1
|
Liu N, Yan WT, Xiong K. Exploring a novel mechanism for targeting β-arrestin-2 in the management of diabetic nephropathy. World J Diabetes 2025; 16:101994. [PMID: 40236866 PMCID: PMC11947922 DOI: 10.4239/wjd.v16.i4.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/04/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Diabetic nephropathy (DN) is a well-known microvascular complication in patients with diabetes mellitus, which is characterized by the accumulation of extracellular matrix in the glomerular and tubulointerstitial compartments, along with the hyalinization of intrarenal vasculature. DN has recently emerged as a leading cause of chronic and end-stage renal disease. While the pathobiology of other diabetic microvascular complications, such as retinopathy, is largely understood and has reasonable therapeutic options, the mechanisms and management strategies for DN remain incompletely elucidated. In this editorial, we comment on the article by Liu et al, focusing on the mechanisms underlying the detrimental impact of β-arrestin-2 on the kidneys in the context of DN. The authors suggest that inhibiting β-arrestin-2 could alleviate renal damage through suppressing apoptosis of glomerular endothelial cells (GENCs), highlighting β-arrestin-2 as a promising therapeutic target for DN. The study proposed that β-arrestin-2 triggers endoplasmic reticulum (ER) stress via the ATF6 signaling pathway, thereby promoting GENC apoptosis and exacerbating DN progression. Given the novel and crucial role of β-arrestin-2 in ER stress-related DN, it is imperative to further explore β-arrestin-2, its roles in ER stress and the potential therapeutic implications in DN.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
2
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
3
|
Jiang Q, Che T. How Ligands Achieve Biased Signaling toward Arrestins. Biochemistry 2025; 64:967-977. [PMID: 39943784 PMCID: PMC11936672 DOI: 10.1021/acs.biochem.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
G protein-coupled receptors (GPCRs) mediate the effects of various endogenous and extracellular stimuli through multiple transducers, including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. Biased signaling, which preferentially activates certain G protein or GRK/arrestin signaling pathways, provides great opportunities for developing drugs with enhanced therapeutic efficacy and minimized side effects. In this Review, we review studies addressing the structural dynamics of GPCRs bound to balanced and biased ligands and current consensus on how ligand-receptor interactions determine signaling outcomes. We also examine the conformational changes in GPCRs when in complex with G proteins, arrestins, and GRKs, highlighting a more profound impact of signal transducers on receptor rearrangements compared with biased ligands. This evidence supports the idea that biased signaling can be achieved through the promotion of multiple conformational states by biased agonists and the stabilization of specific active conformations by individual signal transducers.
Collapse
Affiliation(s)
- Qianru Jiang
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University Medical School, Saint Louis, Missouri 63110, United States
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University Medical School, Saint Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Liu L, Rashid M, Wess J. Regulation of GLP-1 and Glucagon Receptor Function by β-Arrestins in Metabolically Important Cell Types. Biochemistry 2025; 64:978-986. [PMID: 39983043 DOI: 10.1021/acs.biochem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucagon (GCG) are polypeptides derived from a common precursor (preproglucagon) that modulates the activity of numerous cell types involved in regulating glucose and energy homeostasis. GLP-1 and GCG exert their biological functions via binding to specific G protein-coupled receptors (GLP-1Rs and GCGRs). Ligand-activated GLP-1Rs and GCGRs preferentially activate the heterotrimeric G protein Gs, resulting in increased cytosolic cAMP levels. However, activation of the two receptors also leads to the recruitment of β-arrestin-1 and -2 (βarr1 and βarr2, respectively) to the intracellular surface of the receptor proteins. The binding of β-arrestins to the activated receptors contributes to the termination of receptor-stimulated G protein coupling. In addition, receptor-β-arrestin complexes can act as signaling nodes in their own right by modulating the activity of many intracellular signaling pathways. In this Review, we will discuss the roles of βarr1 and βarr2 in regulating key metabolic functions mediated by activated GLP-1Rs and GCGRs. During the past decade, GLP-1R agonists have emerged as highly efficacious antidiabetic and antiobesity drugs. Moreover, dual agonists that stimulate both GLP-1Rs and GCGRs are predicted to offer additional therapeutic benefits as compared to GLP-1R agonist monotherapy. We will summarize and try to synthesize a series of studies suggesting that the development of G protein-biased GLP-1R and/or GCGR agonists, which do not lead to the recruitment of β-arrestins, may lead to even more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Misbah Rashid
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Ju J, Li Z, Liu J, Peng X, Gao F. Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. Int J Mol Sci 2025; 26:1862. [PMID: 40076488 PMCID: PMC11899445 DOI: 10.3390/ijms26051862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Opioids are the most effective option for severe pain. However, it is well documented that the side effects associated with prolonged opioid use significantly constrain dosage in the clinical setting. Recently, researchers have concentrated on the development of biased opioid receptor agonists that preferentially activate the G protein signaling pathway over β-arrestin signaling. This approach is based on the hypothesis that G protein signaling mediates analgesic effects, whereas β-arrestin signaling is implicated in adverse side effects. Although certain studies have demonstrated that the absence or inhibition of β-arrestin signaling can mitigate the incidence of side effects, recent research appears to challenge these earlier findings. In-depth investigations into biased signal transduction of opioid receptor agonists have been conducted, potentially offering novel insights for the development of biased opioid receptors. Consequently, this review elucidates the contradictory roles of β-arrestin signaling in the adverse reactions associated with opioid receptor activation. Furthermore, a comparative analysis was conducted to evaluate the efficacy of the classic G protein-biased agonists, TRV130 and PZM21, relative to the traditional non-biased agonist morphine. This review aims to inform the development of novel analgesic drugs that can optimize therapeutic efficacy and safety, while minimizing adverse reactions to the greatest extent possible.
Collapse
Affiliation(s)
| | | | | | | | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.J.); (Z.L.); (J.L.); (X.P.)
| |
Collapse
|
6
|
Vishnivetskiy SA, Paul T, Gurevich EV, Gurevich VV. The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding. Int J Mol Sci 2025; 26:715. [PMID: 39859432 PMCID: PMC11765510 DOI: 10.3390/ijms26020715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin. Profound effects of mutations identified lysine-15 as the main phosphate sensor and phenylalanine-13 as the key anchor of the C-terminus. These residues are conserved in all arrestin subtypes. Substitutions of five other residues reduced arrestin-1 selectivity for phosphorylated rhodopsin, indicating that wild-type residues participate in fine-tuning of arrestin-1 binding. Differential effects of numerous substitutions in wild-type and an enhanced mutant arrestin-1 suggest that these two proteins bind rhodopsin differently.
Collapse
Affiliation(s)
- Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Trishita Paul
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| |
Collapse
|
7
|
Zheng C, Nguyen KK, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Arrestin-3 binds parkin and enhances parkin-dependent mitophagy. J Neurochem 2025; 169:e16043. [PMID: 38196269 PMCID: PMC11231064 DOI: 10.1111/jnc.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Arrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent. Here, we demonstrate that arrestin-3 binds the E3 ubiquitin ligase parkin via multiple sites, preferentially interacting with its RING0 domain. Identification of the parkin domains involved suggests that arrestin-3 likely relieves parkin autoinhibition and/or stabilizes the enzymatically active "open" conformation of parkin. Arrestin-3 binding enhances ubiquitination by parkin of the mitochondrial protein mitofusin-1 and facilitates parkin-mediated mitophagy in HeLa cells. Furthermore, arrestin-3 and its mutant with enhanced parkin binding rescue mitofusin-1 ubiquitination and mitophagy in the presence of the Parkinson's disease-associated R275W parkin mutant, which is defective in both functions. Thus, modulation of parkin activity via arrestin-3 might be a novel strategy of anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin K. Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
8
|
Kurt H, Akyol A, Son CD, Zheng C, Gado I, Meli M, Ferrandi EE, Bassanini I, Vasile F, Gurevich VV, Nebol A, Cagavi E, Morra G, Sensoy O. A small molecule enhances arrestin-3 binding to the β 2-adrenergic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628161. [PMID: 39713392 PMCID: PMC11661165 DOI: 10.1101/2024.12.12.628161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders. We performed virtual screening on druggable pockets identified on pre-activated conformations in Molecular Dynamics trajectories of arrestin-3, and found a compound targeting an activation switch, the back loop at the inter-domain interface. According to our model, consistent with available biochemical and structural data, the compound destabilized the ionic lock between the finger and the back loop, and enabled transition of the `gate loop` towards the pre-activated state, which stabilizes pre-activated inter-domain rotation. The predicted binding pocket is consistent with saturation-transfer difference NMR data indicating close contact between the piperazine moiety of the compound and C/finger loops. The compound increases in-cell arrestin-3 binding to phosphorylation-deficient and wild-type β2-adrenergic receptor, but not to muscarinic M2 receptor, as verified by FRET and NanoBiT. This study demonstrates that the back loop can be targeted to modulate interaction of arrestin with phosphorylation-deficient GPCRs in a receptor-specific manner.
Collapse
Affiliation(s)
- Han Kurt
- Istanbul Medipol University, Graduate School of Engineering and Natural Sciences, 34810, Istanbul, Turkey
- present address: University of Cagliari, Department of Physics, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Ali Akyol
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Cagdas Devrim Son
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Chen Zheng
- Vanderbilt University, Department of Pharmacology, 37232, Nashville, TN, USA
| | - Irene Gado
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | - Massimiliano Meli
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Erica Elisa Ferrandi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ivan Bassanini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Francesca Vasile
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | | | - Aylin Nebol
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Esra Cagavi
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Giulia Morra
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ozge Sensoy
- Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
| |
Collapse
|
9
|
Lou F, Zhou W, Tunc-Ozdemir M, Yang J, Velazhahan V, Tate CG, Jones AM. VPS26 Moonlights as a β-Arrestin-like Adapter for a 7-Transmembrane RGS Protein in Arabidopsis thaliana. Biochemistry 2024; 63:2990-2999. [PMID: 39467170 PMCID: PMC11580166 DOI: 10.1021/acs.biochem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, β-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting β-arrestin, but it is not clear how. Arrestins are not encoded in the Arabidopsis thaliana genome, yet Arabidopsis cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.
Collapse
Affiliation(s)
- Fei Lou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Wenbin Zhou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Meral Tunc-Ozdemir
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jing Yang
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Vaithish Velazhahan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
- Gonville
and Caius College, University of Cambridge, Cambridge CB2 1TA, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - Alan M. Jones
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Pharmacology, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Janket SJ, Chatanaka MK, Sohaei D, Tamimi F, Meurman JH, Diamandis EP. Does Incretin Agonism Have Sustainable Efficacy? Cells 2024; 13:1842. [PMID: 39594592 PMCID: PMC11592889 DOI: 10.3390/cells13221842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones secreted by gut endothelial cells triggered by nutrient ingestion. The phenomenon that oral ingestion of glucose elicits a much higher insulin secretion than intra-venous injection of equimolar glucose is known as the incretin effect. This also alludes to the thesis that food intake is the root cause of insulin resistance. Synthetic GLP-1 and GIP agonists have demonstrated unprecedented glucoregulation and body weight reduction. Also, randomized trials have shown their ability to prevent complications of obesity, including development of diabetes from prediabetes, reducing cardiovascular disease risks and renal complications in diabetic patients. Moreover, the benefits of these agonists persist among the patients who are already on metformin or insulin. The ultimate question is "Are these benefits of incretin agonism sustainable?" Chronic agonism of pancreatic β-cells may decrease the number of receptors and cause β-cell exhaustion, leading to β-cell failure. Unfortunately, the long-term effects of these drugs are unknown at the present because the longest duration in randomized trials is 3 years. Additionally, manipulation of the neurohormonal axis to control satiety and food intake may hinder the long-term sustainability of these treatments. In this review, we will discuss the incretins' mechanism of action, challenges, and future directions. We will briefly review other molecules involved in glucose homeostasis such as amylin and glucagon. Amylin is co-expressed with insulin from the pancreas β-cells but does not have insulinotropic function. Amylin suppresses glucagon secretion, slowing gastric emptying and suppressing the reward center in the central nervous system, leading to weight loss. However, amylin can self-aggregate and cause serious cytotoxicity and may cause β-cell apoptosis. Glucagon is secreted by pancreatic α-cells and participates in glucose homeostasis in a glucose-dependent manner. In hypoglycemia, glucagon increases the blood glucose level by glycogenolysis and gluconeogenesis and inhibits glycogenesis in the liver. Several triple agonists, in combination with dual incretins and glucagon, are being developed.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Retired Research Associate Professor, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA;
| | - Miyo K. Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dorsa Sohaei
- M.D., C.M. Candidate 2026, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A QT2, Canada;
| | - Faleh Tamimi
- Department of Restorative Dentistry, College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, FI-00290 Helsinki, Finland;
| | | |
Collapse
|
11
|
Tóth AD, Turu G, Hunyady L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol 2024; 20:722-741. [PMID: 39039165 DOI: 10.1038/s41581-024-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor's signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations - a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.
Collapse
MESH Headings
- Humans
- Ligands
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/physiology
- Animals
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Kidney Diseases/metabolism
- Kidney/metabolism
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Gao PP, Li L, Chen TT, Li N, Li MQ, Zhang HJ, Chen YN, Zhang SH, Wei W, Sun WY. β-arrestin2: an emerging player and potential therapeutic target in inflammatory immune diseases. Acta Pharmacol Sin 2024:10.1038/s41401-024-01390-w. [PMID: 39349766 DOI: 10.1038/s41401-024-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 03/17/2025]
Abstract
β-arrestin2, a pivotal protein within the arrestin family, is localized in the cytoplasm, plasma membrane and nucleus, and regulates G protein-coupled receptors (GPCRs) signaling. Recent evidence shows that β-arrestin2 plays a dual role in regulating GPCRs by mediating desensitization and internalization, and by acting as a scaffold for the internalization, kinase activation, and the modulation of various signaling pathways, including NF-κB, MAPK, and TGF-β pathways of non-GPCRs. Earlier studies have identified that β-arrestin2 is essential in regulating immune cell infiltration, inflammatory factor release, and inflammatory cell proliferation. Evidently, β-arrestin2 is integral to the pathological mechanisms of inflammatory immune diseases, such as inflammatory bowel disease, sepsis, asthma, rheumatoid arthritis, organ fibrosis, and tumors. Research on the modulation of β-arrestin2 offers a promising strategy for the development of pharmaceuticals targeting inflammatory immune diseases. This review meticulously describes the roles of β-arrestin2 in cells associated with inflammatory immune responses and explores its pathological relevance in various inflammatory immune diseases.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
13
|
Wu S, Liu H, Yi J, Xu M, Jiang J, Tao J, Wu B. β-arrestin1 protects intestinal tight junction through promoting mitofusin 2 transcription to drive parkin-dependent mitophagy in colitis. Gastroenterol Rep (Oxf) 2024; 12:goae084. [PMID: 39246845 PMCID: PMC11379473 DOI: 10.1093/gastro/goae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 09/10/2024] Open
Abstract
Background Intestinal barrier defect is an essential inflammatory bowel disease (IBD) pathogenesis. Mitochondrial dysfunction results in energy deficiency and oxidative stress, which contribute to the pathogenesis of IBD. β-arrestin1 (ARRB1) is a negative regulator that promotes G protein-coupled receptors desensitization, endocytosis, and degradation. However, its role in maintaining the intestinal barrier remains unclear. Methods Dextran sulfate sodium-induced colitis was performed in ARRB1 knockout and wild-type mice. Intestinal permeability and tight junction proteins were measured to evaluate the intestinal barrier. Mitochondria function and mitophagic flux in mice and cell lines were detected. Finally, the interaction between ARRB1 and mitofusin 2 was investigated by co-immunoprecipitation and dual luciferase assay. Results We identified that ARRB1 protected the intestinal tight junction barrier against experimental colitis in vivo. ARRB1 deficiency was accompanied by abnormal mitochondrial morphology, lower adenosine triphosphate (ATP) production, and severe oxidative stress. In vitro, the knockdown of ARRB1 reduced ATP levels and mitochondrial membrane potential while increasing reactive oxygen species levels and oxidative stress. Upon ARRB1 ablation, mitophagy was inhibited, accompanied by decreased LC3BII, phosphatase and tension homologue-induced protein kinase1 (PINK1), and parkin, but increased p62 expression. Mitophagy inhibition via PINK1 siRNA or mitochondrial division inhibitor 1 impaired ARRB1-mediated tight junction protection. The interaction of ARRB1 with E2F1 activated mitophagy by enhancing the transcription of mitofusin 2. Conclusions Our results suggest that ARRB1 is critical to maintaining the intestinal tight junction barrier by promoting mitophagy. These results reveal a novel link between ARRB1 and the intestinal tight junction barrier, which provides theoretical support for colitis treatment.
Collapse
Affiliation(s)
- Shuyun Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jiazhi Yi
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Minyi Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
14
|
Qi M, Chen TT, Li L, Gao PP, Li N, Zhang SH, Wei W, Sun WY. Insight into the regulatory mechanism of β-arrestin2 and its emerging role in diseases. Br J Pharmacol 2024; 181:3019-3038. [PMID: 38961617 DOI: 10.1111/bph.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
β-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that β-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of β-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of β-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of β-arrestin2. This review summarizes the structure and function of β-arrestin2 and reveals the mechanisms involved in the regulation of β-arrestin2 at multiple levels. Additionally, recent studies on the role of β-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting β-arrestin2.
Collapse
Affiliation(s)
- Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
15
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
16
|
Pakharukova N, Thomas BN, Bansia H, Li L, Abzalimov RR, Kim J, Kahsai AW, Pani B, Bassford DK, Liu S, Zhang X, des Georges A, Lefkowitz RJ. Beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605623. [PMID: 39131402 PMCID: PMC11312540 DOI: 10.1101/2024.07.31.605623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Beta-arrestins (βarrs) are key regulators and transducers of G-protein coupled receptor signaling; however, little is known of how βarrs communicate with their downstream effectors. Here, we use cryo-electron microscopy to elucidate how βarr1 recruits and activates non-receptor tyrosine kinase Src. βarr1 binds Src SH3 domain via two distinct sites: a polyproline site in the N-domain and a non-proline site in the central crest region. At both sites βarr1 interacts with the aromatic surface of SH3 which is critical for Src autoinhibition, suggesting that βarr1 activates Src by SH3 domain displacement. Binding of SH3 to the central crest region induces structural rearrangements in the β-strand V, finger, and middle loops of βarr1 and interferes with βarr1 coupling to the receptor core potentially impacting receptor desensitization and downstream signaling.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Brittany N Thomas
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Harsh Bansia
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Linus Li
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Rinat R Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Dana K Bassford
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Shibo Liu
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Xingdong Zhang
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York; New York, NY 10031, USA
- Biochemistry and Chemistry PhD Programs, Graduate Center, City University of New York; New York, NY 10031, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
- Department of Biochemistry, Duke University Medical Center; Durham, NC 27710, USA
| |
Collapse
|
17
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
18
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Pair FS, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral sensitization. Cell Rep Med 2024; 5:101623. [PMID: 38936368 PMCID: PMC11293330 DOI: 10.1016/j.xcrm.2024.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
In rodents with unilateral ablation of neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA induces a progressive increase of behavioral responses, a process known as behavioral sensitization. This sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of these mice, we find that the restoration of arrestin-3 fully rescues behavioral sensitization, whereas its mutant defective in c-Jun N-terminal kinase (JNK) activation does not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in direct pathway striatal neurons, also fully rescues sensitization, whereas an inactive homologous arrestin-2-derived peptide does not. Behavioral rescue is accompanied by the restoration of JNK3 activity, as reflected by JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-assisted JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization upon dopamine depletion and chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Mohamed R Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA; University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Jeffery L Dunning
- Contet Laboratory, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Mohamed S Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Connie Ge
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - F Sanders Pair
- The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
20
|
Lattanzi R, Casella I, Fullone MR, Vincenzi M, Maftei D, Miele R. Mapping the interaction site for β-arrestin-2 in the prokineticin 2 receptor. Cell Signal 2024; 119:111175. [PMID: 38631405 DOI: 10.1016/j.cellsig.2024.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
G protein-coupled receptors (GPCRs) are a family of cell membrane receptors that couple and activate heterotrimeric G proteins and their associated intracellular signalling processes after ligand binding. Although the carboxyl terminal of the receptors is essential for this action, it can also serve as a docking site for regulatory proteins such as the β-arrestins. Prokineticin receptors (PKR1 and PKR2) are a new class of GPCRs that are able to activate different classes of G proteins and form complexes with β-arrestins after activation by the endogenous agonists PK2. The aim of this work was to define the molecular determinants within PKR2 that are required for β-arrestin-2 binding and to investigate the role of β-arrestin-2 in the signalling pathways induced by PKR2 activation. Our data show that PKR2 binds constitutively to β-arrestin-2 and that this process occurs through the core region of the receptor without being affected by the carboxy-terminal region. Indeed, a PKR2 mutant lacking the carboxy-terminal amino acids retains the ability to bind constitutively to β-arrestin-2, whereas a mutant lacking the third intracellular loop does not. Overall, our data suggest that the C-terminus of PKR2 is critical for the stability of the β-arrestin-2-receptor complex in the presence of PK2 ligand. This leads to the β-arrestin-2 conformational change required to initiate intracellular signalling that ultimately leads to ERK phosphorylation and activation.
Collapse
Affiliation(s)
- R Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - I Casella
- Dipartimento del Farmaco, Istituto Superiore di Sanita, I-00161 Rome, Italy
| | - M R Fullone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - M Vincenzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - D Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - R Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
21
|
Murphy RE, Wang P, Ali S, Smith HR, Felsing DE, Chen H, Zhou J, Allen JA. Discovery of 3-((4-Benzylpyridin-2-yl)amino)benzamides as Potent GPR52 G Protein-Biased Agonists. J Med Chem 2024; 67:9709-9730. [PMID: 38788241 PMCID: PMC11441106 DOI: 10.1021/acs.jmedchem.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead 4a employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as 10a (PW0677), 15b (PW0729), and 24f (PW0866), with improved potency and efficacy. Intriguingly, compounds 10a and 24f showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound 4a, indicating that reducing GPR52 β-arrestin activity with biased agonism results in sustained GPR52 activation. Further exploration of compounds 15b and 24f indicated improved potency and efficacy, and excellent target selectivity, but limited brain exposure warranting further optimization. These balanced and biased GPR52 agonists provide important pharmacological tools to study GPR52 activation, signaling bias, and therapeutic potential for neuropsychiatric and neurological diseases.
Collapse
Affiliation(s)
- Ryan E. Murphy
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Ocean University of China, Qingdao, Shangdong 266003, China
| | - Saghir Ali
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hudson R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Daniel E. Felsing
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Neurocrine Biosciences, San Diego, California 92130, United States
| | - Haiying Chen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
22
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
23
|
Tóth AD, Soltész-Katona E, Kis K, Guti V, Gilzer S, Prokop S, Boros R, Misák Á, Balla A, Várnai P, Turiák L, Ács A, Drahos L, Inoue A, Hunyady L, Turu G. ArreSTick motif controls β-arrestin-binding stability and extends phosphorylation-dependent β-arrestin interactions to non-receptor proteins. Cell Rep 2024; 43:114241. [PMID: 38758647 DOI: 10.1016/j.celrep.2024.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
The binding and function of β-arrestins are regulated by specific phosphorylation motifs present in G protein-coupled receptors (GPCRs). However, the exact arrangement of phosphorylated amino acids responsible for establishing a stable interaction remains unclear. We employ a 1D sequence convolution model trained on GPCRs with established β-arrestin-binding properties. With this approach, amino acid motifs characteristic of GPCRs that form stable interactions with β-arrestins can be identified, a pattern that we name "arreSTick." Intriguingly, the arreSTick pattern is also present in numerous non-receptor proteins. Using proximity biotinylation assay and mass spectrometry analysis, we demonstrate that the arreSTick motif controls the interaction between many non-receptor proteins and β-arrestin2. The HIV-1 Tat-specific factor 1 (HTSF1 or HTATSF1), a nuclear transcription factor, contains the arreSTick pattern, and its subcellular localization is influenced by β-arrestin2. Our findings unveil a broader role for β-arrestins in phosphorylation-dependent interactions, extending beyond GPCRs to encompass non-receptor proteins as well.
Collapse
Affiliation(s)
- András Dávid Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary; Department of Internal Medicine and Haematology, Semmelweis University, Szentkirályi street 46, 1088 Budapest, Hungary
| | - Eszter Soltész-Katona
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary; Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Katalin Kis
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Viktor Guti
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Sharon Gilzer
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Roxána Boros
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Ádám Misák
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - András Balla
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; HUN-REN SE Hungarian Research Network Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; HUN-REN SE Hungarian Research Network Laboratory of Molecular Physiology, Budapest, Hungary
| | - Lilla Turiák
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary
| | - András Ács
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary
| | - László Drahos
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary; Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary.
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., 1117 Budapest, Hungary; Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
24
|
Fu Y, Zhu W, Zhou Y, Su Y, Li Z, Zhang D, Zhang D, Shen J, Liang J. RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:956-972. [PMID: 38558526 DOI: 10.1111/jipb.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.
Collapse
Affiliation(s)
- Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyu Shen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
25
|
Gurevich VV, Gurevich EV. Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. APPLIED MAGNETIC RESONANCE 2024; 55:11-25. [DOI: 10.1007/s00723-023-01561-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 02/03/2025]
|
26
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
27
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
28
|
Lattanzi R, Casella I, Fullone MR, Maftei D, Vincenzi M, Miele R. MRAP2 Inhibits β-Arrestin-2 Recruitment to the Prokineticin Receptor 2. Curr Issues Mol Biol 2024; 46:1607-1620. [PMID: 38392222 PMCID: PMC10887741 DOI: 10.3390/cimb46020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit β-arrestins upon PK2 stimulation, although the interaction between PKR2 and β-arrestins does not trigger receptor internalisation. MRAP2 inhibits the anorexigenic effect of PK2 by binding PKR1 and PKR2. The aim of this work was to elucidate the role of MRAP2 in modulating PKR2-induced β-arrestin-2 recruitment and β-arrestin-mediated signalling. This study could allow the identification of new specific targets for potential new drugs useful for the treatment of the various pathologies correlated with prokineticin, in particular, obesity.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Ida Casella
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
29
|
Gardner J, Eiger DS, Hicks C, Choi I, Pham U, Chundi A, Namjoshi O, Rajagopal S. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization. Sci Signal 2024; 17:eadd9139. [PMID: 38349966 PMCID: PMC10927030 DOI: 10.1126/scisignal.add9139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of β-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.
Collapse
Affiliation(s)
- Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Ojas Namjoshi
- Center for Drug Discovery RTI International, Research Triangle Park, NC, 27709, USA
- Present address: Engine Biosciences, 733 Industrial Rd., San Carlos, CA, 94070, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
30
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
31
|
Hicks C, Gardner J, Eiger DS, Camarda ND, Pham U, Dhar S, Rodriguez H, Chundi A, Rajagopal S. ACKR3 Proximity Labeling Identifies Novel G protein- and β-arrestin-independent GPCR Interacting Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577545. [PMID: 38410489 PMCID: PMC10896341 DOI: 10.1101/2024.01.27.577545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The canonical paradigm of GPCR signaling recognizes G proteins and β-arrestins as the two primary transducers that promote GPCR signaling. Recent evidence suggests the atypical chemokine receptor 3 (ACKR3) does not couple to G proteins, and β-arrestins are dispensable for some of its functions. Here, we employed proximity labeling to identify proteins that interact with ACKR3 in cells devoid of β-arrestin. We identified proteins involved in the endocytic machinery and evaluated a subset of proteins conserved across several GPCR-based proximity labeling experiments. We discovered that the bone morphogenic protein 2-inducible kinase (BMP2K) interacts with many different GPCRs with varying dependency on β-arrestin. Together, our work highlights the existence of modulators that can act independently of G proteins and β-arrestins to regulate GPCR signaling and provides important evidence for other targets that may regulate GPCR signaling.
Collapse
Affiliation(s)
- Chloe Hicks
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia Gardner
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Nicholas D. Camarda
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Saisha Dhar
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
32
|
Chen Y, Sonawane A, Manda R, Gadi RK, Tesmer JJG, Ghosh AK. Development of a new class of potent and highly selective G protein-coupled receptor kinase 5 inhibitors and structural insight from crystal structures of inhibitor complexes. Eur J Med Chem 2024; 264:115931. [PMID: 38016297 PMCID: PMC10841647 DOI: 10.1016/j.ejmech.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
G protein-coupled receptor kinase 5 (GRK5) is an important drug development target for heart failure, cardiac hypertrophy, and cancer. We have designed and developed a new class of highly selective, potent, and non-covalent GRK5 inhibitors. One of the inhibitors displayed GRK5 IC50 value of 10 nM and exhibited >100,000-fold selectivity over GRK2. The X-ray structure of a ketoamide-derived inhibitor-bound GRK5 showed the formation of a hemithioketal intermediate with active site Cys474 in the GRK5 active site and provided new insights into the ligand-binding site interactions responsible for high selectivity. The current studies serve as an important guide to therapeutic GRK5 inhibitor drug development.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Manda
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
33
|
Maharana J, Sano FK, Sarma P, Yadav MK, Duan L, Stepniewski TM, Chaturvedi M, Ranjan A, Singh V, Saha S, Mahajan G, Chami M, Shihoya W, Selent J, Chung KY, Banerjee R, Nureki O, Shukla AK. Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors. Science 2024; 383:101-108. [PMID: 38175886 PMCID: PMC7615931 DOI: 10.1126/science.adj3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
β-arrestins (βarrs) are multifunctional proteins involved in signaling and regulation of seven transmembrane receptors (7TMRs), and their interaction is driven primarily by agonist-induced receptor activation and phosphorylation. Here, we present seven cryo-electron microscopy structures of βarrs either in the basal state, activated by the muscarinic receptor subtype 2 (M2R) through its third intracellular loop, or activated by the βarr-biased decoy D6 receptor (D6R). Combined with biochemical, cellular, and biophysical experiments, these structural snapshots allow the visualization of atypical engagement of βarrs with 7TMRs and also reveal a structural transition in the carboxyl terminus of βarr2 from a β strand to an α helix upon activation by D6R. Our study provides previously unanticipated molecular insights into the structural and functional diversity encoded in 7TMR-βarr complexes with direct implications for exploring novel therapeutic avenues.
Collapse
Affiliation(s)
- Jagannath Maharana
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K. Sano
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Parishmita Sarma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K. Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Longhan Duan
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tomasz M. Stepniewski
- Research Program on Biomedical Informatics, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Madhu Chaturvedi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashutosh Ranjan
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Vinay Singh
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Gargi Mahajan
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Wataru Shihoya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Osamu Nureki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Arun K. Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
34
|
Acampora G, Zhang Y. Chronic opioid pain treatment converted to buprenorphine: A case series using a 3-step low-dose incremental dosing guideline. J Opioid Manag 2024; 20:51-56. [PMID: 38533715 DOI: 10.5055/jom.0822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We report a 30-case series from the Pain Management Center at the Massachusetts General Hospital where we have applied a guideline to convert chronic treatment for pain from full agonist opioids (FAO) to buprenorphine (BUP). Of the patients, 24 (80 percent) elected to continue BUP over FAO. Five conversions were stopped for side effects (fatigue) and/or lack of sufficient pain reduction. One patient elected not to participate on the day that the conversion was to begin. There were no major adverse events. We conclude that conversion to BUP should be considered as an alternative to treat patients on chronic opioids for pain.
Collapse
Affiliation(s)
- Gregory Acampora
- Harvard Medical School, Psychiatry, Massachusetts General Hospital, Boston, Mas-sachusetts. ORCID: https://orcid.org/0000-0001-8873-8453
| | - Yi Zhang
- Harvard Medical School, Anesthesiology, Massachusetts General Hospital, Boston, Mas-sachusetts. ORCID: https://orcid.org/0000-0002-4081-5146
| |
Collapse
|
35
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
36
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
37
|
Zhang R, Chen J. Research progress on the role of orphan receptor GPR139 in neuropsychiatric behaviours. Eur J Pharmacol 2023; 960:176150. [PMID: 38059447 DOI: 10.1016/j.ejphar.2023.176150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
38
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
39
|
Cismas S, Pasca S, Crudden C, Trocoli Drakensjo I, Suleymanova N, Zhang S, Gebhard B, Song D, Neo S, Shibano T, Smith TJ, Calin GA, Girnita A, Girnita L. Competing Engagement of β-arrestin Isoforms Balances IGF1R/p53 Signaling and Controls Melanoma Cell Chemotherapeutic Responsiveness. Mol Cancer Res 2023; 21:1288-1302. [PMID: 37584671 DOI: 10.1158/1541-7786.mcr-22-0871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/01/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
Constraints on the p53 tumor suppressor pathway have long been associated with the progression, therapeutic resistance, and poor prognosis of melanoma, the most aggressive form of skin cancer. Likewise, the insulin-like growth factor type 1 receptor (IGF1R) is recognized as an essential coordinator of transformation, proliferation, survival, and migration of melanoma cells. Given that β-arrestin (β-arr) system critically governs the anti/pro-tumorigenic p53/IGF1R signaling pathways through their common E3 ubiquitin-protein ligase MDM2, we explore whether unbalancing this system downstream of IGF1R can enhance the response of melanoma cells to chemotherapy. Altering β-arr expression demonstrated that both β-arr1-silencing and β-arr2-overexpression (-β-arr1/+β-arr2) facilitated nuclear-to-cytosolic MDM2 translocation accompanied by decreased IGF1R expression, while increasing p53 levels, resulting in reduced cell proliferation/survival. Imbalance towards β-arr2 (-β-arr1/+β-arr2) synergizes with the chemotherapeutic agent, dacarbazine, in promoting melanoma cell toxicity. In both 3D spheroid models and in vivo in zebrafish models, this combination strategy, through dual IGF1R downregulation/p53 activation, limits melanoma cell growth, survival and metastatic spread. In clinical settings, analysis of the TCGA-SKCM patient cohort confirms β-arr1-/β-arr2+ imbalance as a metastatic melanoma vulnerability that may enhance therapeutic benefit. Our findings suggest that under steady-state conditions, IGF1R/p53-tumor promotion/suppression status-quo is preserved by β-arr1/2 homeostasis. Biasing this balance towards β-arr2 can limit the protumorigenic IGF1R activities while enhancing p53 activity, thus reducing multiple cancer-sustaining mechanisms. Combined with other therapeutics, this strategy improves patient responses and outcomes to therapies relying on p53 or IGF1R pathways. IMPLICATIONS Altogether, β-arrestin system bias downstream IGF1R is an important metastatic melanoma vulnerability that may be conductive for therapeutic benefit.
Collapse
Affiliation(s)
- Sonia Cismas
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sylvya Pasca
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Caitrin Crudden
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Iara Trocoli Drakensjo
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Naida Suleymanova
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Simin Zhang
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Gebhard
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dawei Song
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Shiyong Neo
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Singapore Immunology Network SIgN, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Takashi Shibano
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Terry J Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ada Girnita
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Eissa AM, Hassanin MH, Ibrahim IAAEH. Hepatic β-arrestins: potential roles in liver health and disease. Mol Biol Rep 2023; 50:10399-10407. [PMID: 37843713 PMCID: PMC10676313 DOI: 10.1007/s11033-023-08898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Β-arrestins are intracellular scaffolding proteins that have multifaceted roles in different types of disorders. In this review article, we gave a summary about the discovery, characterization and classification of these proteins and their intracellular functions. Moreover, this review article focused on the hepatic expression of β-arrestins and their hepatocellular distribution and function in each liver cell type. Also, we showed that β-arrestins are key regulators of distinct types of hepatic disorders. On the other hand, we addressed some important points that have never been studied before regarding the role of β-arrestins in certain types of hepatic disorders which needs more research efforts to cover.
Collapse
Affiliation(s)
| | | | - Islam A A E H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
41
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
42
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Sanders Pair F, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral and signaling plasticity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564447. [PMID: 37961199 PMCID: PMC10634923 DOI: 10.1101/2023.10.27.564447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in the direct pathway striatal neurons, fully rescued sensitization, whereas an inactive homologous arrestin-2-derived peptide did not. Behavioral rescue was accompanied by the restoration of JNK3 activity and of JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-dependent JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Mohamed S. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
43
|
Kahsai AW, Shah KS, Shim PJ, Lee MA, Shreiber BN, Schwalb AM, Zhang X, Kwon HY, Huang LY, Soderblom EJ, Ahn S, Lefkowitz RJ. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2303794120. [PMID: 37844230 PMCID: PMC10614829 DOI: 10.1073/pnas.2303794120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
β-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. β-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. β-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, β-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by β-arrestins. Here, we demonstrate that β-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that β-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which β-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state β-arrestin 2 is more robust than by active-state β-arrestin 1, highlighting differential capacities of β-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which β-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.
Collapse
Affiliation(s)
- Alem W. Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kunal S. Shah
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Paul J. Shim
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Medicine, College of Medicine, The University of Arizona, Phoenix, AZ85004
| | - Mason A. Lee
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Bowie N. Shreiber
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Allison M. Schwalb
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Xingdong Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Henry Y. Kwon
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- General Surgery Residency Program, Henry Ford Hospital, Detroit, MI48202
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Erik J. Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC27710
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Biochemistry, Duke University Medical Center, Durham, NC27710
- Department of Chemistry, Duke University Medical Center, Durham, NC27710
- HHMI, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
44
|
Sivakumar M, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Network-Derived Radioresistant Breast Cancer Target with Candidate Inhibitors from Brown Algae: A Sequential Assessment from Target Selection to Quantum Chemical Calculation. Mar Drugs 2023; 21:545. [PMID: 37888480 PMCID: PMC10608582 DOI: 10.3390/md21100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant progress in early detection and treatment, a few aggressive breast cancers still exhibit resistance to therapy. This study aimed to identify a therapeutic target for radioresistant breast cancer (RRbc) through a protein network from breast cancer genes and to evaluate potent phytochemicals against the identified target. Our approach includes the integration of differential expression genes from expression datasets to create a protein network and to use survival analysis to identify the crucial RRbc protein in order to discover a therapeutic target. Next, the phytochemicals sourced from brown algae were screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation, MM-GBSA, and quantum mechanics against the identified target. As a result of our protein network investigation, the proto-oncogene c-KIT (KIT) protein was identified as a potent radioresistant breast cancer target. Further, phytochemical screening establishes that nahocol-A1 from brown algae has high binding characteristics (-8.56 kcal/mol) against the KIT protein. Then, quantum chemical analysis of nahocol-A1 provided insights into its electronic properties favorable for protein binding. Also, MD simulation comprehends the conformational stability of the KIT-nahocol-A1 complex. Overall, our findings suggest nahocol-A1 could serve as a promising therapeutic candidate for radioresistant breast cancer.
Collapse
Affiliation(s)
- Mahema Sivakumar
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
45
|
Alonazi A, Nash CA, Wang CH, Christofidou E, Challiss RAJ, Willets JM. GRK2 expression and catalytic activity are essential for vasoconstrictor/ERK-stimulated arterial smooth muscle proliferation. Biochem Pharmacol 2023; 216:115795. [PMID: 37690571 DOI: 10.1016/j.bcp.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.
Collapse
Affiliation(s)
- Asma Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, P.O. Box 145111, Saudi Arabia(1)
| | - Craig A Nash
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Cardiovascular Metabolism, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA
| | - Chuan-Han Wang
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Elena Christofidou
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Tumor Viruses and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus(1)
| | - R A John Challiss
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
46
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
47
|
Waldeck K, Van Zuylekom J, Cullinane C, Gulati T, Simpson KJ, Tothill RW, Blyth B, Hicks RJ. A genome-wide CRISPR/Cas9 screen identifies DNA-PK as a sensitiser to 177Lutetium-DOTA-octreotate radionuclide therapy. Theranostics 2023; 13:4745-4761. [PMID: 37771787 PMCID: PMC10526672 DOI: 10.7150/thno.84628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 09/30/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lutetium-DOTA-octreotate (LuTate) for neuroendocrine tumours (NET) is now an approved treatment available in many countries, though primary or secondary resistance continue to limit its effectiveness or durability. We hypothesised that a genome-wide CRISPR/Cas9 screen would identify key mediators of response to LuTate and gene targets that might offer opportunities for novel combination therapies for NET patients. Methods: We utilised a genome-wide CRISPR-Cas9 screen in LuTate-treated cells to identify genes that impact on the sensitivity or resistance of cells to LuTate. Hits were validated through single-gene knockout. LuTate-resistant cells were assessed to confirm LuTate uptake and retention, and persistence of somatostatin receptor 2 (SSTR2) expression. Gene knockouts conferring LuTate sensitivity were further characterised by pharmacological sensitisation using specific inhibitors and in vivo analysis of the efficacy of these inhibitors in combination with LuTate. Results: The CRISPR-Cas9 screen identified several potential targets for both resistance and sensitivity to PRRT. Two gene knockouts which conferred LuTate resistance in vitro, ARRB2 and MVP, have potential mechanisms related to LuTate binding and retention, and modulation of DNA-damage repair (DDR) pathways, respectively. The screen showed that sensitivity to LuTate treatment in vitro can be conferred by the loss of a variety of genes involved in DDR pathways, with loss of genes involved in Non-Homologous End-Joining (NHEJ) being the most lethal. Loss of the key NHEJ gene, PRKDC (DNA-PK), either by gene loss or inhibition by two different inhibitors, resulted in significantly reduced cell survival upon exposure of cells to LuTate. In SSTR2-positive xenograft-bearing mice, the combination of nedisertib (a DNA-PK specific inhibitor) and LuTate produced a more robust control of tumour growth and increased survival compared to LuTate alone. Conclusions: DDR pathways are critical for sensing and repairing radiation-induced DNA damage, and our study shows that regulation of DDR pathways may be involved in both resistance and sensitivity to PRRT. Additionally, the use of a DNA-PK inhibitor in combination with LuTate PRRT significantly improves the efficacy of the treatment in pre-clinical models, providing further evidence for the clinical efficacy of this combination.
Collapse
Affiliation(s)
- Kelly Waldeck
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Carleen Cullinane
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Twishi Gulati
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Richard W. Tothill
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Department of Clinical Pathology and University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Benjamin Blyth
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Rodney J. Hicks
- St Vincent's Hospital Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia, 3010
| |
Collapse
|
48
|
Liu XJ, Pang H, Long YQ, Wang JQ, Niu Y, Zhang RG. Pro-inflammatory action of formoterol in human bronchial epithelia. Mol Immunol 2023; 160:95-102. [PMID: 37413911 DOI: 10.1016/j.molimm.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Despite the wide usage of β2-adrenoceptor agonists in asthma treatment, they do have side effects such as aggravating inflammation. We previously reported that isoprenaline induced Cl- secretion and IL-6 release via cAMP-dependent pathways in human bronchial epithelia, but the mechanisms underlying the inflammation-aggravation effects of β2-adrenoceptor agonists remain pooly understood. In this study, we investigated formoterol, a more specific β2-adrenoceptor agonist, -mediated signaling pathways involved in the production of IL-6 and IL-8 in 16HBE14o- human bronchial epithelia. The effects of formoterol were detected in the presence of PKA, exchange protein directly activated by cAMP (EPAC), cystic fibrosis transmembrane conductance regulator (CFTR), extracellular signal-regulated protein kinase (ERK)1/2 and Src inhibitors. The involvement of β-arrestin2 was determined using siRNA knockdown. Our results indicate that formoterol can induce IL-6 and IL-8 secretion in concentration-dependent manner. The PKA-specific inhibitor, H89, partially inhibited IL-6 release, but not IL-8. Another intracellular cAMP receptor, EPAC, was not involved in either IL-6 or IL-8 release. PD98059 and U0126, two ERK1/2 inhibitors, blocked IL-8 while attenuated IL-6 secretion induced by formoterol. Furthermore, formoterol-induced IL-6 and IL-8 release was attenuated by Src inhibitors, namely dasatinib and PP1, and CFTRinh172, a CFTR inhibitor. In addition, knockdown of β-arrestin2 by siRNA only suppressed IL-8 release when a high concentration of formoterol (1 μM) was used. Taken together, our results suggest that formoterol stimulates IL-6 and IL-8 release which involves PKA/Src/ERK1/2 and/or β-arrestin2 signaling pathways.
Collapse
Affiliation(s)
- Xing-Jian Liu
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Hao Pang
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Yu-Qian Long
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ji-Qing Wang
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Rui-Gang Zhang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
49
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
50
|
Colin M, Delaitre C, Foulquier S, Dupuis F. The AT 1/AT 2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023; 28:5481. [PMID: 37513355 PMCID: PMC10383525 DOI: 10.3390/molecules28145481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The AT1 receptor has mainly been associated with the pathological effects of the renin-angiotensin system (RAS) (e.g., hypertension, heart and kidney diseases), and constitutes a major therapeutic target. In contrast, the AT2 receptor is presented as the protective arm of this RAS, and its targeting via specific agonists is mainly used to counteract the effects of the AT1 receptor. The discovery of a local RAS has highlighted the importance of the balance between AT1/AT2 receptors at the tissue level. Disruption of this balance is suggested to be detrimental. The fine tuning of this balance is not limited to the regulation of the level of expression of these two receptors. Other mechanisms still largely unexplored, such as S-nitrosation of the AT1 receptor, homo- and heterodimerization, and the use of AT1 receptor-biased agonists, may significantly contribute to and/or interfere with the settings of this AT1/AT2 equilibrium. This review will detail, through several examples (the brain, wound healing, and the cellular cycle), the importance of the functional balance between AT1 and AT2 receptors, and how new molecular pharmacological approaches may act on its regulation to open up new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Colin
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|