1
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
2
|
Iwamoto H, Suzuki H, Masuda A, Sakaue T, Nakamura T, Tanaka T, Sakai M, Imamura Y, Yano H, Torimura T, Koga H, Yasuda K, Tsurusaki M, Seki T, Kawaguchi T. A tumor endothelial cell-specific microRNA replacement therapy for hepatocellular carcinoma. iScience 2024; 27:108797. [PMID: 38303694 PMCID: PMC10831275 DOI: 10.1016/j.isci.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Current approved anti-angiogenic drugs (AAD) for hepatocellular carcinoma (HCC) inhibit tumor angiogenesis, but affect the hepatic vasculature resulting in adverse effects. Tumor endothelial cells (TECs) differ from normal endothelial cells. In this study, we aimed to detect TEC-specific miRNAs and develop an anti-angiogenic treatment specific for TECs. We established HCC orthotopic mouse models. TEC-specific miRNAs were detected using a microRNA array. Finally, we evaluated the therapeutic effects of the TEC-specific miRNA agonist cocktail. In total, 260 TEC-specific genes were detected. Among the top ten downregulated TEC-specific miRNAs, miR-139-3p and 214-3p were important for the TEC phenotype. The TEC-specific microRNA agonist cocktail showed significant anti-tumor effects by inhibiting tumor angiogenesis without affecting hepatic vasculatures in HCC orthotopic mouse models. Moreover, it significantly downregulated tip-cell sprouting-related genes. We identified two downregulated TEC-specific miRNAs; microRNA replacement therapy, which targets the downregulated TEC-specific miRNAs, is an effective and promising treatment for HCC.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
- Department of Medicine, Iwamoto Internal Medicine Clinic, Kitakyushu 802 0832, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Yasuko Imamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Kaori Yasuda
- Cell Innovator, Inc., Venture Business Laboratory of Kyushu University, Fukuoka 812-8582, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama 589 8511, Japan
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| |
Collapse
|
3
|
Stangret A, Dykacz W, Jabłoński K, Wesołowska A, Klimczak-Tomaniak D, Kochman J, Tomaniak M. The cytokine trio - visfatin, placental growth factor and fractalkine - and their role in myocardial infarction with non-obstructive coronary arteries (MINOCA). Cytokine Growth Factor Rev 2023; 74:76-85. [PMID: 37679252 DOI: 10.1016/j.cytogfr.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) remains a puzzling clinical entity. It is characterized by clinical evidence of myocardial infarction (MI) with normal or near-normal coronary arteries in angiography. Given the complex etiology including multiple possible scenarios with varied pathogenetic mechanisms, profound investigation of the plausible biomarkers of MINOCA may bring further pathophysiological insights and novel diagnostic opportunities. Cytokines have a great diagnostic potential and are used as biomarkers for many diseases. An unusual trio of visfatin, placental growth factor (PlGF) and fractalkine (CX3CL1) can directly promote vascular dysfunction, inflammation and angiogenesis through the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. They are redundant in physiological processes and become overexpressed in the pathomechanisms underlying MINOCA. The knowledge about their concentration might serve as a valuable diagnostic and/or therapeutic tool for assessing vascular endothelial function. Here we analyze the current knowledge on visfatin, PlGF and CX3CL1 in the context of MINOCA and present the novel clinical implications of their combined expression as predictors or indicators of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland; College of Medical Sciences, Nicolaus Copernicus Superior School, Nowogrodzka 47a, 00-695 Warsaw, Poland
| | - Weronika Dykacz
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Konrad Jabłoński
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Aleksandra Wesołowska
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, Li Y, Ma G, Zhang Y, Nie K, Wang L. Cerebral Microvascular Injury Induced by Lag3-Dependent α-Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α-Synucleinopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301903. [PMID: 37381656 PMCID: PMC10477873 DOI: 10.1002/advs.202301903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.
Collapse
Affiliation(s)
- Qingxi Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510100China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qingrui Duan
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuyuan Gao
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Peikun He
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Rui Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Haifeng Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanyi Li
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Guixian Ma
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuhu Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kun Nie
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Lijuan Wang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
5
|
Hsu HH, Ko PL, Peng CC, Cheng YJ, Wu HM, Tung YC. Studying sprouting angiogenesis under combination of oxygen gradients and co-culture of fibroblasts using microfluidic cell culture model. Mater Today Bio 2023; 21:100703. [PMID: 37483382 PMCID: PMC10359940 DOI: 10.1016/j.mtbio.2023.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Sprouting angiogenesis is an essential process for expanding vascular systems under various physiological and pathological conditions. In this paper, a microfluidic device capable of integrating a hydrogel matrix for cell culture and generating stable oxygen gradients is developed to study the sprouting angiogenesis of endothelial cells under combinations of oxygen gradients and co-culture of fibroblast cells. The endothelial cells can be cultured as a monolayer endothelium inside the device to mimic an existing blood vessel, and the hydrogel without or with fibroblast cells cultured in it provides a matrix next to the formed endothelium for three-dimensional sprouting of the endothelial cells. Oxygen gradients can be stably established inside the device for cell culture using the spatially-confined chemical reaction method. Using the device, the sprouting angiogenesis under combinations of oxygen gradients and co-culture of fibroblast cells is systematically studied. The results show that the oxygen gradient and the co-culture of fibroblast cells in the hydrogel can promote sprouting of the endothelial cells into the hydrogel matrix by altering cytokines in the culture medium and the physical properties of the hydrogel. The developed device provides a powerful in vitro model to investigate sprouting angiogenesis under various in vivo-like microenvironments.
Collapse
Affiliation(s)
- Heng-Hua Hsu
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping-Liang Ko
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Peng
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Mei Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- College of Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Qu F, Li D, Zhang S, Zhang C, Shen A. The potential mechanism of qinghua quyu jianpi decoction in the treatment of ulcerative colitis based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116396. [PMID: 36933873 DOI: 10.1016/j.jep.2023.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic and recurrent inflammation of the gastrointestinal tract. Following the idea of herbal property and compatibility, a traditional Chinese medicine (TCM) formula consists of a number of TCM herbs. Qinghua Quyu Jianpi Decoction (QQJD) has been clinically proven to be effective in treating UC, however, its therapeutic mechanism has not been fully elucidated. AIM OF STUDY Here, we used network pharmacology analysis and ultra-performance liquid chromatography-tandem mass spectrometry to predict the mechanism of action of QQJD, and then validated our predictions through in vivo and in vitro experiments. MATERIALS AND METHODS First, based on a number of datasets, relationship network diagrams between QQJD and UC were created. The target network for the QQJD-UC intersection genes was then built, and KEGG analysis was carried out to identify a potential pharmacological mechanism. Finally, the results of the previous prediction were validated in dextran sulfate sodium salt (DSS) induced UC mice and a cellular inflammatory model. RESULTS Network pharmacology results suggested that QQJD may play a role in repairing intestinal mucosa by activating Wnt pathway. In vivo experiments have shown that QQJD can significantly reduce weight loss, disease activity index (DAI) score, improve colon length, and effectively repair the tissue morphology of UC mice. In addition, we also found that QQJD can activate the Wnt pathway to promote epithelial cell renewal, reduce apoptosis, and repair the mucosal barrier. To further understand how QQJD promotes cell proliferation in DSS-induced Caco-2 cells, we performed a study in vitro experiment. We were surprised to find that QQJD activated the Wnt pathway by inducing nuclear translocation of β-catenin, accelerating the cell cycle and promoting cell proliferation in vitro. CONCLUSION Taken together, network pharmacology and experiments showed that QQJD achieves mucosal healing and restores the colonic epithelium barrier by activating Wnt/β-catenin signaling, regulating cell cycle progression, and promoting the proliferation of epithelial cells.
Collapse
Affiliation(s)
- Fanfan Qu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | | | - Aihua Shen
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Cao Y. Blood vessels in fat tissues and vasculature-derived signals in controlling lipid metabolism and metabolic disease. Chin Med J (Engl) 2022; 135:2647-2652. [PMID: 36382988 PMCID: PMC9943976 DOI: 10.1097/cm9.0000000000002406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 65 Stockholm, Sweden
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
8
|
Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 2022; 608:421-428. [PMID: 35922508 PMCID: PMC9365697 DOI: 10.1038/s41586-022-05030-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1-6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.
Collapse
|
9
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
10
|
Kawaguchi K, Kaneko S. Notch Signaling and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:69-80. [PMID: 33034027 DOI: 10.1007/978-3-030-55031-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.
Collapse
Affiliation(s)
- Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
11
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Weekends-Off Lenvatinib for Unresectable Hepatocellular Carcinoma Improves Therapeutic Response and Tolerability toward Adverse Events. Cancers (Basel) 2020; 12:cancers12041010. [PMID: 32325921 PMCID: PMC7226076 DOI: 10.3390/cancers12041010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Although lenvatinib has become the standard therapy for hepatocellular carcinoma (HCC), the high incidence rate of adverse events (AEs) is an issue. This study aimed to clarify the AEs of lenvatinib and the therapeutic impact of five days-on/two days-off administration (i.e., weekends-off strategy) for lenvatinib. Methods: We retrospectively assessed the therapeutic effects and AEs of 135 patients treated with lenvatinib, and the improvement of tolerability and therapeutic efficacy of 30 patients treated with the weekends-off strategy. We also evaluated lenvatinib-induced vascular changes in tumors and healthy organs using a mouse hepatoma model. Results: The incidence rates of any grade and grade ≥ 3 AEs were 82.1% and 49.6%. Fatigue was the most important AE since it resulted in dose reduction and discontinuation. Of the 30 patients who received weekends-off lenvatinib, 66.7% tolerated the AEs. Although 80.8% of the patients showed progression after dose reduction, the therapeutic response improved in 61.5% of the patients by weekends-off lenvatinib. Notably, weekends-off administration significantly prolonged the administration period and survival (p < 0.001 and p < 0.05). The mouse hepatoma model showed that weekends-off administration contributed to recovery of vascularity in the organs. Conclusion: Weekends-off administration of lenvatinib was useful to recover the therapeutic response and tolerability toward AEs.
Collapse
|
13
|
Lim S, Hosaka K, Nakamura M, Cao Y. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis. Oncotarget 2018; 7:38282-38291. [PMID: 27203675 PMCID: PMC5122389 DOI: 10.18632/oncotarget.9436] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022] Open
Abstract
Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization. In three independent tumor types including breast cancer, melanoma, and fibrosarcoma, inoculation of tumor cells in the subcutaneous tissue, white adipose tissue (WAT), and brown adipose tissue (BAT) resulted in markedly differential tumor growth rates and angiogenesis, which were in concordance with the degree of pre-existing vascularization in these tissues. Relative to subcutaneous tumors, WAT and BAT tumors grew at accelerated rates along with improved neovascularization, blood perfusion, and decreased hypoxia. Tumor cells implanted in adipose tissues contained leaky microvessel with poor perivascular cell coverage. Thus, adipose vasculature predetermines the tumor microenvironment that eventually supports tumor growth.
Collapse
Affiliation(s)
- Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden.,Affiliated WuXi No 2 Hospital of Nanjing Medical University, 214 002 Wuxi, China.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, LE3 9QP Leicester, UK
| |
Collapse
|
14
|
Laidlaw KME, Berhan S, Liu S, Silvestri G, Holyoake TL, Frank DA, Aggarwal B, Bonner MY, Perrotti D, Jørgensen HG, Arbiser JL. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget 2018; 7:51651-51664. [PMID: 27438151 PMCID: PMC5239504 DOI: 10.18632/oncotarget.10541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation.
Collapse
Affiliation(s)
- Kamilla M E Laidlaw
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Samuel Berhan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Suhu Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Giovannino Silvestri
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tessa L Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bharat Aggarwal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| | - Danilo Perrotti
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Heather G Jørgensen
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRβ signaling pathways in tumor vascular remodeling. Cell Discov 2018; 4:3. [PMID: 29423271 PMCID: PMC5798893 DOI: 10.1038/s41421-017-0002-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Perivascular cells are important cellular components in the tumor microenvironment (TME) and they modulate vascular integrity, remodeling, stability, and functions. Here we show using mice models that FGF-2 is a potent pericyte-stimulating factor in tumors. Mechanistically, FGF-2 binds to FGFR2 to stimulate pericyte proliferation and orchestrates the PDGFRβ signaling for vascular recruitment. FGF-2 sensitizes the PDGFRβ signaling through increasing PDGFRβ levels in pericytes. To ensure activation of PDGFRβ, the FGF-2-FGFR1-siganling induces PDGF-BB and PDGF-DD, two ligands for PDGFRβ, in angiogenic endothelial cells. Thus, FGF-2 directly and indirectly stimulates pericyte proliferation and recruitment by modulating the PDGF-PDGFRβ signaling. Our study identifies a novel mechanism by which the FGF-2 and PDGF-BB collaboratively modulate perivascular cell coverage in tumor vessels, thus providing mechanistic insights of pericyte-endothelial cell interactions in TME and conceptual implications for treatment of cancers and other diseases by targeting the FGF-2-FGFR-pericyte axis.
Collapse
|
16
|
Seki T, Hosaka K, Fischer C, Lim S, Andersson P, Abe M, Iwamoto H, Gao Y, Wang X, Fong GH, Cao Y. Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning. J Exp Med 2018; 215:611-626. [PMID: 29305395 PMCID: PMC5789413 DOI: 10.1084/jem.20171012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis plays an instrumental role in the modulation of adipose tissue mass and metabolism. Targeting adipose vasculature provides an outstanding opportunity for treatment of obesity and metabolic disorders. Here, we report the physiological functions of VEGFR1 in the modulation of adipose angiogenesis, obesity, and global metabolism. Pharmacological inhibition and genetic deletion of endothelial VEGFR1 augmented adipose angiogenesis and browning of subcutaneous white adipose tissue, leading to elevated thermogenesis. In a diet-induced obesity model, endothelial-VEGFR1 deficiency demonstrated a potent anti-obesity effect by improving global metabolism. Along with metabolic changes, fatty liver and insulin sensitivity were also markedly improved in VEGFR1-deficient high fat diet (HFD)-fed mice. Together, our data indicate that targeting of VEGFR1 provides an exciting new opportunity for treatment of obesity and metabolic diseases, such as liver steatosis and type 2 diabetes.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mitsuhiko Abe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Yanyan Gao
- Central Research Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinsheng Wang
- Central Research Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden .,Central Research Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Pleniceanu O, Shukrun R, Omer D, Vax E, Kanter I, Dziedzic K, Pode-Shakked N, Mark-Daniei M, Pri-Chen S, Gnatek Y, Alfandary H, Varda-Bloom N, Bar-Lev DD, Bollag N, Shtainfeld R, Armon L, Urbach A, Kalisky T, Nagler A, Harari-Steinberg O, Arbiser JL, Dekel B. Peroxisome proliferator-activated receptor gamma (PPARγ) is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target. EMBO Mol Med 2017; 9:508-530. [PMID: 28275008 PMCID: PMC5376758 DOI: 10.15252/emmm.201506111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARG‐pathway activation. Similarly, immunostaining revealed strong PPARG expression in human AML specimens. Accordingly, we demonstrate that while PPARG agonism accelerates AML growth, PPARG antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARG‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARG as a regulator of AML growth, which could serve as an attractive therapeutic target.
Collapse
Affiliation(s)
- Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Shukrun
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mark-Daniei
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sara Pri-Chen
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Alfandary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nira Varda-Bloom
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Shtainfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel .,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc Natl Acad Sci U S A 2017; 114:E5226-E5235. [PMID: 28607065 DOI: 10.1073/pnas.1705066114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long-term uninterrupted therapy is essential for maximizing clinical benefits of antiangiogenic drugs (AADs) in cancer patients. Unfortunately, nearly all clinically available AADs are delivered to cancer patients using disrupted regimens. We aim to develop lifetime, nontoxic, effective, orally active, and low-cost antiangiogenic and antitumor drugs for treatment of cancer patients. Here we report our findings of long-term maintenance therapy with orally active, nontoxic, low cost antiangiogenic chemotherapeutics for effective cancer treatment. In a sequential treatment regimen, robust antiangiogenic effects in tumors were achieved with an anti-VEGF drug, followed by a low-dose chemotherapy. The nontoxic, low dose of the orally active prodrug capecitabine was able to sustain the anti-VEGF-induced vessel regression for long periods. In another experimental setting, maintenance of low-dose capecitabine produced greater antiangiogenic and antitumor effects after AAD plus chemotherapy. No obvious adverse effects were developed after more than 2-mo of consecutive treatment with a low dose of capecitabine. Together, our findings provide a rationalized concept of effective cancer therapy by long-term maintenance of AAD-triggered antiangiogenic effects with orally active, nontoxic, low-cost, clinically available chemotherapeutics.
Collapse
|
19
|
Torimura T, Iwamoto H, Nakamura T, Abe M, Ikezono Y, Wada F, Sakaue T, Masuda H, Hashimoto O, Koga H, Ueno T, Yano H. Antiangiogenic and Antitumor Activities of Aflibercept, a Soluble VEGF Receptor-1 and -2, in a Mouse Model of Hepatocellular Carcinoma. Neoplasia 2017; 18:413-24. [PMID: 27435924 PMCID: PMC4954942 DOI: 10.1016/j.neo.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND & AIM: Aflibercept known as ziv-aflibercept in the United States is a soluble decoy receptor of both vascular endothelial growth factor (VEGF) receptor-1 and -2 known to inhibit the binding of VEGF and placental growth factor (PlGF) to VEGF receptor-1 and -2. Here, we analyzed the mechanisms of the antitumor effects of aflibercept in mouse hepatoma models. METHODS: In in vitro studies, we determined the effects of aflibercept on human umbilical vein cell (HUVEC) proliferation and bone marrow (BM) cell differentiation to endothelial progenitor cells (EPCs). In in vivo experiments, aflibercept was injected intraperitoneally in hepatoma cell tumor-bearing mice, and its inhibitory effects on tumor growth and BM cell migration to tumor tissues were evaluated. RESULTS: Aflibercept suppressed phosphorylation of VEGF receptor-1 and -2 in HUVEC and dose-dependently inhibited VEGF-induced HUVEC proliferation. It suppressed the differentiation of BM cells to EPCs and migration of BM cells to tumor tissues. It also suppressed tumor growth and prolonged survival time of tumor-bearing mice without side effects. In tumor tissues, aflibercept upregulated the expression of hypoxia inducible factor1-α, VEGF, PlGF, fibroblast growth factor-2, platelet derived growth factor-BB, and transforming growth factor-α and reduced microvascular density. It also reduced sinusoidal density in noncancerous liver tissues. CONCLUSIONS: Our results demonstrated potent antitumor activity for aflibercept in a mouse model of hepatocellular carcinoma. These effects were mediated through inhibition of neovascularization, caused by inhibition of endothelial cell proliferation, EPC differentiation, and BM cell migration to tumor tissues.
Collapse
Affiliation(s)
- Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume, Japan.
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yu Ikezono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Fumitaka Wada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Osamu Hashimoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Takato Ueno
- Asakura Medical Association Hospital, Asakura, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
20
|
Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun 2016; 7:12680. [PMID: 27580750 PMCID: PMC5025794 DOI: 10.1038/ncomms12680] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. Anti-VEGF therapy often produces limited beneficial effects in cancer patients. Here, the authors show that discontinuation of anti-VEGF cancer therapy in xenografts-bearing mice increases cancer cells extravasation and intravasation in liver through the host-derived VEGF.
Collapse
|
21
|
Lin X, Sun B, Zhu D, Zhao X, Sun R, Zhang Y, Zhang D, Dong X, Gu Q, Li Y, Liu F. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci 2016; 107:1079-91. [PMID: 27234159 PMCID: PMC4982579 DOI: 10.1111/cas.12978] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Sphere formation in conditioned serum‐free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem‐like cells, also known as tumor‐initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem‐like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4high B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial–mesenchymal transition (EMT)‐associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE‐cadherin and the overexpression of E‐cadherin was observed in human melanoma A375 and MUM‐2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ‐secretase inhibitor, DAPT. Mechanistically, the re‐overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE‐cadherin expression and a decrease in E‐cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.
Collapse
Affiliation(s)
- Xian Lin
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Department of Surgery, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Qiang Gu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces "angiogenic switch off" in a hepatoma mouse model. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:15020. [PMID: 27119112 PMCID: PMC4782957 DOI: 10.1038/mto.2015.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
“Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC.
Collapse
|