1
|
Hu R, Tran B, Li S, Stackpole ML, Zeng W, Zhou Y, Melehy A, Sadeghi S, Finn RS, Zhou XJ, Li W, Agopian VG. Noninvasive prognostication of hepatocellular carcinoma based on cell-free DNA methylation. PLoS One 2025; 20:e0321736. [PMID: 40279344 DOI: 10.1371/journal.pone.0321736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND The current noninvasive prognostic evaluation methods for hepatocellular carcinoma (HCC), which are largely reliant on radiographic imaging features and serum biomarkers such as alpha-fetoprotein (AFP), have limited effectiveness in discriminating patient outcomes. Identification of new prognostic biomarkers is a critical unmet need to improve treatment decision-making. Epigenetic changes in cell-free DNA (cfDNA) have shown promise in early cancer diagnosis and prognosis. Thus, we aim to evaluate the potential of cfDNA methylation as a noninvasive predictor for prognostication in patients with active, radiographically viable HCC. METHODS Using Illumina HumanMethylation450 array data of 377 HCC tumors and 50 adjacent normal tissues obtained from The Cancer Genome Atlas (TCGA), we identified 158 HCC-related DNA methylation markers associated with overall survival (OS). This signature was further validated in 29 HCC tumor tissue samples. Subsequently, we applied the signature to an independent cohort of 52 patients with plasma cfDNA samples by calculating the cfDNA methylation-based risk score (methRisk) via random survival forest models with 10-fold cross-validation for the prognostication of OS. RESULTS The cfDNA-based methRisk showed strong discriminatory power when evaluated as a single predictor for OS (3-year AUC = 0.81, 95% CI: 0.68-0.94). Integrating the methRisk with existing risk indices like Barcelona clinic liver cancer (BCLC) staging significantly improved the noninvasive prognostic assessments for OS (3-year AUC = 0.91, 95% CI: 0.80-1), and methRisk remained an independent predictor of survival in the multivariate Cox model (P = 0.007). CONCLUSIONS Our study serves as a pilot study demonstrating that cfDNA methylation biomarkers assessed from a peripheral blood draw can stratify HCC patients into clinically meaningful risk groups. These findings indicate that cfDNA methylation is a promising noninvasive prognostic biomarker for HCC, providing a proof-of-concept for its potential clinical utility and laying the groundwork for broader applications.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Graduate Program, University of California at Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Benjamin Tran
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Mary L Stackpole
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Weihua Zeng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew Melehy
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Saeed Sadeghi
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Vatche G Agopian
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Zhao H, Xiao Q, An Y, Wang M, Zhong J. Phospholipid metabolism and drug resistance in cancer. Life Sci 2025; 372:123626. [PMID: 40210119 DOI: 10.1016/j.lfs.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Phospholipids, complex lipids prevalent in the human body, play crucial roles in various pathophysiological processes. Beyond their synthesis and degradation, phospholipids can influence chemoresistance by participating in ferroptosis. Extensive evidence highlights the significant link between tumor drug resistance and phospholipids. Therefore, drugs targeting phospholipid metabolism itself or the synthesis of corresponding composite materials will effectively overcome the difficulties of clinical tumor treatment.
Collapse
Affiliation(s)
- Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yangfang An
- Yiyang Central Hospital, Yiyang, Hunan 413099, PR China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
3
|
Sun J, Dahboul F, Pujos-Guillot E, Petera M, Chu-Van E, Colsch B, Weil D, Di Martino V, Demidem A, Abergel A. PLD2 is a marker for MASLD-HCC with early-stage fibrosis: revealed by lipidomic and gene expression analysis. Metabolomics 2025; 21:39. [PMID: 40064725 DOI: 10.1007/s11306-025-02226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/22/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Metabolic steatotic liver disease (MASLD) can progress to hepatocellular carcinoma (HCC). 25% of MASLD-HCCs occur in the absence of fibrosis. OBJECTIVES This study aimed to explore lipid metabolic pathways through "omics" and to identify biomarkers of MASLD-HCC based on the degree of fibrosis. METHODS Our cohort included 79 pairs of MASLD-HCC tumor tissues (TT) and adjacent non-tumor human liver tissues (NTT), which were divided into two groups according to fibrosis degree (F0F2 n = 45 and F3F4 n = 34). Lipidomic analysis (n = 52) using liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS) and gene expression analysis (n = 79) using RT-qPCR were performed. For each group, TT was compared with NTT. Five healthy liver tissues were used as calibrators in gene expression analysis. RESULTS Using LC-HRMS/MS, 130 lipids were putatively annotated, 30 of which showed a significant difference between TT and NTT. In MASLD-HCC-F0F2, ceramide levels decreased. While sphingomyelin, most phosphatidylcholine and phosphatidylethanolamine species were increased. In contrast, in MASLD-HCC-F3F4, most lipid contents decreased. Based on lipidomic data, a panel of 18 genes related to lipid metabolism was analyzed. The expression of six genes, ACAT2, DGAT2, ACOX1, CHKA, PLD1, and PLD2, was exclusively upregulated in MASLD-HCC-F0F2. Taken together, these data support the existence of two MASLD-HCC lipid metabolic phenotypes, according to the degree of fibrosis. CONCLUSION In conclusion, our results allow: (1) discriminate two phenotypes of MASLD-HCC according to fibrosis level; (2) propose PLD as a potential drug target for MASLD-HCC-F0F2 patients, and suggest that PLD inhibitor could be evaluated in combination with immunotherapy treatment.
Collapse
Affiliation(s)
- Jihan Sun
- INRAE, Human Nutrition Unit 1019, Clermont Auvergne University, Clermont-Ferrand, F-63000, France
- EFS, INSERM, UMR Right, Franche-Comté University, Besançon, F-25000, France
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, P.R. China
| | - Fatima Dahboul
- INRAE, Human Nutrition Unit 1019, Clermont Auvergne University, Clermont-Ferrand, F-63000, France
| | - Estelle Pujos-Guillot
- INRAE, Human Nutrition Unit 1019, Plate-Forme d'Exploration du Métabolisme, MetaboHUB- Clermont, Clermont Auvergne University, Clermont-Ferrand, F-63000, France
| | - Mélanie Petera
- INRAE, Human Nutrition Unit 1019, Plate-Forme d'Exploration du Métabolisme, MetaboHUB- Clermont, Clermont Auvergne University, Clermont-Ferrand, F-63000, France
| | - Emeline Chu-Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif sur Yvette, F-91191, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif sur Yvette, F-91191, France
| | - Delphine Weil
- EFS, INSERM, UMR Right, Franche-Comté University, Besançon, F-25000, France
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, Besançon, France
| | - Vincent Di Martino
- EFS, INSERM, UMR Right, Franche-Comté University, Besançon, F-25000, France
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, Besançon, France
| | - Aicha Demidem
- INRAE, Human Nutrition Unit 1019, Clermont Auvergne University, Clermont-Ferrand, F-63000, France.
| | - Armando Abergel
- Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, F-63000, France
- Clermont Auvergne University, UMR CNRS 6284, Clermont-Ferrand, F-63000, France
| |
Collapse
|
4
|
Nazir A, Sajjad M. Recent trends in biotechnological production, engineering, and applications of lysophospholipases. Biotechnol Prog 2025:e70014. [PMID: 39968651 DOI: 10.1002/btpr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Oil degumming process involves the removal of gums, which is required to improve the physicochemical and storage properties of the vegetable oils. Degumming of oils can be carried out by using chemicals, membranes (polymeric, inorganic, and ceramic), or enzymes, for example, phospholipases. Phospholipases are enzymes of tremendous significance in the degumming process as they convert gums to fatty acids and lipophilic substances. They provide a cost-effective and safe alternative to other degumming processes without affecting the oil yield. Lysophospholipases (LPLs) are highly valuable tools for degumming vegetable oils. LPLs can hydrolyze fatty acyl ester bonds of phosphatidylcholine at the sn-1 and sn-2 positions of glycerol moiety. In addition, they have the ability to catalyze hydrolysis lysophospholipids' ester bond either at sn-1 or sn-2 position. In this review, biotechnological production and biochemical characteristics of LPLs from three domains of life are highlighted. In comparison to bacterial and eukaryotic LPLs, archaeal LPLs were found to be active at high temperatures. Broad substrate specificity and thermostability of archaeal LPLs make them ideal candidates for the industrial degumming of oils. However, improvement of activity and substrate specificity of archaeal LPLs is required for enhancing their industrial utility. In the current review, various protein-engineering approaches (directed evolution, rational design, site-saturation mutagenesis, and fusion technology) as well as in silico tools have been discussed to increase the commercial significance of LPLs.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Hamada K, Nagumo Y, Kandori S, Isoda B, Suzuki S, Sano K, Sakka S, Tanuma K, Nitta S, Shiga M, Negoro H, Mathis BJ, Funakoshi Y, Nishiyama H. Phospholipase D2 downregulates interleukin-1β secretion from tumor-associated macrophages to suppress bladder cancer progression. Cancer Sci 2025; 116:381-392. [PMID: 39528232 PMCID: PMC11786306 DOI: 10.1111/cas.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) modulates therapeutic response and prognosis in patients with bladder cancer (BC). The roles of two phospholipase D (PLD) isoforms, PLD1 and PLD2 (hydrolysis of phosphatidylcholine to phosphatidic acid), in cancer cells have been well-studied in numerous cancer types, but their roles in the TME remain unclear. We used a mouse BC Pld2-KO carcinogenesis model and global transcriptomic analysis to reveal that PLD2 was significantly involved in BC progression through immunosuppressive pathways in the TME. We therefore focused on PLD2 and tumor-associated macrophages (TAMs), which were increased in Pld2-KO mice and further associated with poor prognoses in BC patients. In vitro, we found that Pld2-KO mouse TAMs had significantly enhanced proliferation, correlating closely with increased interleukin-1β (IL-1β) production. These results indicate that PLD2 suppresses BC progression by regulation of IL-1β secretion from TAMs in the TME, suggesting that PLD2 could serve as a potential therapeutic target for modifying the TME in BC.
Collapse
Affiliation(s)
- Kazuki Hamada
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Shuya Kandori
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Bunpei Isoda
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Shuhei Suzuki
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Keisuke Sano
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Shotaro Sakka
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Kozaburo Tanuma
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Satoshi Nitta
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Masanobu Shiga
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Bryan J. Mathis
- Department of Cardiovascular Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
6
|
Addassi HA, Krga I, Villarreal F, LaComb JF, Frohman MA, Matsukuma K, Mackenzie GG. Inhibition of phospholipase D1 reduces pancreatic carcinogenesis in mice partly through a FAK-dependent mechanism. Carcinogenesis 2025; 46:bgae071. [PMID: 39487573 DOI: 10.1093/carcin/bgae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024] Open
Abstract
Phospholipase D (PLD) plays a critical role in cancer progression. However, its role in pancreatic cancer remains unclear. Thus, we evaluated the role of PLD1, one of two classical isoforms of PLD, in pancreatic carcinogenesis in vivo. The role of PLD1 in tumor growth was evaluated by subcutaneously transplanting human MIA PaCa-2 cells expressing endogenous PLD1 levels (Ctr KD cells) or cells in which PLD1 was knocked down (Pld1 KD cells) into immunodeficient mice. Twenty days post-implantation, tumors that arose from Pld1-KD cells were significantly smaller, compared to controls (Ctr KD). Then, we assessed the role of PLD1 in the tumor microenvironment, by subcutaneously implanting mouse LSL-KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) cells into wild-type or PLD1 knockout (Pld1-/-) mice. Compared to wild type, tumor growth was attenuated in Pld1-/- mice by 39%, whereas treatment of Pld1-/- mice with gemcitabine reduced tumor growth by 79%. When PLD1 was ablated in LSL-KrasG12D;Ptf1Cre/+ (KC) mice, no reduction in acinar cell loss was observed, compared to KC mice. Finally, treatment of KC mice with a small molecule inhibitor of PLD1 and PLD2 (FIPI) significantly reduced acinar cell loss and cell proliferation, compared to vehicle-treated mice. Mechanistically, the effect of PLD on tumor growth is mediated, partly, by the focal adhesion kinase pathway. In conclusion, while PLD1 is a critical regulator of pancreatic xenograft and allograft growth, playing an important role at the tumor and at the microenvironment levels, the inhibition of PLD1 and PLD2 is necessary to reduce pancreatic carcinogenesis in KC mice and might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Hala A Addassi
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
| | - Irena Krga
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
| | - Fernando Villarreal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
| | - Joseph F LaComb
- Department of Family, Population and Preventive Medicine, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| | - Karen Matsukuma
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, V St., Sacramento, CA 95817, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
- Department of Family, Population and Preventive Medicine, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| |
Collapse
|
7
|
Biernacki M, Skrzydlewska E. Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin. Cell Mol Biol Lett 2025; 30:7. [PMID: 39825220 PMCID: PMC11742234 DOI: 10.1186/s11658-025-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
| |
Collapse
|
8
|
Varalda M, Venetucci J, Nikaj H, Kankara CR, Garro G, Keivan N, Bettio V, Marzullo P, Antona A, Valente G, Gentilli S, Capello D. Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway. Cells 2024; 13:2084. [PMID: 39768174 PMCID: PMC11674800 DOI: 10.3390/cells13242084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT. While second-generation antipsychotics (SGAs) have significantly improved treatments for mental health disorders, their chronic use is associated with an increased risk of MetS. In this study, we explored the impact of SGAs on ADSCs to better understand their role in MetS and identify potential therapeutic targets. Our findings reveal that olanzapine disrupts lipid droplet formation during adipogenic differentiation, impairing insulin receptor endocytosis, turnover, and signaling. SGAs also alter the endolysosomal compartment, leading to acidic vesicle accumulation and increased lysosomal biogenesis through TFEB activation. PKCζ is crucial for the SGA-induced nuclear translocation of TFEB and acidic vesicle formation. Notably, inhibiting PKCζ restored insulin receptor tyrosine phosphorylation, normalized receptor turnover, and improved downstream signaling following olanzapine treatment. This activation of PKCζ by olanzapine is driven by increased phosphatidic acid synthesis via phospholipase D (PLD), following G protein-coupled receptor (GPCR) signaling activation. Overall, olanzapine and clozapine disrupt endolysosomal homeostasis and insulin signaling in a PKCζ-dependent manner. These findings highlight SGAs as valuable tools for uncovering cellular dysfunction in vWAT during MetS and may guide the development of new therapeutic strategies to mitigate the metabolic side effects of these drugs.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Herald Nikaj
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Chaitanya Reddy Kankara
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Giulia Garro
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nazanin Keivan
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- Pathology Unity, Ospedale “Sant’Andrea”, 13100 Vercelli, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Guo Y, Li J, Miao X, Wang H, Ge H, Xu H, Wang J, Wang Y. Phospholipase D2 drives cellular lipotoxicity and tissue inflammation in alcohol-associated liver disease. Life Sci 2024; 358:123166. [PMID: 39447730 DOI: 10.1016/j.lfs.2024.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
AIMS Excessive alcohol consumption leads to alcoholic liver disease (ALD), a major contributing factor to cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of phospholipase D2 (PLD2) in the pathogenesis of ALD. METHODS AND MATERIALS ALD was induced in mice by chronic and binge ethanol feeding (the NIAAA model). Cellular transcriptome was examined by RNA-seq. KEY FINDINGS Analysis of RNA-seq datasets indicated that PLD2 expression was up-regulated in liver tissues and in hepatocytes during ALD pathogenesis. Exposure of hepatocytes to ethanol treatment led to an increase in PLD2 expression. Similarly, ethanol feeding in mice stimulated PLD2 expression in the liver. On the contrary, PLD2 knockdown in hepatocytes down-regulated expression of pro-inflammatory and pro-lipogenic genes and dampened lipid accumulation. Consistently, PLD2 knockdown in mice significantly ameliorated ALD pathogenesis as evidenced by reduced steatosis and hepatic inflamamation. RNA-seq identified several metabolic pathways that were influenced by PLD2 deficiency. SIGNIFICANCE Our data demonstrate that PLD2 is a novel regulator of ALD and suggest that small-molecule PLD2 inhibitors can be considered as a reasonable strategy for ALD treatment.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jichen Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hansong Wang
- Department of Emergency Medical Center, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Hailong Ge
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Huihui Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Jianguo Wang
- Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China.
| |
Collapse
|
10
|
Liu Z, Thom C, Nitulescu II, Pelish HE, Rimsza LM, Teruel‐Montoya R, Ferrer‐Marin F, Shair MD, Sola‐Visner M. CDK8/19 inhibition triggers a switch from mitosis to endomitosis in cord blood megakaryocytes. Br J Haematol 2024; 205:2481-2486. [PMID: 39413769 PMCID: PMC11637730 DOI: 10.1111/bjh.19836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Neonatal and adult megakaryocytes differ in proliferative capacity and ploidy levels, and neonatal and adult platelets differ in function, gene expression, and protein content. The mechanisms underlying these differences are incompletely understood. CDK8 and CDK19 are transcriptional kinases part of the CDK-mediator complex, which regulates gene transcription in a cell-specific manner. We discovered that cortistatin A, a potent highly selective inhibitor of CDK8/CDK19, significantly reduced cell expansion and increased ploidy in cord blood-derived megakaryocytes. These phenotypic changes were associated with gene expression changes that partially overlapped developmentally regulated genes. These findings might have relevance for the management of developmental megakaryocyte disorders.
Collapse
Affiliation(s)
- Zhi‐Jian Liu
- Division of Newborn MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Christopher Thom
- Division of NeonatologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Ioana I. Nitulescu
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusettsUSA
- Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Henry E. Pelish
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusettsUSA
- Nuvalent, Inc.CambridgeMassachusettsUSA
| | - Lisa M. Rimsza
- Department of PathologyUniversity of ArizonaTucsonArizonaUSA
| | - Raul Teruel‐Montoya
- Hematology DepartmentHospital Universitario Morales‐Meseguer, Centro Regional de Hemodonación, CIBERER (U765), IMIB, Universidad Católica San Antonio (UCAM)MurciaSpain
| | - Francisca Ferrer‐Marin
- Hematology DepartmentHospital Universitario Morales‐Meseguer, Centro Regional de Hemodonación, CIBERER (U765), IMIB, Universidad Católica San Antonio (UCAM)MurciaSpain
| | - Matthew D. Shair
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Martha Sola‐Visner
- Division of Newborn MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
11
|
Kim D, Yoon MS, Lee J, Park SY, Han JS. Effects of phospholipase D1-inhibitory peptide on the growth and metastasis of gastric cancer cells. Mol Cells 2024; 47:100128. [PMID: 39426685 PMCID: PMC11582423 DOI: 10.1016/j.mocell.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Phospholipase D1 (PLD1) contributes to cancer development and progression through its effects on cell proliferation, survival, invasion, metastasis, angiogenesis, drug resistance, and modulation of the tumor microenvironment. Its central role in these processes makes it a promising target for novel cancer treatments aimed at inhibiting its activity and disrupting the signaling pathways it regulates. In this study, we aimed to investigate the effect of PLD1 inhibition on gastric cancer cell growth using a novel peptide inhibitor, TAT-TVTSP. PLD1, which plays a role in cancer progression, catalyzes the conversion of phosphatidylcholine into choline and phosphatidic acid through hydrolysis. To effectively target PLD1 in cells, we engineered TAT-TVTSP by fusing a PLD1-inhibitory peptide (TVTSP) with a cell-penetrating peptide (TAT). We observed that TAT-TVTSP effectively inhibited PLD1 activity in AGS gastric cancer cells. Moreover, TAT-TVTSP significantly inhibited the mammalian target of the rapamycin signaling pathway, including the phosphorylation of key downstream targets such as S6K1, AKT, S473, glycogen synthase kinase-3b, and forkhead box O1. TAT-TVTSP did not induce cell death, but it triggered cell cycle arrest by activating p21 and p27 via AKT phosphorylation. Functional assays revealed that TAT-TVTSP significantly impaired the colony-forming ability of AGS cells, thus inhibiting cell proliferation. Transwell and wound-healing assays revealed that this peptide disrupted the cellular behaviors critical to cancer progression, such as migration and invasion. In vivo, TAT-TVTSP significantly reduced tumor growth in the xenograft model of gastric cancer without any toxicity. Overall, our results suggest that TAT-TVTSP is a novel therapeutic agent for PLD1-mediated cancers.
Collapse
Affiliation(s)
- Dongju Kim
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Junwon Lee
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Zhang D, Teng C, Xu Y, Tian L, Cao P, Wang X, Li Z, Guan C, Hu X. Genetic and molecular correlates of cortical thickness alterations in adults with obsessive-compulsive disorder: a transcription-neuroimaging association analysis. Psychol Med 2024; 54:1-10. [PMID: 39363543 PMCID: PMC11496223 DOI: 10.1017/s0033291724001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Although numerous neuroimaging studies have depicted neural alterations in individuals with obsessive-compulsive disorder (OCD), a psychiatric disorder characterized by intrusive cognitions and repetitive behaviors, the molecular mechanisms connecting brain structural changes and gene expression remain poorly understood. METHODS This study combined the Allen Human Brain Atlas dataset with neuroimaging data from the Meta-Analysis (ENIGMA) consortium and independent cohorts. Later, partial least squares regression and enrichment analysis were performed to probe the correlation between transcription and cortical thickness variation among adults with OCD. RESULTS The cortical map of case-control differences in cortical thickness was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms preferentially expressed across different cell types and cortical layers. These genes were specifically expressed in brain tissue, spanning all cortical developmental stages. Protein-protein interaction analysis revealed that these genes coded a network of proteins encompassing various highly interactive hubs. CONCLUSIONS The study findings bridge the gap between neural structure and transcriptome data in OCD, fostering an integrative understanding of the potential biological mechanisms.
Collapse
Affiliation(s)
- Da Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinhao Xu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Tian
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Cao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Wang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengbin Guan
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Pelosi AC, Silva AAR, Fernandes AMAP, Scariot PPM, Oliveira MSP, Porcari AM, Priolli DG, Messias LHD. Metabolomics of 3D cell co-culture reveals alterations in energy metabolism at the cross-talk of colorectal cancer-adipocytes. Front Med (Lausanne) 2024; 11:1436866. [PMID: 39421865 PMCID: PMC11484090 DOI: 10.3389/fmed.2024.1436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most incident and the second most lethal malignant tumor. Despite the recognized association between obesity and CRC, further clarification is necessary regarding the lipids that are overexpressed during the development of CRC. In this scenario, the combination of metabolomics and a three-dimensional (3D) co-culture model involving CRC tumor cells and lipids can enhance the knowledge of energy metabolism modifications at the cross-talk between colorectal cancer and adipocytes. This study aimed to screen potential metabolites in the three dimensional (3D) co-culture of CRC and adipocytes by investigating the metabolome composition of this co-culture released into the extracellular space, which is known as the secretome. Methods Pre-adipocyte cells (3T3-L1), human colon carcinoma (HT-29), and the 3D co-culture (3T3-L1 + HT-29) were cultured for the secretome obtention. Then, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was employed to analyze the metabolomics of each secretome. Results Overall, 3.731 molecules were detected independent of the cell culture. When comparing the three cultures, 105 molecules presented a statistically significant difference in abundance between groups. Among these molecules, 16 were identified, with a particular emphasis on six lipids (PG 20:0, octadecenal, 3-Hydroxytetracosanoyl-CoA, 9,10-dihydroxy-octadecenoic acid, palmitoleic acid, and PA 18:4) and one amino acid derivative (acetylglutamic acid), which presented significant scores during the partial least-squares discriminant analysis (PLS-DA). Discussion Although it is too early to determine the possible impact of such molecules in a CRC microenvironment, these results open new avenues for further studies on the energy metabolism at the cross-talk of colorectal cancer adipocytes.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Anna Maria Alves Piloto Fernandes
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Manoela Stahl Parisotto Oliveira
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
14
|
Chang Y, Guo H, Li X, Zong L, Wei J, Li Z, Luo C, Yang X, Fang H, Kong X, Hou X. Development of a First-in-Class DNMT1/HDAC Inhibitor with Improved Therapeutic Potential and Potentiated Antitumor Immunity. J Med Chem 2024; 67:16480-16504. [PMID: 39264152 DOI: 10.1021/acs.jmedchem.4c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Epigenetic therapies have emerged as a key paradigm for treating malignancies. In this study, a series of DNMT1/HDAC dual inhibitors were obtained by fusing the key pharmacophores from DNMT1 inhibitors (DNMT1i) and HDAC inhibitors (HDACi). Among them, compound (R)-23a demonstrated significant DNMT1 and HDAC inhibition both in vitro and in cells and largely phenocopied the synergistic effects of combined DNMT1i and HDACi in reactivating epigenetically silenced tumor suppressor genes (TSGs). This translated into a profound tumor growth inhibition (TGI = 98%) of (R)-23a in an MV-4-11 xenograft model, while displaying improved tolerability compared with single agent combination. Moreover, in a syngeneic MC38 mouse colorectal tumor model, (R)-23a outperformed the combinatory treatment in reshaping the tumor immune microenvironment and inducing tumor regression. Collectively, the novel DNMT1/HDAC dual inhibitor (R)-23a effectively reverses the cancer-specific epigenetic abnormalities and holds great potential for further development into cancer therapeutic agents.
Collapse
Affiliation(s)
- Yingjie Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Huahui Guo
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Liangyi Zong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jiale Wei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| |
Collapse
|
15
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
16
|
Parikh A, Krogman W, Walker J. The impact of volatile anesthetics and propofol on phosphatidylinositol 4,5-bisphosphate signaling. Arch Biochem Biophys 2024; 757:110045. [PMID: 38801966 DOI: 10.1016/j.abb.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), as well as other anionic phospholipids, play a pivotal role in various cellular processes, including ion channel regulation, receptor trafficking, and intracellular signaling pathways. The binding of volatile anesthetics and propofol to PIP2 leads to alterations in PIP2-mediated signaling causing modulation of ion channels such as ɣ-aminobutyric acid type A (GABAA) receptors, voltage-gated calcium channels, and potassium channels through various mechanisms. Additionally, the interaction between anionic phospholipids and G protein-coupled receptors plays a critical role in various anesthetic pathways, with these anesthetic-induced changes impacting PIP2 levels which cause cascading effects on receptor trafficking, including GABAA receptor internalization. This comprehensive review of various mechanisms of interaction provides insights into the intricate interplay between PIP2 signaling and anesthetic-induced changes, shedding light on the molecular mechanisms underlying anesthesia.
Collapse
Affiliation(s)
- Ayaan Parikh
- Wichita Collegiate School, Wichita, KS. 9115 E 13th St N, Wichita, KS, 67206, USA.
| | - William Krogman
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| | - James Walker
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| |
Collapse
|
17
|
Lim SH, Lee H, Lee HJ, Kim K, Choi J, Han JM, Min DS. PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways. Exp Mol Med 2024; 56:1479-1487. [PMID: 38945955 PMCID: PMC11297275 DOI: 10.1038/s12276-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance. Among the aberrantly activated pathways, the PI3K-Akt/Wnt/β-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance. Crosstalk involving the PLD and Wnt/β-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers. Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/β-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance.
Collapse
Affiliation(s)
- Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kuglae Kim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
18
|
Zhang F, Wu J, Zhang L, Zhang J, Yang R. Alterations in serum metabolic profiles of early-stage hepatocellular carcinoma patients after radiofrequency ablation therapy. J Pharm Biomed Anal 2024; 243:116073. [PMID: 38484637 DOI: 10.1016/j.jpba.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To investigate the alterations in serum metabolic profiles and early-stage hepatocellular carcinoma (HCC) patient characteristics after radiofrequency ablation (RFA) therapy. This evaluation aimed to assess treatment effectiveness and identify potential novel approaches and targets for HCC treatment and prognosis monitoring. METHODS Untargeted metabolomics technology was employed to analyze serum metabolic profiles in healthy volunteer controls (NCs) and early stage HCC patients before and after RFA therapy. Additionally, Human Metabolome Database and Kyoto Encyclopedia of Genes and Genomes database were used to identify the differential metabolites (DMs) and metabolic pathways. Cystoscape was utilized to construct DM gene networks. Amino acid analyses were performed to validate our findings. RESULTS We identified 11, 14, and six DMs between the NC and HCC groups, HCC patients before and after RFA therapy, and post-RFA HCC and NC groups, respectively. The expression levels of these DMs, particularly those of amino acids and lipids, significantly changed. Compared with the NC group, higher levels of L-tyrosine, aspartate, and 18-oxo-oleate were observed in HCC patients, which were significantly reduced in patients after RFA therapy. Meanwhile, HCC patients after RFA therapy had increased levels of L-arginine, phosphatidic acid (20:3), and lysophosphatidyl choline (LPC) (20:4) compared to those before therapy, while their levels before therapy were lower than those of NC. Moreover, most metabolites in the post-RFA and NC groups showed no significant changes in expression, except for L-tyrosine and LPC (16:0). These metabolites could potentially serve as characteristic factors of early-stage HCC patients after RFA therapy. Joint pathway analysis revealed striking changes, mainly in phenylalanine, tyrosine, and tryptophan biosynthesis; alanine, aspartate, and glutamate metabolism; and arginine and aminoacyl-tRNA biosynthesis. Bioinformatics analysis of publicly available data preliminarily identified 187 DM-related metabolic enzymes. CONCLUSION Our study proposed novel targets for early-stage HCC treatment, laying the groundwork for improving treatment efficacy and prognosis of early-stage HCC patients.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jing Wu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China.
| | - Lei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jian Zhang
- The Second Hospital of Tianjin Medical University, Tianjin 300000, China
| | - Rui Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300000, China.
| |
Collapse
|
19
|
Fu Z, Sun G, Li J, Yu H. Identification of hub genes related to metastasis and prognosis of osteosarcoma and establishment of a prognostic model with bioinformatic methods. Medicine (Baltimore) 2024; 103:e38470. [PMID: 38847690 PMCID: PMC11155596 DOI: 10.1097/md.0000000000038470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and adolescents. Improvements in our understanding of the OS pathogenesis and metastatic mechanism on the molecular level might lead to notable advances in the treatment and prognosis of OS. Biomarkers related to OS metastasis and prognosis were analyzed and identified, and a prognostic model was established through the integration of bioinformatics tools and datasets in multiple databases. 2 OS datasets were downloaded from the Gene Expression Omnibus database for data consolidation, standardization, batch effect correction, and identification of differentially expressed genes (DEGs); following that, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DEGs; the STRING database was subsequently used for protein-protein interaction (PPI) network construction and identification of hub genes; hub gene expression was validated, and survival analysis was conducted through the employment of the TARGET database; finally, a prognostic model was established and evaluated subsequent to the screening of survival-related genes. A total of 701 DEGs were identified; by gene ontology and KEGG pathway enrichment analyses, the overlapping DEGs were enriched for 249 biological process terms, 13 cellular component terms, 35 molecular function terms, and 4 KEGG pathways; 13 hub genes were selected from the PPI network; 6 survival-related genes were identified by the survival analysis; the prognostic model suggested that 4 genes were strongly associated with the prognosis of OS. DEGs related to OS metastasis and survival were identified through bioinformatics analysis, and hub genes were further selected to establish an ideal prognostic model for OS patients. On this basis, 4 protective genes including TPM1, TPM2, TPM3, and TPM4 were yielded by the prognostic model.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Guofeng Sun
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| | - Jingtian Li
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| | - Hongjian Yu
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| |
Collapse
|
20
|
Wang C, Zhao X, Wu Z, Huang G, Lin R, Chen H, Xu K, Sun K, Zhou H, Shu J. Identification of Differentially Expressed mRNAs and miRNAs and Related Regulatory Networks in Cumulus Oophorus Complexes Associated with Fertilization. Reprod Sci 2024; 31:1408-1419. [PMID: 38216777 DOI: 10.1007/s43032-023-01413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
Cumulus oophorus complexes (COCs) are the first extracellular barriers that sperm must pass through to fuse with oocytes, which have an important role in oocyte maturation and fertilization. However, little is known about the molecular mechanisms of COCs involved in fertilization. In this study, COCs were collected and then randomly divided into a test group that interacted with sperm and a control group that did not interact with sperm. Then, the total RNA was extracted; RNA transcriptome and small RNA libraries were prepared, sequenced, and analyzed. The results showed that 1283 differentially expressed genes (DEGs), including 560 upregulated and 723 downregulated genes. In addition, 57 differentially expressed miRNAs (DEMIs) with 35 upregulated and 22 downregulated were also detected. After the RNA-seq results were verified by RT-qPCR, 86 effective DEGs and 40 DEMIs were finally screened and a DEMI-DEG regulatory network was constructed. From this, the top ten hub target genes were HNF4A, SPN, WSCD1, TMEM239, SLC2A4, E2F2, SIAH3, ADORA3, PIK3R2, and GDNF, and they were all downregulated. The top ten hub DEMIs were miR-6876-5p, miR-877-3p, miR-6818-5p, miR-4690-3p, miR-6789-3p, miR-6837-5p, miR-6861-5p, miR-4421, miR-6501-5p, and miR-6875-3p, all of which were upregulated. The KEGG signaling pathway enrichment analysis showed that the effective DEGs were significantly enriched in the calcium, AMPK, and phospholipase D signaling pathways. Our study identified several DEGs and DEMIs and potential miRNA-mRNA regulatory pathways in COCs and these may contribute to fertilization. This study may provide novel insights into potential biomarkers for fertilization failure.
Collapse
Affiliation(s)
- Caizhu Wang
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Xin Zhao
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Zhulian Wu
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Guiting Huang
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Ruoyun Lin
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Huanhua Chen
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Kongrong Xu
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Kejian Sun
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China
| | - Hong Zhou
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China.
| | - Jinhui Shu
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, Guangxi, China.
| |
Collapse
|
21
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
22
|
Rao C, Tong J, Yang Y. Mechanistic insights into FEN1-mediated drug sensitivity and risk signature in colon cancer: An integrative bioinformatics study. Medicine (Baltimore) 2024; 103:e37517. [PMID: 38552056 PMCID: PMC10977573 DOI: 10.1097/md.0000000000037517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024] Open
Abstract
The overexpression of Flap endonuclease 1 (FEN1) has been implicated in drug resistance and prognosis across various cancer types. However, the precise role of FEN1 in colon cancer remains to be fully elucidated. In this study, we employed comprehensive datasets from The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas to examine FEN1 expression and assess its correlation with clinical pathology and prognosis in colon cancer. We utilized the pRRophetic algorithm to evaluate drug sensitivity and performed differential expression analysis to identify genes associated with FEN1-mediated drug sensitivity. Gene set enrichment analysis was conducted to further investigate these genes. Additionally, single-cell sequencing analysis was employed to explore the relationship between FEN1 expression and functional states. Cox regression analysis was implemented to construct a prognostic model, and a nomogram for prognosis was developed. Our analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets revealed a significant upregulation of FEN1 in colon cancer. However, while FEN1 expression showed no notable correlation with prognosis, it displayed associations with metastasis. Single-cell sequencing analysis further confirmed a positive correlation between FEN1 expression and colon cancer metastasis. Furthermore, we detected marked discrepancies in drug responsiveness between the High_FEN1 and Low_FEN1 groups, identifying 342 differentially expressed genes. Enrichment analysis showed significant suppression in processes related to DNA replication, spliceosome, and cell cycle pathways in the Low_FEN1 group, while the calcium signaling pathway, cAMP signaling pathway, and other pathways were activated. Of the 197 genes differentially expressed and strongly linked to FEN1 expression, 39 were significantly implicated in colon cancer prognosis. Finally, we constructed a risk signature consisting of 5 genes, which, when combined with drug treatment and pathological staging, significantly improved the prediction of colon cancer prognosis. This study offers novel insights into the interplay among FEN1 expression levels, colon cancer metastatic potential, and sensitivity to therapeutic agents. Furthermore, we successfully developed a multi-gene prognostic risk signature derived from FEN1.
Collapse
Affiliation(s)
- Chunhui Rao
- Department of Proctology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingfei Tong
- Department of Proctology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Yang
- Department of Otolaryngology, Banshan Community Health Service Center, Gongshu District, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Orda MA, Fowler PMPT, Tayo LL. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. BIOLOGY 2024; 13:206. [PMID: 38666818 PMCID: PMC11048586 DOI: 10.3390/biology13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Gliomas have displayed significant challenges in oncology due to their high degree of invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM), were identified through weighted gene co-expression network analysis (WGCNA) of microarray datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that the modules and hub genes identified were mainly involved in signal transduction, transcription regulation, and protein binding, which collectively deregulate several signaling pathways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin hormones norgestimate and ethisterone were the top drug candidates. This shows the potential neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and other signaling pathways. Aside from these, several experimental and approved drug candidates were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
Collapse
Affiliation(s)
- Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
24
|
Weckerly CC, Rahn TA, Ehrlich M, Wills RC, Pemberton JG, Airola MV, Hammond GRV. Nir1-LNS2 is a novel phosphatidic acid biosensor that reveals mechanisms of lipid production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582557. [PMID: 38464273 PMCID: PMC10925316 DOI: 10.1101/2024.02.28.582557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.
Collapse
Affiliation(s)
- Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor A Rahn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Max Ehrlich
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Zhang C, Huang W, Niu W, Yang H, Zheng Y, Gao X, Qiu X. Five genes identified as prognostic markers for colorectal cancer through the integration of genome-wide association study and expression quantitative trait loci data. Per Med 2024; 21:103-116. [PMID: 38380524 DOI: 10.2217/pme-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Background: Colorectal cancer (CRC) is a prominent form of cancer globally, ranking second in terms of prevalence and serving as a leading cause of cancer-related deaths, but the underlying biological interpretation remains largely unknown. Methods: We used the summary data-based Mendelian randomization method to integrate CRC genome-wide association studies (ncase = 7062; ncontrol = 195,745) and expression quantitative trait loci summary data in peripheral whole blood (Consortium for Architecture of Gene Expression: n = 2765; Genotype-Tissue Expression [v8]: n = 755) and colon tissue (colon-transverse: n = 406; colon-sigmoid: n = 373) and identified related genes. Results: Genes ABTB1, CYP21A2, NLRP1, PHKG1 and PIP5K1C have emerged as significant prognostic markers for CRC patient survival. Functional analysis revealed their involvement in cancer cell migration and invasion mechanisms, providing valuable insights for the development of future anti-CRC drugs. Conclusion: We successfully identified five CRC risk genes, providing new insights and research directions for the effective mechanisms of CRC.
Collapse
Affiliation(s)
- Cuizhen Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenjie Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuan Gao
- Outpatient and Emergency Management Office, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
26
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
27
|
Mahmud S, Hamza A, Lee YB, Min JK, Islam R, Dogsom O, Park JB. Lipopolysaccharide Stimulates A549 Cell Migration through p-Tyr 42 RhoA and Phospholipase D1 Activity. Biomolecules 2023; 14:6. [PMID: 38275747 PMCID: PMC10813223 DOI: 10.3390/biom14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cell migration is a crucial contributor to metastasis, a critical process associated with the mortality of cancer patients. The initiation of metastasis is triggered by epithelial-mesenchymal transition (EMT), along with the changes in the expression of EMT marker proteins. Inflammation plays a significant role in carcinogenesis and metastasis. Lipopolysaccharide (LPS), a typical inflammatory agent, promoted the generation of superoxide through the activation of p-Tyr42 RhoA, Rho-dependent kinase 2 (ROCK2), and the phosphorylation of p47phox. In addition, p-Tyr42 RhoA activated phospholipase D1 (PLD1), with PLD1 and phosphatidic acid (PA) being involved in superoxide production. PA also regulated the expression of EMT proteins. Consequently, we have identified MHY9 (Myosin IIA, NMIIA) as a PA-binding protein in response to LPS. MYH9 also contributed to cell migration and the alteration in the expression of EMT marker proteins. Co-immunoprecipitation revealed the formation of a complex involving p-Tyr42 RhoA, PLD1, and MYH9. These proteins were found to be distributed in both the cytosol and nucleus. In addition, we have found that p-Tyr42 RhoA PLD1 and MYH9 associate with the ZEB1 promoter. The suppression of ZEB1 mRNA levels was achieved through the knockdown of RhoA, PLD1, and MYH9 using si-RNAs. Taken together, we propose that p-Tyr42 RhoA and PLD1, responsible for producing PA, and PA-bound MYH9 are involved in the regulation of ZEB1 expression, thereby promoting cell migration.
Collapse
Affiliation(s)
- Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Jung-Ki Min
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
28
|
Baradaran M, Salabi F. Genome-wide identification, structural homology analysis, and evolutionary diversification of the phospholipase D gene family in the venom gland of three scorpion species. BMC Genomics 2023; 24:730. [PMID: 38049721 PMCID: PMC10694872 DOI: 10.1186/s12864-023-09851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Venom phospholipase D (PLDs), dermonecrotic toxins like, are the major molecules in the crude venom of scorpions, which are mainly responsible for lethality and dermonecrotic lesions during scorpion envenoming. The purpose of this study was fivefold: First, to identify transcripts coding for venom PLDs by transcriptomic analysis of the venom glands from Androctonus crassicauda, Hottentotta saulcyi, and Hemiscorpius lepturus; second, to classify them by sequence similarity to known PLDs and motif extraction method; third, to characterize scorpion PLDs; fourth to structural homology analysis with known dermonecrotic toxins; and fifth to investigate phylogenetic relationships of the PLD proteins. RESULTS We found that the venom gland of scorpions encodes two PLD isoforms: PLD1 ScoTox-beta and PLD2 ScoTox-alpha I. Two highly conserved regions shared by all PLD1s beta are GAN and HPCDC (HX2PCDC), and the most important conserved regions shared by all PLD2s alpha are two copies of the HKDG (HxKx4Dx6G) motif. We found that PLD1 beta is a 31-43 kDa acidic protein containing signal sequences, and PLD2 alpha is a 128 kDa basic protein without known signal sequences. The gene structures of PLD1 beta and PLD2 alpha contain 6 and 21 exons, respectively. Significant structural homology and similarities were found between the modeled PLD1 ScoTox-beta and the crystal structure of dermonecrotic toxins from Loxosceles intermedia. CONCLUSIONS This is the first report on identifying PLDs from A. crassicauda and H. saulcyi venom glands. Our work provides valuable insights into the diversity of scorpion PLD genes and could be helpful in future studies on recombinant antivenoms production.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| |
Collapse
|
29
|
Park JS, Yang S, Song D, Kim SM, Choi J, Kang HY, Jeong HY, Han G, Min DS, Cho ML, Park SH. A newly developed PLD1 inhibitor ameliorates rheumatoid arthritis by regulating pathogenic T and B cells and inhibiting osteoclast differentiation. Immunol Lett 2023; 263:87-96. [PMID: 37722567 DOI: 10.1016/j.imlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Doona Song
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Yeon Kang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyoonhee Han
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Do Sik Min
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea Seoul 06591, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
30
|
Su Z, Slivka P, Paulsboe S, Chu K, Wetter JB, Namovic M, Perron D, Kannan A, Wan Q, Manning C, Todorovic V, Smith KM, Lipovsky A, Wang Y, Frank K, McGaraughty S, Loud J, Scott VE, Honore P, Goedken ER. Importance of PLD2 in an IL-23 driven psoriasiform dermatitis model and potential link to human psoriasis. J Dermatol 2023; 50:1321-1329. [PMID: 37455419 DOI: 10.1111/1346-8138.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Phospholipase D2 (PLD2), a major isoform of the PLD family, has been reported to regulate inflammatory responses. Thus far, the relevance of PLD2 in psoriasis, an inflammatory skin disease, has not been explored. In the current study, we examined PLD2 expression in the skin of psoriasis patients and the role of PLD2 in an interleukin (IL)-23-induced mouse model of psoriasiform dermatitis. Both in situ hybridization and bulk RNA sequencing showed PLD2 gene expression is significantly higher in lesional relative to non-lesional skin of psoriasis patients or the skin of healthy subjects. PLD2 expression is also enriched in residual lesions from patients on biologic therapies. Murine in vivo studies showed that PLD2 deficiency significantly reduced psoriasiform inflammation in IL-23-injected ears, as reflected by decreases in ear thickness, expression of defensin beta 4A and the S100 calcium binding protein A7A, macrophage infiltrate, and expression of CXCL10 and IL-6. However, the expression of type 17 cytokines, IL-17A and IL-17F, were not reduced. Dual knockout of PLD1 and PLD2 offered little additional protection compared to PLD2 knockout alone in the IL-23 model. In addition, pharmacological inhibition with a pan-PLD1/PLD2 inhibitor also suppressed IL-23-induced psoriasiform dermatitis. Bone-marrow-derived macrophages from wild type (WT) and PLD2 knockout (KO) mice exhibited little difference in viability and sensitivity to lipopolysaccharide and/or interferon gamma, or resiquimod (R848). PLD2 deficiency did not alter the differentiation and function of Th17 cells in an ex vivo study with splenocytes isolated from WT and PLD2 KO mice. Overall, these data suggest that PLD2 may play a role in the pathophysiology of psoriasis. Reducing macrophage infiltrate and cytokine/chemokine production might contribute to an anti-inflammatory effect observed in PLD2 knockout mice. Further studies are required to better understand the mechanisms by which PLD2 contributes to skin lesions in psoriasis patients and psoriasiform dermatitis models.
Collapse
Affiliation(s)
- Zhi Su
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Peter Slivka
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | | | - Katherine Chu
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Joseph B Wetter
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Marian Namovic
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Denise Perron
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Arun Kannan
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Qi Wan
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Charlene Manning
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Viktor Todorovic
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Kathleen M Smith
- Cambridge Research Center, AbbVie Inc., Cambridge, Massachusetts, USA
| | - Alex Lipovsky
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Yibing Wang
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Kristine Frank
- Centralized Medicinal Chemistry, AbbVie Inc., North Chicago, Illinois, USA
| | | | - Jacqueline Loud
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Victoria E Scott
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Prisca Honore
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Eric R Goedken
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| |
Collapse
|
31
|
Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci 2023; 10:1198044. [PMID: 37520326 PMCID: PMC10381967 DOI: 10.3389/fmolb.2023.1198044] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, with nanoscale sizes, biological origins, various functions, and unique lipid and protein compositions have been introduced as versatile tools for diagnostic and therapeutic medical applications. Numerous studies have reported the importance of the lipid composition of EVs and its influence on their mechanism of action. For example, changes in the lipidomic profile of EVs have been shown to influence the progression of various diseases, including ovarian malignancies and prostate cancer. In this review, we endeavored to examine differences in the lipid content of EV membranes derived from different cell types to characterize their capabilities as diagnostic tools and treatments for diseases like cancer and Alzheimer's disease. We additionally discuss designing functionalized vesicles, whether synthetically by hybrid methods or by changing the lipid composition of natural EVs. Lastly, we provide an overview of current and potential biomedical applications and perspectives on the future of this growing field.
Collapse
Affiliation(s)
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
32
|
Tan J, Zhong M, Hu Y, Pan G, Yao J, Tang Y, Duan H, Jiang Y, Shan W, Lin J, Liu Y, Huang J, Zheng H, Zhou Y, Fu G, Li Z, Xu B, Zha J. Ritanserin suppresses acute myeloid leukemia by inhibiting DGKα to downregulate phospholipase D and the Jak-Stat/MAPK pathway. Discov Oncol 2023; 14:118. [PMID: 37392305 DOI: 10.1007/s12672-023-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.
Collapse
Affiliation(s)
- Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuanfang Tang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Weihang Shan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiaqi Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Yating Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiewen Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361002, Fujian, China
| | - Huijian Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| |
Collapse
|
33
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
34
|
Wei R, Zhang W, Pu C, Shao Q, Xu Q, Li P, Zhao X, Sun T, Weng D. Assessment of lipid metabolism-disrupting effects of non-phthalate plasticizer diisobutyl adipate through in silico and in vitro approaches. ENVIRONMENTAL TOXICOLOGY 2023; 38:1395-1404. [PMID: 36896678 DOI: 10.1002/tox.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Diisobutyl adipate (DIBA), as a novel non-phthalate plasticizer, is widely used in various products. However, little effort has been made to investigate whether DIBA might have adverse effects on human health. In this study, we integrated an in silico and in vitro strategy to assess the impact of DIBA on cellular homeostasis. Since numerous plasticizers could activate peroxisome proliferator-activated receptor γ (PPARγ) pathway to interrupt metabolism systems, we first utilized molecular docking to analyze interaction between DIBA and PPARγ. Results indicated that DIBA had strong affinity with the ligand-binding domain of PPARγ (PPARγ-LBD) at Histidine 499. Afterwards, we used cellular models to investigate in vitro effects of DIBA. Results demonstrated that DIBA exposure increased intracellular lipid content in murine and human hepatocytes, and altered transcriptional expression of genes related to PPARγ signaling and lipid metabolism pathways. At last, target genes regulated by DIBA were predicted and enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Protein-protein interaction (PPI) network and transcriptional factors (TFs)-genes network were established accordingly. Target genes were enriched in Phospholipase D signaling pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and Epidermal growth factor receptor (EGFR) signaling pathway which were related to lipid metabolism. These findings suggested that DIBA exposure might disturb intracellular lipid metabolism homeostasis via targeting PPARγ. This study also demonstrated that this integrated in silico and in vitro methodology could be utilized as a high throughput, cost-saving and effective tool to assess the potential risk of various environmental chemicals on human health.
Collapse
Affiliation(s)
- Rong Wei
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chunlin Pu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qianchao Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Peiqi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xunan Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
35
|
Ancajas CF, Alam S, Alves DS, Zhou Y, Wadsworth NM, Cassilly CD, Ricks TJ, Carr AJ, Reynolds TB, Barrera FN, Best MD. Cellular Labeling of Phosphatidylserine Using Clickable Serine Probes. ACS Chem Biol 2023; 18:377-384. [PMID: 36745020 DOI: 10.1021/acschembio.2c00813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylserine (PS) is a key lipid that plays important roles in disease-related biological processes, and therefore, the means to track PS in live cells are invaluable. Herein, we describe the metabolic labeling of PS in Saccharomyces cerevisiae cells using analogues of serine, a PS precursor, derivatized with azide moieties at either the amino (N-l-SerN3) or carbonyl (C-l-SerN3) groups. The conservative click tag modification enabled these compounds to infiltrate normal lipid biosynthetic pathways, thereby producing tagged PS molecules as supported by mass spectrometry studies, thin-layer chromatography (TLC) analysis, and further derivatization with fluorescent reporters via click chemistry to enable imaging in yeast cells. This approach shows strong prospects for elucidating the complex biosynthetic and trafficking pathways involving PS.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shahrina Alam
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nicholas M Wadsworth
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
36
|
Yachida N, Hoshino F, Murakami C, Ebina M, Miura Y, Sakane F. Saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids selectively interact with heat shock protein 27. J Biol Chem 2023; 299:103019. [PMID: 36791913 PMCID: PMC10023972 DOI: 10.1016/j.jbc.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Diacylglycerol kinase (DGK) α, which is a key enzyme in the progression of cancer and, in contrast, in T-cell activity attenuation, preferentially produces saturated fatty acid (SFA)- and/or monounsaturated fatty acid (MUFA)-containing phosphatidic acids (PAs), such as 16:0/16:0-, 16:0/18:0-, and 16:1/16:1-PA, in melanoma cells. In the present study, we searched for the target proteins of 16:0/16:0-PA in melanoma cells and identified heat shock protein (HSP) 27, which acts as a molecular chaperone and contributes to cancer progression. HSP27 more strongly interacted with PA than other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-bisphosphate. Moreover, HSP27 is more preferentially bound to SFA- and/or MUFA-containing PAs, including 16:0/16:0- and 16:0/18:1-PAs, than PUFA-containing PAs, including 18:0/20:4- and 18:0/22:6-PA. Furthermore, HSP27 and constitutively active DGKα expressed in COS-7 cells colocalized in a DGK activity-dependent manner. Notably, 16:0/16:0-PA, but not phosphatidylcholine or 16:0/16:0-phosphatidylserine, induced oligomer dissociation of HSP27, which enhances its chaperone activity. Intriguingly, HSP27 protein was barely detectable in Jurkat T cells, while the protein band was intensely detected in AKI melanoma cells. Taken together, these results strongly suggest that SFA- and/or MUFA-containing PAs produced by DGKα selectively target HSP27 and regulate its cancer-progressive function in melanoma cells but not in T cells.
Collapse
Affiliation(s)
- Naoto Yachida
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
37
|
Wang Y, Li J, Hao P, Li J, Han R, Lin J, Li X. Integrated Whole-Exome and Transcriptome Sequencing Indicated Dysregulation of Cholesterol Metabolism in Eyelid Sebaceous Gland Carcinoma. Transl Vis Sci Technol 2023; 12:4. [PMID: 36735267 PMCID: PMC9907373 DOI: 10.1167/tvst.12.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose To identify the molecular background of eyelid sebaceous gland carcinomas (SCs), we conducted the integrated whole-exome sequencing and transcriptome sequencing for eyelid SCs in this study. Methods The genetic alterations were studied by whole-exome sequencing, and the messenger RNA expression was studied using Oxford Nanopore Technologies (ONT) in five paired fresh eyelid SC tissues and adjacent normal tissues. Integrated analysis of exome and transcriptomic information was conducted for filtering candidate driver genes. Protein-protein interaction (PPI) network of filtered candidate genes was analyzed by STRING. The protein expression was verified by immunohistochemistry in 29 eyelid SCs and 17 compared normal sebaceous gland tissues. Results The average numbers of pathogenic somatic single-nucleotide variants (SNVs) and indels in eyelid SCs were 75 and 28, respectively. Tumor protein p53 (TP53), zinc finger protein 750 (ZNF750), filaggrin 2 (FLG2), valosin-containing protein (VCP), and zinc finger protein 717 (ZNF717) were recurrent mutated genes. A mean of 844 differentially expressed genes (DEGs) were upregulated, and 1401 DEGs were downregulated in SC samples. The intersection of DEG-based pathways and mutation-based pathways was mainly involved in microbial infection and inflammation, immunodeficiency, cancer, lipid metabolism, and the other pathways. The intersection of DEGs and mutated genes consisted of 55 genes, of which 15 genes formed a PPI network with 4 clusters. The PPI cluster composed of scavenger receptor class B member 1 (SCARB1), peroxisome proliferator-activated receptor γ (PPARG), peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) was involved in cholesterol metabolism. The expression of SCARB1 protein was found to be increased, whereas that of PPARG protein was decreased in eyelid SCs compared to that in the normal sebaceous glands. Conclusions Increased SCARB1 and decreased PPARG indicated that dysregulation of cholesterol metabolism might be involved in carcinogenesis of eyelid SCs. Translational Relevance The malfunction in cholesterol metabolism might advance our knowledge of the carcinogenesis of eyelid SCs.
Collapse
Affiliation(s)
- Yuchuan Wang
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jun Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruifang Han
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jinyong Lin
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
38
|
Ahmedi S, Manzoor N. Candida phospholipases as potential target for natural antifungals. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:281-296. [DOI: 10.1016/b978-0-323-95699-4.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Noreen S, Hasan S, Ishtiaq M, Ghumman SA. Phospholipases in cancer progression and metastasis. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:303-313. [DOI: 10.1016/b978-0-323-95697-0.00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Li X, Liu XL, Li X, Zhao YC, Wang QQ, Zhong HY, Liu DD, Yuan C, Zheng TF, Zhang M. Dickkopf1 (Dkk1) Alleviates Vascular Calcification by Regulating the Degradation of Phospholipase D1 (PLD1). J Cardiovasc Transl Res 2022; 15:1327-1339. [PMID: 35426038 DOI: 10.1007/s12265-022-10251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Vascular calcification (VC) is a significant risk factor for cardiovascular mortality and morbidity in patients with atherosclerosis (AS), chronic kidney disease, and diabetes. Dickkopf1 (Dkk1) is a multifunctional secreted glycoprotein that has been explored as a novel potential antitumor target. Recently, Dkk1 was shown to be closely associated with AS development. However, the role of Dkk1 in VC remains elusive. In this study, we explored the role and molecular mechanisms of Dkk1 in VC based on a smooth muscle-specific Dkk1-knockout (Dkk1SMKO) mouse model. Our data indicated that Dkk1 expression was decreased under calcifying conditions and that Dkk1 overexpression alleviated high phosphate-induced vascular calcification. In vivo, smooth muscle Dkk1-specific knockout aggravated vascular calcification in mice. However, phospholipase D1 (PLD1) overexpression partially weakened the protective effect of Dkk1 against vascular calcification. Mechanistically, Dkk1 slowed vascular calcification by promoting the degradation of PLD1 via the regulating autophagosome formation and maturation. In conclusion, we found that Dkk1 could alleviate vascular calcification by regulating the degradation of PLD1.
Collapse
Affiliation(s)
- Xuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao-Lin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Ya-Chao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Qian-Qian Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Hong-Yu Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Dong-Dong Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Chong Yuan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Teng-Fei Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China.
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
41
|
Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF. Aging (Albany NY) 2022; 14:9890-9907. [PMID: 36455873 PMCID: PMC9831737 DOI: 10.18632/aging.204398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inhalation of sevoflurane can cause neuronal apoptosis, and cognitive disorders, inducing to the occurrence and progression of post operative cognitive dysfunction (POCD). This study aimed to explore the roles of sevoflurane-induced POCD-associated exosomes on HMC3 cells and its related mechanisms. METHODS Exosomes were isolated from the plasma of sevoflurane-induced POCD or non-POCD patients, and were then sent for small RNA sequencing. Real-time quantitative PCR (RT-qPCR) was used to verify the sequencing results, and miR-584-5p was chosen for subsequent study. HMC3 cells were respectively transfected with POCD-derived exosomes and miR-584-5p mimics, and cell viability and apoptosis were measured. Dual-luciferase reporter gene assay was applied to confirm the target of miR-584-5p. RESULTS After sequencing, 301 differentially expressed miRNAs were identified, including 184 up-regulated miRNAs and 117 down-regulated miRNAs, and were significantly enriched in 3577 GO terms and 121 KEGG pathways. Due to the high level of miR-584-5p in sevoflurane-treated POCD-derived exosomes, HMC3 cells with miR-584-5p enrichment were successfully established. Compared with the control group, POCD-derived exosomes and miR-584-5p significantly inhibited viability and promoted apoptosis of HMC3 cells (P < 0.05). The IL-1β and TNF-α levels were significantly increased after POCD-derived exosomes and miR-584-5p mimics treatment compared to the control group (P < 0.05). Besides, POCD-derived exosomes and miR-584-5p mimics significantly down-regulated the expression levels of BDNF and p-TrkB, and up-regulated Caspase 3 and IL-1β. Finally, BDNF was confirmed to be the target of miR-584-5p. CONCLUSIONS Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p may regulate the growth of HMC3 cells via targeting BDNF.
Collapse
|
42
|
Structural insights into PA3488-mediated inactivation of Pseudomonas aeruginosa PldA. Nat Commun 2022; 13:5979. [PMID: 36216841 PMCID: PMC9550806 DOI: 10.1038/s41467-022-33690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
PldA, a phospholipase D (PLD) effector, catalyzes hydrolysis of the phosphodiester bonds of glycerophospholipids-the main component of cell membranes-and assists the invasion of the opportunistic pathogen Pseudomonas aeruginosa. As a cognate immunity protein, PA3488 can inhibit the activity of PldA to avoid self-toxicity. However, the precise inhibitory mechanism remains elusive. We determine the crystal structures of full-length and truncated PldA and the cryogenic electron microscopy structure of the PldA-PA3488 complex. Structural analysis reveals that there are different intermediates of PldA between the "open" and "closed" states of the catalytic pocket, accompanied by significant conformational changes in the "lid" region and the peripheral helical domain. Through structure-based mutational analysis, we identify the key residues responsible for the enzymatic activity of PldA. Together, these data provide an insight into the molecular mechanisms of PldA invasion and its neutralization by PA3488, aiding future design of PLD-targeted inhibitors and drugs.
Collapse
|
43
|
Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT. Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO J 2022; 41:e110038. [PMID: 35771169 PMCID: PMC9475507 DOI: 10.15252/embj.2021110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.
Collapse
Affiliation(s)
- David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK.,Projects, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vishnu Janardan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
44
|
Hoshino F, Nakayama M, Furuta M, Murakami C, Kato A, Sakane F. Phosphatidylinositol 4,5-bisphosphate-specific phospholipase C β1 selectively binds dipalmitoyl and distearoyl phosphatidic acids via Lys946 and Lys951. Lipids 2022; 57:289-302. [PMID: 36054018 DOI: 10.1002/lipd.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Phospholipase C (PLC) β1 hydrolyzes 1-stearoyl-2-arachidonoyl (18:0/20:4)-phosphatidylinositol (PtdIns) 4,5-bisphosphate to produce diacylglycerol, which is converted to phosphatidic acid (PtdOH), in the PtdIns cycle and plays pivotal roles in intracellular signal transduction. The present study identified PLCβ1 as a PtdOH-binding protein using PtdOH-containing liposomes. Moreover, the comparison of the binding of PLCβ1 to various PtdOH species, including 14:0/14:0-PtdOH, 16:0/16:0-PtdOH, 16:0/18:1-PtdOH, 18:0/18:1-PtdOH, 18:0/18:0-PtdOH, 18:1/18:1-PtdOH, 18:0/20:4-PtdOH, and 18:0/22:6-PtdOH, indicated that the interaction of PLCβ1 with 16:0/16:0-PtdOH was the strongest. The PLCβ1-binding activity of 18:0/18:0-PtdOH was almost the same as the binding activity of 16:0/16:0-PtdOH. Furthermore, the binding of PLCβ1 to 16:0/16:0-PtdOH was substantially stronger than 16:0/16:0-phosphatidylserine, 16:0/16:0/16:0/16:0-cardiolipin, 16:0/16:0-PtdIns, and 18:0/20:4-PtdIns. We revealed that a PLCβ1 mutant whose Lys946 and Lys951 residues were replaced with Glu (PLCβ1-KE) did not interact with 16:0/16:0-PtdOH and failed to localize to the plasma membrane in Neuro-2a cells. Retinoic acid-dependent increase in neurite length and numbers was significantly inhibited in PLCβ1-expressing cells; however, this considerable attenuation was not detected in the cells expressing PLCβ1-KE. Overall, these results strongly suggest that PtdOHs containing only saturated fatty acids, including 16:0/16:0-PtdOH, which are not derived from the PtdIns cycle, selectively bind to PLCβ1 and regulate its function.
Collapse
Affiliation(s)
- Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Maika Nakayama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Masataka Furuta
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.,Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Ayumu Kato
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Barber CN, Goldschmidt HL, Lilley B, Bygrave AM, Johnson RC, Huganir RL, Zack DJ, Raben DM. Differential expression patterns of phospholipase D isoforms 1 and 2 in the mammalian brain and retina. J Lipid Res 2022; 63:100247. [PMID: 35764123 PMCID: PMC9305353 DOI: 10.1016/j.jlr.2022.100247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/16/2023] Open
Abstract
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana L Goldschmidt
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard C Johnson
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Hozumi Y, Yamazaki M, Nakano T. Immunocytochemistry of phospholipase D1 and D2 in cultured cells. Biochem Biophys Res Commun 2022; 625:161-166. [DOI: 10.1016/j.bbrc.2022.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
47
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
48
|
Hai B, Song Q, Du C, Mao T, Jia F, Liu Y, Pan X, Zhu B, Liu X. Comprehensive bioinformatics analyses reveal immune genes responsible for altered immune microenvironment in intervertebral disc degeneration. Mol Genet Genomics 2022; 297:1229-1242. [PMID: 35767190 PMCID: PMC9418280 DOI: 10.1007/s00438-022-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
We sought to identify novel biomarkers and related mechanisms that might shape the immune infiltration in IDD, thereby providing novel perspective for IDD diagnosis and therapies. Gene expression data sets GSE124272 (for initial analysis) and GSE56081 (for validation analysis) involving samples from IDD patients and healthy controls were retrieved from the Gene Expression Omnibus (GEO) database. Immune genes associated with IDD were identified by GSEA; module genes that exhibited coordinated expression patterns and the strongest positive or negative correlation with IDD were identified by WGCNA. The intersection between immune genes and module genes was used for LASSO variable selection, whereby we obtained pivotal genes that were highly representative of IDD. We then correlated (Pearson correlation) the expression of pivotal genes with immune cell proportion inferred by CIBERSORT algorithm, and revealed the potential immune-regulatory roles of pivotal genes on the pathogenesis of IDD. We discovered several immune-associated pathways in which IDD-associated immune genes were highly clustered, and identified two gene modules that might promote or inhibit the pathogenesis of IDD. These candidate genes were further narrowed down to 8 pivotal genes, namely, MSH2, LY96, ADAM8, HEBP2, ANXA3, RAB24, ZBTB16 and PIK3CD, among which ANXA3, MSH2, ZBTB16, LY96, PIK3CD, ZBTB16, and ADAM8 were revealed to be correlated with the proportion of CD8 T cells and resting memory CD4 T cells. This work identified 8 pivotal genes that might be involved in the pathogenesis of IDD through triggering various immune-associated pathways and altering the composition of immune and myeloid cells in IDD patients, which provides novel perspectives on IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Qingpeng Song
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Fei Jia
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China.
| |
Collapse
|
49
|
Liu Z, Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A. DLGAP1-AS2-Mediated Phosphatidic Acid Synthesis Activates YAP Signaling and Confers Chemoresistance in Squamous Cell Carcinoma. Cancer Res 2022; 82:2887-2903. [PMID: 35731019 DOI: 10.1158/0008-5472.can-22-0717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Squamous cell carcinomas (SCC) constitute a group of human malignancies that originate from the squamous epithelium. Most SCC patients experience treatment failure and relapse and have a poor prognosis due to de novo and acquired resistance to first-line chemotherapeutic agents. To identify chemoresistance mechanisms and explore novel targets for chemosensitization, we performed whole-transcriptome sequencing of paired resistant and parental SCC cells. We identified DLGAP1 antisense RNA 2 (D-AS2) as a crucial noncoding RNA that contributes to chemoresistance in SCC. Mechanistically, D-AS2 affected chromatin accessibility around the histone mark H3K27ac of FAM3 metabolism regulating signaling molecule D (FAM3D), reducing FAM3D mRNA transcription and extracellular protein secretion. FAM3D interacted with the Gαi-coupled G protein-coupled receptors (GPCRs) formyl peptide receptor 1 (FPR1) and FPR2 to suppress phospholipase D (PLD) activity, and reduced FAM3D increased PLD signaling. Moreover, activated PLD promoted phosphatidic acid (PA) production and subsequent nuclear translocation of yes-associated protein (YAP). Accordingly, in vivo administration of a D-AS2-targeting antisense oligonucleotide sensitized SCC to cisplatin treatment. In summary, this study shows that D-AS2/FAM3D-mediated PLD/PA lipid signaling is essential for SCC chemoresistance, suggesting D-AS2 can be targeted to sensitize SCC to cytotoxic chemotherapeutic agents.
Collapse
Affiliation(s)
- Zhihua Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabing Nan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyu Luo
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Xiaowei Wu
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Shi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan Chang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Zhou
- National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Yu W, Baskin JM. Photoaffinity labeling approaches to elucidate lipid-protein interactions. Curr Opin Chem Biol 2022; 69:102173. [PMID: 35724595 DOI: 10.1016/j.cbpa.2022.102173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Lipid-protein interactions serve as the basis for many of the diverse roles of lipids. However, these noncovalent binding events are often weak, transient, or dependent upon environmental cues. Photoaffinity labeling can preserve these interactions under native conditions, enabling their biochemical profiling. Typically, photoaffinity labeling probes contain a diazirine photocrosslinker and a click chemistry handle for enrichment and downstream analysis. In this review, we summarize recent advances in the understanding the mechanisms of diazirine photocrosslinking, and we provide an overview of recent applications of photoaffinity labeling to reveal the interactions of diverse types of lipids with specific members of the proteome.
Collapse
Affiliation(s)
- Weizhi Yu
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|