharmacovigilance. For human leukocyte antigen (HLA)-mediated type B ADRs, it is assumed that the protein/small-molecule interaction alters the biophysical and mechanistic properties of the antigen presenting cells. Sophisticated methods enabled the molecular appreciation of HLA-mediated ADRs; in several instances, the drug molecule occupies part of the HLA peptide binding groove and modifies the recruited peptide repertoire thereby causing a strong T-cell-mediated immune response that is resolved upon withdrawal of medication. The severe ADR in HLA-B*57:01+ patients treated with the antiretroviral drug abacavir (ABC) in anti-HIV therapy is an example of HLA-drug-T cell cooperation. However, the long-term damages of the HLA-B*57:01-expressing immune cells following ABC treatment remain unexplained. Utilizing full proteome sequencing following ABC treatment of HLA-B*57:01+ cells, we demonstrate stringent proteomic alteration of the HLA/drug presenting cells. The proteomic content indisputably reflects the cellular condition; this knowledge directs towards individual pharmacovigilance for the development of personalized and safe medication.
Collapse
|
35
|
Parikh P. Knowledge of Herbal Medicines - Is a Reverse Bridge Course an Urgent Necessity? J Clin Exp Hepatol 2022; 12:249-251. [PMID: 35035159 PMCID: PMC8742244 DOI: 10.1016/j.jceh.2021.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Key Words
- AIH, Autoimmune Hepatitis
- ALP, Alkaline Phosphatase
- ALT, Alanine Aminotransferase
- ANA, Anti Nuclear Antibody
- ASMA, Anti Smooth Muscle Antibody
- AST, Aspartate Aminotransferase
- CAMs, Complementary and Alternative medicines
- DILI, Drug-Induced Liver Injury
- GGT, Gama glutamyl transpeptidase
- INR, International Normalised Ratio
- IgG, Immunoglobulin G
- RUCAM, Roussel Uclaf Causality Assessment Method
Collapse
|
36
|
Rastogi S, Pandey P. Idiosyncratic adversity reported after oral consumption of an ayurvedic formulation containing bhallataka (Semecarpus anacardium): A case report. J Ayurveda Integr Med 2022; 13:100635. [PMID: 36462347 PMCID: PMC9713265 DOI: 10.1016/j.jaim.2022.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
Drugs associated adversities are common in health care practice. These adversities are often associated with the dose-related, time-related and methods of drug intake and their rationality in a given condition but can also be unrelated to either of these causes. Such unpredictable drug reactions are highly important from the perspective of safe use of a drug and to prevent complications from any such adversity which is relatively uncommon. The case reported here is a likely case of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) like idiosyncratic adversity after oral consumption of an ayurvedic formulation containing Bhallataka (Semecarpus anacardium). DRESS is found associated with many other classes of drugs but its association with ayurvedic drug has not yet been reported. Upon Naranjo probability scale the event scored 6, putting it into the category of probable drug related adversity. This report widens our understanding towards the possibility of delayed and idiosyncratic drug adversities upon the consumption of certain ayurvedic drugs.
Collapse
|
37
|
Stem cells, organoids, and organ-on-a-chip models for personalized in vitro drug testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol 2021; 4:1137. [PMID: 34584206 PMCID: PMC8479119 DOI: 10.1038/s42003-021-02657-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Idiosyncratic drug toxicity (IDT) associated with specific human leukocyte antigen (HLA) allotype is a rare and unpredictable life-threatening adverse drug reaction for which prospective mechanistic studies in humans are difficult. Here, we show the importance of immune tolerance for IDT onset and determine whether it is susceptible to a common IDT, HLA-B*57:01-mediated abacavir (ABC)-induced hypersensitivity (AHS), using CD4+ T cell-depleted programmed death-1 receptor (PD-1)-deficient HLA-B*57:01 transgenic mice (B*57:01-Tg/PD-1−/−). Although AHS is not observed in B*57:01-Tg mice, ABC treatment increases the proportion of cytokine- and cytolytic granule-secreting effector memory CD8+ T cells in CD4+ T cell-depleted B*57:01-Tg/PD-1−/− mice, thereby inducing skin toxicity with CD8+ T cell infiltration, mimicking AHS. Our results demonstrate that individual differences in the immune tolerance system, including PD-1highCD8+ T cells and regulatory CD4+ T cells, may affect the susceptibility of humans to HLA-mediated IDT in humans. Using a transgenic mouse model that recapitulates abacavir hypersensitivity syndrome, an idiosyncratic adverse drug reaction, Susukida et al show that individual differences in the immune tolerance system affect the susceptibility to idiosyncratic drug toxicity.
Collapse
|
39
|
Behl T, Rachamalla M, Najda A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Chigurupati S, Vargas-De-La-Cruz C, Hobani YH, Mohan S, Goyal A, Katyal T, Solarska E, Bungau S. Applications of Adductomics in Chemically Induced Adverse Outcomes and Major Emphasis on DNA Adductomics: A Pathbreaking Tool in Biomedical Research. Int J Mol Sci 2021; 22:10141. [PMID: 34576304 PMCID: PMC8467560 DOI: 10.3390/ijms221810141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Adductomics novel and emerging discipline in the toxicological research emphasizes on adducts formed by reactive chemical agents with biological molecules in living organisms. Development in analytical methods propelled the application and utility of adductomics in interdisciplinary sciences. This review endeavors to add a new dimension where comprehensive insights into diverse applications of adductomics in addressing some of society's pressing challenges are provided. Also focuses on diverse applications of adductomics include: forecasting risk of chronic diseases triggered by reactive agents and predicting carcinogenesis induced by tobacco smoking; assessing chemical agents' toxicity and supplementing genotoxicity studies; designing personalized medication and precision treatment in cancer chemotherapy; appraising environmental quality or extent of pollution using biological systems; crafting tools and techniques for diagnosis of diseases and detecting food contaminants; furnishing exposure profile of the individual to electrophiles; and assisting regulatory agencies in risk assessment of reactive chemical agents. Characterizing adducts that are present in extremely low concentrations is an exigent task and more over absence of dedicated database to identify adducts is further exacerbating the problem of adduct diagnosis. In addition, there is scope of improvement in sample preparation methods and data processing software and algorithms for accurate assessment of adducts.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Yahya Hasan Hobani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 114, Saudi Arabia;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 114, Saudi Arabia;
| | - Amit Goyal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, India;
| | - Taruna Katyal
- RBMCH Division, ICMR Head Quarters, Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110029, India;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
40
|
Rattay B, Benndorf RA. Drug-Induced Idiosyncratic Agranulocytosis - Infrequent but Dangerous. Front Pharmacol 2021; 12:727717. [PMID: 34483939 PMCID: PMC8414253 DOI: 10.3389/fphar.2021.727717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Drug-induced agranulocytosis is a life-threatening side effect that usually manifests as a severe form of neutropenia associated with fever or signs of sepsis. It can occur as a problem in the context of therapy with a wide variety of drug classes. Numerous drugs are capable of triggering the rare idiosyncratic form of agranulocytosis, which, unlike agranulocytosis induced by cytotoxic drugs in cancer chemotherapy, is characterised by “bizzare” type B or hypersensitivity reactions, poor predictability and a mainly low incidence. The idiosyncratic reactions are thought to be initiated by chemically reactive drugs or reactive metabolites that react with proteins and may subsequently elicit an immune response, particularly directed against neutrophils and their precursors. Cells or organs that exhibit specific metabolic and biotransformation activity are therefore frequently affected. In this review, we provide an update on the understanding of drug-induced idiosyncratic agranulocytosis. Using important triggering drugs as examples, we will summarise and discuss the chemical, the biotransformation-related, the mechanistic and the therapeutic basis of this clinically relevant and undesirable side effect.
Collapse
Affiliation(s)
- Bernd Rattay
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Aoki S. [Importance of HLA in Determining Individual Differences in the Onset of Adverse Drug Reactions]. YAKUGAKU ZASSHI 2021; 141:1001-1007. [PMID: 34334545 DOI: 10.1248/yakushi.21-00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individuals vary in their susceptibility to adverse reactions to medications, some of which can be potentially life-threatening. Idiosyncratic drug toxicity (IDT) has been shown to be strongly associated to specific polymorphisms in genes encoding human leukocyte antigens (HLAs) by recent genome-wide association studies. However, the pathogenic mechanisms governing such reactions remain unclarified, at least in part because of a lack of suitable experimental animal models to assess IDT. This review describes our work on the specific allele/drug combination of HLA-B*57:01 and abacavir, an antiretroviral drug targeting the human immunodeficiency virus. As abacavir is known to trigger an HLA-dependent immune response, we engineered a transgenic mouse model-HLA-Tg-by partially substituting the mouse HLA sequence for the corresponding human sequence. Local abacavir exposure was found to trigger a significant immune response in an HLA-dependent manner, and oral administration induced liver injury partially via concurrent activation of the innate immune system. Additionally, we developed a technique for evaluating structural alterations in HLA complexes resulting from drug exposure based on phage display to ensure specificity. Further scrutiny of the mechanism(s) underlying drug-induced immune reactions using the HLA-Tg model, as well as enhanced methods for predicting adverse event incidence, are anticipated to help resolve issues surrounding HLA-associated drug hypersensitivity.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
42
|
|
43
|
Banerjee AK. Molecular fingerprinting by single cell clone analysis in adverse drug reaction (ADR) assessment. Curr Drug Saf 2021; 17:1-6. [PMID: 34315383 DOI: 10.2174/1574886316666210727150415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Causality assessment for idiosyncratic ADRs mainly relies on epidemiology, signal detection and less often on proven or plausible mechanistic evidence of the drug at a cellular or organ level. Distinct clones of cells can exist within organs of individual patients, some conferring susceptibility to well recognised adverse drug reactions (ADRs). Recent advances in molecular biology has allowed the development of single cell clonal techniques, including single cell RNA sequencing (scRNA-seq) to molecularly fingerprint ADRs and distinguish between distinct clones of cells within organs in individuals, which may confer differing susceptibilities to ADRs. ScRNA-seq permits molecular fingerprinting of some serious ADRs, mainly in the skin, through identification of directly expressed genes (DEG) of interest within specific clones. Overexpressed DEGs provides an opportunity for targeted treatment strategies to be developed. scRNA-seq could be applied to a number of other ADRs involving tissues that can be biopsied/sampled (including skin, liver, kidney, blood, stem cells) as well as providing a molecular basis for rapid screening of potential therapeutic candidates, which may not otherwise be predictable from class of toxicity/organ involvement. . A framework for putative assessment for ADRs using scRNA-seq is proposed as well as speculating on potential regulatory implications for pharmacovigilance and drug development. Molecular fingerprinting of ADRs using scRNA-seq may allow better targeting for enhanced pharmacovigilance and risk minimisation measures for medicines with appropriate benefit risk profiles, although cost-effectiveness and other factors, such as frequency/severity of individual ADRs and population differences will still be relevant.
Collapse
Affiliation(s)
- Anjan K Banerjee
- Consultant Pharmaceutical Physician and CEO, Medical Safety Solutions Ltd, Courtfield House, 21 Church Street, Market Deeping, Cambs PE6 8AN , United Kingdom
| |
Collapse
|
44
|
McConnell H, Andrews TD, Field MA. Efficacy of computational predictions of the functional effect of idiosyncratic pharmacogenetic variants. PeerJ 2021; 9:e11774. [PMID: 34316407 PMCID: PMC8286708 DOI: 10.7717/peerj.11774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background Pharmacogenetic variation is important to drug responses through diverse and complex mechanisms. Predictions of the functional impact of missense pharmacogenetic variants primarily rely on the degree of sequence conservation between species as a primary discriminator. However, idiosyncratic or off-target drug-variant interactions sometimes involve effects that are peripheral or accessory to the central systems in which a gene functions. Given the importance of sequence conservation to functional prediction tools-these idiosyncratic pharmacogenetic variants may violate the assumptions of predictive software commonly used to infer their effect. Methods Here we exhaustively assess the effectiveness of eleven missense mutation functional inference tools on all known pharmacogenetic missense variants contained in the Pharmacogenomics Knowledgebase (PharmGKB) repository. We categorize PharmGKB entries into sub-classes to catalog likely off-target interactions, such that we may compare predictions across different variant annotations. Results As previously demonstrated, functional inference tools perform variably across the complete set of PharmGKB variants, with large numbers of variants incorrectly classified as 'benign'. However, we find substantial differences amongst PharmGKB variant sub-classes, particularly in variants known to cause off-target, type B adverse drug reactions, that are largely unrelated to the main pharmacological action of the drug. Specifically, variants associated with off-target effects (hence referred to as off-target variants) were most often incorrectly classified as 'benign'. These results highlight the importance of understanding the underlying mechanism of pharmacogenetic variants and how variants associated with off-target effects will ultimately require new predictive algorithms. Conclusion In this work we demonstrate that functional inference tools perform poorly on pharmacogenetic variants, particularly on subsets enriched for variants causing off-target, type B adverse drug reactions. We describe how to identify variants associated with off-target effects within PharmGKB in order to generate a training set of variants that is needed to develop new algorithms specifically for this class of variant. Development of such tools will lead to more accurate functional predictions and pave the way for the increased wide-spread adoption of pharmacogenetics in clinical practice.
Collapse
Affiliation(s)
- Hannah McConnell
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - T Daniel Andrews
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Smithfield, Australia.,Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
45
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
46
|
Yoon EL, Yuk JS. Use of Ulipristal Acetate and Risk of Liver Disease: A Nationwide Cohort Study. J Clin Endocrinol Metab 2021; 106:1773-1782. [PMID: 33567071 DOI: 10.1210/clinem/dgab081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Large-scale clinical trials on the hepatotoxicity of ulipristal acetate (UPA) are lacking. OBJECTIVE This work aimed to determine the incidence of liver disease with UPA vs gonadotropin-releasing hormone (GnRH) agonists. METHODS A retrospective cohort study was conducted in South Korea of women with uterine fibroids from the Korean Health Insurance Data 2010 to 2018. Women with uterine fibroids were divided into 2 treatment groups: the UPA (5 mg/day) and GnRH agonist groups. Main outcome measures included the presence or absence of severe liver disease, mild liver disease, and liver transplantation. RESULTS Among the patients with uterine fibroids,17 207 patients were treated with GnRH agonists and 20 926 patients with UPA. After 1:1 propensity score matching for each group, there were 11 445 individuals. Neither group had a liver transplantation case. In the conditional logistic regression analysis, the incidence of total liver diseases (relative risk [RR] 1.111; 95% CI, 1.015-1.216) and mild liver diseases (RR 1.094; 95% CI, 1-1.196) was higher in the UPA group than in the GnRH agonist group, but that of severe liver diseases (RR 0.07; 95% CI, 0.001-4.412) and toxic liver disease (RR 1.256; 95% CI, 0.845-1.867) did not differ between the groups. CONCLUSION The incidence of severe liver disease, hepatic failure, and toxic liver disease was not different between the UPA and GnRH agonist groups. However, the incidence of mild liver disease was higher in the UPA group than in the GnRH agonist group. The incidence of hepatic damage with UPA was very low.
Collapse
Affiliation(s)
- Eileen L Yoon
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jin-Sung Yuk
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Nowon-gu, Seoul 01757, Republic of Korea
| |
Collapse
|
47
|
Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Front Pharmacol 2021; 12:651720. [PMID: 33995067 PMCID: PMC8120428 DOI: 10.3389/fphar.2021.651720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important and frequent cause of morbidity and mortality. ADR can be related to a variety of drugs, including anticonvulsants, anaesthetics, antibiotics, antiretroviral, anticancer, and antiarrhythmics, and can involve every organ or apparatus. The causes of ADRs are still poorly understood due to their clinical heterogeneity and complexity. In this scenario, genetic predisposition toward ADRs is an emerging issue, not only in anticancer chemotherapy, but also in many other fields of medicine, including hemolytic anemia due to glucose-6-phosphate dehydrogenase (G6PD) deficiency, aplastic anemia, porphyria, malignant hyperthermia, epidermal tissue necrosis (Lyell's Syndrome and Stevens-Johnson Syndrome), epilepsy, thyroid diseases, diabetes, Long QT and Brugada Syndromes. The role of genetic mutations in the ADRs pathogenesis has been shown either for dose-dependent or for dose-independent reactions. In this review, we present an update of the genetic background of ADRs, with phenotypic manifestations involving blood, muscles, heart, thyroid, liver, and skin disorders. This review aims to illustrate the growing usefulness of genetics both to prevent ADRs and to optimize the safe therapeutic use of many common drugs. In this prospective, ADRs could become an untoward "stress test," leading to new diagnosis of genetic-determined diseases. Thus, the wider use of pharmacogenetic testing in the work-up of ADRs will lead to new clinical diagnosis of previously unsuspected diseases and to improved safety and efficacy of therapies. Improving the genotype-phenotype correlation through new lab techniques and implementation of artificial intelligence in the future may lead to personalized medicine, able to predict ADR and consequently to choose the appropriate compound and dosage for each patient.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela T Locati
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federico Romani
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| |
Collapse
|
48
|
Ong TL, Dal S, Martin AJ, Chang FC, Williams LJ, Babu S, Mahant N, Morales-Briceno H, Fletcher N, Nankervis J, Robbie M, Fung VSC. Levodopa/dopa decarboxylase inhibitor associated microscopic colitis: An under-recognized drug reaction. Parkinsonism Relat Disord 2021; 86:84-90. [PMID: 33894560 DOI: 10.1016/j.parkreldis.2021.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Microscopic colitis is a form of inflammatory bowel disease characterized by profuse non-bloody watery diarrhea. Macroscopic abnormality is not present on colonoscopy, and it requires biopsy for diagnosis. Few cases have been attributed to levodopa/dopa-decarboxylase inhibitor therapy. METHOD A retrospective cohort study of 21 patients on levodopa/benserazide and one patient on levodopa-carbidopa intestinal gel with clinically suspected or biopsy proven microscopic colitis. RESULTS All 21 patients on oral levodopa/benserazide had resolution of diarrhea with cessation of the medication. Four patients discontinued levodopa permanently. Two were rechallenged with levodopa/benserazide without symptom recurrence. One patient on oral levodopa/carbidopa developed diarrhea only with intermittent dispersible levodopa/benserazide. 14 were switched to levodopa/carbidopa with resolution of diarrhea in 9 but symptom recurrence in 5. One patient on oral levodopa/benserazide developed profuse diarrhea when switched to levodopa-carbidopa intestinal gel. Of 7/22 patients who had colonoscopy and biopsy, 5 had histopathological proven microscopic colitis. CONCLUSION levodopa/dopa-decarboxylase inhibitor induced microscopic colitis may be more common than previously suspected, with the potential to affect treatment compliance and therapeutic options.
Collapse
Affiliation(s)
- Tien Lee Ong
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Shoaib Dal
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Andrew J Martin
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia; Neurology Department, Blacktown Hospital, 18 Blacktown Rd, Blacktown, NSW, 2148, Australia.
| | - Florence Cf Chang
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Laura J Williams
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Sangamithra Babu
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia; Neurology Department, Blacktown Hospital, 18 Blacktown Rd, Blacktown, NSW, 2148, Australia.
| | - Neil Mahant
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Hugo Morales-Briceno
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Naomi Fletcher
- ACT Pathology, Anatomical Pathology Department, Building 10 Canberra Hospital, Gilmore Cres, Garran ACT, 2606, Australia.
| | - Jane Nankervis
- Department of Anatomical Pathologist, Southern ImL Pathology, 35 Denison St Wollongong, Australia.
| | - Melissa Robbie
- Capital Pathology, Canberra, PO Box 20, Woden ACT, 2606, Australia.
| | - Victor S C Fung
- Movement Disorder Unit, Neurology Department, Westmead Hospital, Corner Darcy and Hawkesbury Road, Westmead, NSW 2145, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
50
|
Wei S, Ma W, Zhang B, Li W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol 2021; 9:634607. [PMID: 33912556 PMCID: PMC8072389 DOI: 10.3389/fcell.2021.634607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced toxicity, which impairs human organ function, is a serious problem during drug development that hinders the clinical use of many marketed drugs, and the underlying mechanisms are complicated. As a sensor of infections and external stimuli, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role in the pathological process of various diseases. In this review, we specifically focused on the role of NLRP3 inflammasome in drug-induced diverse organ toxicities, especially the hepatotoxicity, nephrotoxicity, and cardiotoxicity. NLRP3 inflammasome is involved in the initiation and deterioration of drug-induced toxicity through multiple signaling pathways. Therapeutic strategies via inhibiting NLRP3 inflammasome for drug-induced toxicity have made significant progress, especially in the protective effects of the phytochemicals. Growing evidence collected in this review indicates that NLRP3 is a promising therapeutic target for drug-induced toxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|