1
|
Rong QY, Lu Y, Zhang W, Rao GW, Zheng Q. Targeting FLT3 for treating diseases: FLT3 inhibitors. Drug Discov Today 2025; 30:104367. [PMID: 40288485 DOI: 10.1016/j.drudis.2025.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase (RTK) expressed mainly in hematopoietic stem and progenitor cells and often mutated in hematological tumors, such as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). A variety of FLT3 inhibitors have been approved and adopted for the treatment of AML. However, these suffer resistance problems, and further studies are needed. Here, we review the current status of research on FLT3 inhibitors in AML, discuss the occurrence of resistance, and suggest approaches to overcome such resistance.
Collapse
Affiliation(s)
- Qing-Yun Rong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Quan Zheng
- Department of Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China; Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China.
| |
Collapse
|
2
|
Pei HZ, Guo Y, Zhao Y, Zhang D, Chang Z, Zhou J, Baek SH, Zhao ZJ, Chen C, Chen Y. FLT3 inhibitors induce p53 instability, driven by STAT5/MDM2/p53 competitive interactions in acute myeloid leukemia. Cancer Lett 2025; 611:217446. [PMID: 39756787 DOI: 10.1016/j.canlet.2025.217446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
FLT3 mutations are present in one third of patients with Acute myeloid leukemia (AML) and stand as an attractive therapeutic target. Although FLT3 inhibitors demonstrate clinical efficacy, the drug resistance remains challenging attributed to multiple mechanisms. In this study, we found that tyrosine kinase inhibitors (TKIs) targeting FLT3 prompt p53 degradation in AML cells with FLT3-ITD through ubiquitination. STAT5 phosphorylation facilitates its nuclear localization, leading to competitive interactions among STAT5, MDM2, and p53. TKIs blocked STAT5 nuclear entry, amplifying MDM2/p53 binding and subsequent p53 degradation. Additionally, STAT5 overexpression inhibited MDM2-mediated p53 ubiquitination, whereas knock-down of STAT5 destabilizes p53. Co-administration of MDM2 inhibitors stabilizes p53 ubiquitination induced by TKIs, enhancing pro-apoptotic effects on AML cells. Moreover, in mice engrafted with AML cells, gilteritinib treatment results in decreased p53 protein levels and the transcriptional repression of downstream genes in leukemia cells, which are mitigated by the co-administration of MDM2 inhibitors. In conclusion, our study shows that FLT3 TKIs impede STAT5 nuclear translocation, strengthening p53/MDM2 interaction and consequent p53 degradation. This finding reveals a novel mechanism of TKIs resistance and indicates a combination of MDM2 inhibitors with TKIs for AML therapy, offering new insights into effective treatment strategies.
Collapse
Affiliation(s)
- Han Zhong Pei
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yao Guo
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuming Zhao
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Dengyang Zhang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhiguang Chang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jingfeng Zhou
- International Cancer Center, Department of Hematology and Oncology, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Department of Pharmacology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, South Korea
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK 73104, USA.
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Zicari S, Merlino G, Paoli A, Fiascarelli A, Tunici P, Bisignano D, Belli F, Irrissuto C, Talucci S, Cirigliano E, Iannitto ML, Bigioni M, Bressan A, Brzózka K, Ghiaur G, Bellarosa D, Binaschi M. The Dual PIM/FLT3 Inhibitor MEN1703 Combines Synergistically With Gilteritinib in FLT3-ITD-Mutant Acute Myeloid Leukaemia. J Cell Mol Med 2024; 28:e70235. [PMID: 39653657 PMCID: PMC11628189 DOI: 10.1111/jcmm.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
MEN1703 is a first-in-class, oral, Type I dual PIM/FMS-like tyrosine kinase 3 inhibitor (FLT3i) investigated in a Phase I/II DIAMOND-01 trial in patients with acute myeloid leukaemia (AML). Gilteritinib is a highly potent and selective oral FLT3i approved for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib showed strong single-agent activity in FLT3-mutated AML, the development of gilteritinib resistance limits response durability, indicating the importance of novel combination strategies to improve disease outcome. PIM kinases govern FLT3-ITD signalling and increased PIM kinase expression is found in samples from AML patients relapsing on FLT3i. Here, we report that the simultaneous inhibition of PIM and FLT3, through the combination of MEN1703 and gilteritinib, can consistently improve the in vitro/in vivo antitumor activity over the single agents, demonstrating the benefit of this combination. Moreover, we demonstrate that resistance to gilteritinib can be circumvented by combining MEN1703 with gilteritinib. MEN1703 interferes with FLT3 upregulation, Mcl-1 overexpression and PIM kinase signalling, which are all involved in FLT3i resistance. We also show that MEN1703 downregulates stromal cytokines that promote cytokine-mediated resistance of AML blast cells to FLT3 inhibition. These results demonstrate the importance of the combination approach to overcome microenvironment-mediated resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Sonia Zicari
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Giuseppe Merlino
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Alessandro Paoli
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | - Patrizia Tunici
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Diego Bisignano
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Francesco Belli
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Clelia Irrissuto
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Simone Talucci
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Elena Cirigliano
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | - Mario Bigioni
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | | | - Gabriel Ghiaur
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Daniela Bellarosa
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Monica Binaschi
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| |
Collapse
|
4
|
Bowman RL, Dunbar AJ, Mishra T, Xiao W, Waarts MR, Maestre IF, Eisman SE, Cai L, Mowla S, Shah N, Youn A, Bennett L, Fontenard S, Gounder S, Gandhi A, Bowman M, O'Connor K, Zaroogian Z, Sánchez-Vela P, Martinez Benitez AR, Werewski M, Park Y, Csete IS, Krishnan A, Lee D, Boorady N, Potts CR, Jenkins MT, Cai SF, Carroll MP, Meyer SE, Miles LA, Ferrell PB, Trowbridge JJ, Levine RL. In vivo models of subclonal oncogenesis and dependency in hematopoietic malignancy. Cancer Cell 2024; 42:1955-1969.e7. [PMID: 39532065 PMCID: PMC11561369 DOI: 10.1016/j.ccell.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Cancer evolution is a multifaceted process leading to dysregulation of cellular expansion and differentiation through somatic mutations and epigenetic dysfunction. Clonal expansion and evolution is driven by cell-intrinsic and -extrinsic selective pressures, which can be captured with increasing resolution by single-cell and bulk DNA sequencing. Despite the extensive genomic alterations revealed in profiling studies, there remain limited experimental systems to model and perturb evolutionary processes. Here, we integrate multi-recombinase tools for reversible, sequential mutagenesis from premalignancy to leukemia. We demonstrate that inducible Flt3 mutations differentially cooperate with Dnmt3a, Idh2, and Npm1 mutant alleles, and that changing the order of mutations influences cellular and transcriptional landscapes. We next use a generalizable, reversible approach to demonstrate that mutation reversion results in rapid leukemic regression with distinct differentiation patterns depending upon co-occurring mutations. These studies provide a path to experimentally model sequential mutagenesis, investigate mechanisms of transformation and probe oncogenic dependency in disease evolution.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew J Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inés Fernández Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shira E Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Louise Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Youn
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suean Fontenard
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shreeya Gounder
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anushka Gandhi
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Bowman
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kavi O'Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pablo Sánchez-Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony R Martinez Benitez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Werewski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darren Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nayla Boorady
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad R Potts
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Matthew T Jenkins
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martin P Carroll
- Department of Medicine, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara E Meyer
- Department of Cancer Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Linde A Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - P Brent Ferrell
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
6
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Lee JK, Chatterjee A, Scarpa M, Bailey CM, Niyongere S, Singh P, Mustafa Ali MK, Kapoor S, Wang Y, Silvestri G, Baer MR. Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation. CANCER RESEARCH COMMUNICATIONS 2024; 4:431-445. [PMID: 38284896 PMCID: PMC10870818 DOI: 10.1158/2767-9764.crc-23-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) has poor outcomes. FLT3-ITD drives constitutive and aberrant FLT3 signaling, activating STAT5 and upregulating the downstream oncogenic serine/threonine kinase Pim-1. FLT3 inhibitors are in clinical use, but with limited and transient efficacy. We previously showed that concurrent treatment with Pim and FLT3 inhibitors increases apoptosis induction in FLT3-ITD-expressing cells through posttranslational downregulation of Mcl-1. Here we further elucidate the mechanism of action of this dual targeting strategy. Cytotoxicity, apoptosis and protein expression and turnover were measured in FLT3-ITD-expressing cell lines and AML patient blasts treated with the FLT3 inhibitor gilteritinib and/or the Pim inhibitors AZD1208 or TP-3654. Pim inhibitor and gilteritinib cotreatment increased apoptosis induction, produced synergistic cytotoxicity, downregulated c-Myc protein expression, earlier than Mcl-1, increased turnover of both proteins, which was rescued by proteasome inhibition, and increased efficacy and prolonged survival in an in vivo model. Gilteritinib and Pim inhibitor cotreatment of Ba/F3-ITD cells infected with T58A c-Myc or S159A Mcl-1 plasmids, preventing phosphorylation at these sites, did not downregulate these proteins, increase their turnover or increase apoptosis induction. Moreover, concurrent treatment with gilteritinib and Pim inhibitors dephosphorylated (activated) the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β), and GSK-3β inhibition prevented c-Myc and Mcl-1 downregulation and decreased apoptosis induction. The data are consistent with c-Myc T58 and Mcl-1 S159 phosphorylation by activated GSK-3β as the mechanism of action of gilteritinib and Pim inhibitor combination treatment, further supporting GSK-3β activation as a therapeutic strategy in FLT3-ITD AML. SIGNIFICANCE FLT3-ITD is present in 25% of in AML, with continued poor outcomes. Combining Pim kinase inhibitors with the FDA-approved FLT3 inhibitor gilteritinib increases cytotoxicity in vitro and in vivo through activation of GSK-3β, which phosphorylates and posttranslationally downregulates c-Myc and Mcl-1. The data support efficacy of GSK-3β activation in FLT3-ITD AML, and also support development of a clinical trial combining the Pim inhibitor TP-3654 with gilteritinib.
Collapse
Affiliation(s)
- Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher M. Bailey
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandrine Niyongere
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Yin Wang
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Giovannino Silvestri
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
9
|
Tamburini J, Mouche S, Larrue C, Duployez N, Bidet A, Salotti A, Hirsch P, Rigolot L, Carras S, Templé M, Favale F, Flandrin-Gresta P, Le Bris Y, Alary AS, Mauvieux L, Tondeur S, Delabesse E, Delhommeau F, Sujobert P, Kosmider O. Very short insertions in the FLT3 gene are of therapeutic significance in acute myeloid leukemia. Blood Adv 2023; 7:7576-7580. [PMID: 37987760 PMCID: PMC10733105 DOI: 10.1182/bloodadvances.2023011916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Affiliation(s)
- Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Clement Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Nicolas Duployez
- Laboratory of Hematology, Centre Hospitalier Universitaire Lille, Lille, France
| | - Audrey Bidet
- Department of Hematology Biology, Molecular Hematology, Bordeaux University Hospital, Haut-Levêque Hospital, Pessac, France
| | - Auriane Salotti
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d’Hématologie Biologique, Lyon, France
| | - Pierre Hirsch
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Lucie Rigolot
- Hematology Laboratory, CHU Toulouse, INSERM 1037, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sylvain Carras
- Hematology Molecular Biology Department, Grenoble Alpes University, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309), University Hospital, , Grenoble, France
| | - Marie Templé
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| | - Fabrizia Favale
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | | | - Yannick Le Bris
- Hematology Biology, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Anne-Sophie Alary
- Department of Oncogenetics, Paoli-Calmette Institute, Marseille, France
| | - Laurent Mauvieux
- Laboratoire d'Hématologie, CHRU Strasbourg, INSERM U1113, Strasbourg, France
| | - Sylvie Tondeur
- Hematology Molecular Biology Department, Grenoble Alpes University, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309), University Hospital, , Grenoble, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - François Delhommeau
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d’Hématologie Biologique, Lyon, France
| | - Olivier Kosmider
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| |
Collapse
|
10
|
Xu Y, Baylink DJ, Chen CS, Tan L, Xiao J, Park B, Valladares I, Reeves ME, Cao H. Transient TKI-resistant CD44+pBAD+ blasts undergo intrinsic homeostatic adaptation to promote the survival of acute myeloid leukemia in vitro. Front Oncol 2023; 13:1286863. [PMID: 38023123 PMCID: PMC10664142 DOI: 10.3389/fonc.2023.1286863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Acute myeloid leukemia (AML) patients have frequent mutations in FMS-like receptor tyrosine kinase 3 (FLT3-mut AML), who respond poorly to salvage chemotherapies and targeted therapies such as tyrosine kinase inhibitors (TKIs). Disease relapse is a common reason of treatment failures in FLT3-mut AML patients, but its intracellular refractory mechanism remains to be discovered. In this study, we designed serial in vitro time-course studies to investigate the biomarkers of TKI-resistant blasts and their survival mechanism. First, we found that a group of transient TKI-resistant blasts were CD44+Phosphorylated-BAD (pBAD)+ and that they could initiate the regrowth of blast clusters in vitro. Notably, TKI-treatments upregulated the compensation pathways to promote PIM2/3-mediated phosphorylation of BAD to initiate the blast survival. Next, we discovered a novel process of intracellular adaptive responses in these transient TKI-resistant blasts, including upregulated JAK/STAT signaling pathways for PIM2/3 expressions and activated SOCS1/SOCS3/PIAS2 inhibitory pathways to down-regulate redundant signal transduction and kinase phosphorylation to regain intracellular homeostasis. Finally, we found that the combination of TKIs with TYK2/STAT4 pathways-driven inhibitors could effectively treat FLT3-mut AML in vitro. In summary, our findings reveal that TKI-treatment can activate a JAK/STAT-PIM2/3 axis-mediated signaling pathways to promote the survival of CD44+pBAD+blasts in vitro. Disrupting these TKIs-activated redundant pathways and blast homeostasis could be a novel therapeutic strategy to treat FLT3-mut AML and prevent disease relapse in vivo.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Laren Tan
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
- Department of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brandon Park
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ismael Valladares
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
11
|
Ma H, Cui J, Liu Z, Fang W, Lu S, Cao S, Zhang Y, Chen JA, Lu L, Xie Q, Wang Y, Huang Y, Li K, Tong H, Huang J, Lu W. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 2023; 42:3331-3343. [PMID: 37752234 DOI: 10.1038/s41388-023-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuanyuan Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Ying Huang
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangdong Institute for Drug Control, 510663, Guangzhou, China
| | - Kongfei Li
- Department of Hematology, People's Hospital Affiliated to Ningbo University, 315000, Ningbo, China
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
12
|
Li X, Wang P, Wang C, Jin T, Xu R, Tong L, Hu X, Shen L, Li J, Zhou Y, Liu T. Discovery of 2-Aminopyrimidine Derivatives as Potent Dual FLT3/CHK1 Inhibitors with Significantly Reduced hERG Inhibitory Activities. J Med Chem 2023; 66:11792-11814. [PMID: 37584545 DOI: 10.1021/acs.jmedchem.3c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
FLT3 inhibitors as single agents have limited effects because of acquired and adaptive resistance and the cardiotoxicity related to human ether-a-go-go-related gene (hERG) channel blockade further impedes safe drugs to the market. Inhibitors having potential to overcome resistance and reduce hERG affinity are highly demanded. Here, we reported a dual FLT3/CHK1 inhibitor 18, which displayed potencies to overcome varying acquired resistance in BaF3 cells with FLT3-TKD and FLT3-ITD-TKD mutations. Moreover, 18 displayed high selectivity over c-KIT more than 1700-fold and greatly reduced hERG affinity, with an IC50 value of 58.4 μM. Further mechanistic studies demonstrated 18 can upregulate p53 and abolish the outgrowth of adaptive resistant cells. In the in vivo studies, 18 demonstrated favorable PK profiles and good safety, suppressed the tumor growth in the MV-4-11 cell inoculated mouse xenograft model, and prolonged the survival in the Molm-13 transplantation model, supporting its further development.
Collapse
Affiliation(s)
- Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Tingting Jin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310006, P.R. China
| | - Ran Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, P.R. China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Yubo Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, P.R. China
| |
Collapse
|
13
|
Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E, Sahal A, Saland E, Santos JC, Armengol M, Fernández-Serrano M, Farge T, Cognet G, Simonetta F, Pignon C, Graffeuil A, Mazzotti C, Avet-Loiseau H, Delos O, Bertrand-Michel J, Chedru A, Dembitz V, Gallipoli P, Anstee NS, Loo S, Wei AH, Carroll M, Goubard A, Castellano R, Collette Y, Vergez F, Mansat-De Mas V, Bertoli S, Tavitian S, Picard M, Récher C, Bourges-Abella N, Granat F, Kosmider O, Sujobert P, Colsch B, Joffre C, Stuani L, Swinnen JV, Guillou H, Roué G, Hakim N, Dejean AS, Tsantoulis P, Larrue C, Bouscary D, Tamburini J, Sarry JE. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia. Cancer Discov 2023; 13:1720-1747. [PMID: 37012202 DOI: 10.1158/2159-8290.cd-22-0411] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Rudy Birsen
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Léa Goupille
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ismael Boussaid
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marc Armengol
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Corentin Pignon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Antoine Graffeuil
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Céline Mazzotti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Amélie Chedru
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Natasha S Anstee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sun Loo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Armelle Goubard
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Yves Collette
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Suzanne Tavitian
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Muriel Picard
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service de Réanimation, Toulouse, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | | | - Fanny Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, University Paul Sabatier, Toulouse, France
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Petros Tsantoulis
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
14
|
Dual inhibition of CHK1/FLT3 enhances cytotoxicity and overcomes adaptive and acquired resistance in FLT3-ITD acute myeloid leukemia. Leukemia 2023; 37:539-549. [PMID: 36526736 DOI: 10.1038/s41375-022-01795-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
FLT3 inhibitors (FLT3i) are widely used for the treatment of acute myeloid leukemia (AML), but adaptive and acquired resistance remains a primary challenge. Inhibitors simultaneously blocking adaptive and acquired resistance are highly demanded. Here, we observed the potential of CHK1 inhibitors to synergistically improve the therapeutic effect of FLT3i in FLT3-mutated AML cells. Notably, the combination overcame adaptive resistance. The simultaneous targeting of FLT3 and CHK1 kinases may overcome acquired and adaptive resistance. A dual FLT3/CHK1 inhibitor 30 with a good oral PK profile was identified. Mechanistic studies indicated that 30 inhibited FLT3 and CHK1, downregulated the c-Myc pathway and further activated the p53 pathway. Functional studies showed that 30 was more selective against cells with various FLT3 mutants, overcame adaptive resistance in vitro, and effectively inhibited resistant FLT3-ITD AML in vivo. Moreover, 30 showed favorable druggability without significant blood toxicity or myelosuppression and exhibited a good oral PK profile with a T1/2 over 12 h in beagles. These findings support the targeting of FLT3 and CHK1 as a novel strategy for overcoming adaptive and acquired resistance to FLT3i therapy in AML and suggest 30 as a potential clinical candidate.
Collapse
|
15
|
Mecklenbrauck R, Heuser M. Resistance to targeted therapies in acute myeloid leukemia. Clin Exp Metastasis 2023; 40:33-44. [PMID: 36318439 PMCID: PMC9898349 DOI: 10.1007/s10585-022-10189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
The introduction of new targeted therapies to the treatment algorithm of acute myeloid leukemia (AML) offers new opportunities, but also presents new challenges. Patients diagnosed with AML receiving targeted therapies as part of lower intensity regimens will relapse inevitably due to primary or secondary resistance mechanisms. In this review, we summarize the current knowledge on the main mechanisms of resistance to targeted therapies in AML. Resistance to FLT3 inhibitors is mainly mediated by on target mutations and dysregulation of downstream pathways. Switching the FLT3 inhibitor has a potential therapeutic benefit. During treatment with IDH inhibitors resistance can develop due to aberrant cell metabolism or secondary site IDH mutations. As a unique resistance mechanism the mutated IDH isotype may switch from IDH1 to IDH2 or vice versa. Resistance to gemtuzumab-ozogamicin is determined by the CD33 isotype and the degradation of the cytotoxin. The main mechanisms of resistance to venetoclax are the dysregulation of alternative pathways especially the upregulation of the BCL-2-analogues MCL-1 and BCL-XL or the induction of an aberrant cell metabolism. The introduction of therapies targeting immune processes will lead to new forms of therapy resistance. Knowing those mechanisms will help to develop strategies that can overcome resistance to treatment.
Collapse
Affiliation(s)
- Rabea Mecklenbrauck
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
17
|
Moon B, Park M, Cho SH, Kim KM, Seo HR, Kim JH, Kim JA. Synergistic antitumor activity of sorafenib and MG149 in hepatocellular carcinoma cells. BMB Rep 2022; 55. [PMID: 35880431 PMCID: PMC9623241 DOI: 10.5483/bmbrep.2022.55.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is among the most challenging cancers to overcome, and there is a need for better therapeutic strategies. Among the different cancer drugs that have been used in clinics, sorafenib is considered the standard first-line drug for advanced HCC. Here, to identify a chemical compound displaying a synergistic effect with sorafenib in HCC, we screened a focused chemical library and found that MG149, a histone acetyltransferase inhibitor targeting the MYST family, exhibited the most synergistic anticancer effect with sorafenib on HCC cells. The combination of sorafenib and MG149 exerted a synergistic anti-proliferation effect on HCC cells by inducing apoptotic cell death. We revealed that cotreatment with sorafenib and MG149 aggravated endoplasmic reticulum (ER) stress to promote the death of HCC cells rather than adaptive cell survival. In addition, combined treatment with sorafenib and MG149 significantly increased the intracellular levels of unfolded proteins and reactive oxygen species, which upregulated ER stress. Collectively, these results suggest that MG149 has the potential to improve the efficacy of sorafenib in advanced HCC via the upregulation of cytotoxic ER stress. [BMB Reports 2022; 55(10): 506-511].
Collapse
Affiliation(s)
- Byul Moon
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Mijin Park
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung-Hyun Cho
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Jeong-Hoon Kim
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea,Corresponding authors. Jeong-Hoon Kim, Tel: +82-42-860-4264; Fax: +82-42-860-4598; E-mail: ; Jung-Ae Kim, Tel: +82-42-879-8129; Fax: +82-42-879-8119; E-mail: jungaekim@ kribb.re.kr
| | - Jung-Ae Kim
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea,Corresponding authors. Jeong-Hoon Kim, Tel: +82-42-860-4264; Fax: +82-42-860-4598; E-mail: ; Jung-Ae Kim, Tel: +82-42-879-8129; Fax: +82-42-879-8119; E-mail: jungaekim@ kribb.re.kr
| |
Collapse
|
18
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
19
|
Ge SS, Liu SB, Xue SL. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front Oncol 2022; 12:996438. [PMID: 36185253 PMCID: PMC9515417 DOI: 10.3389/fonc.2022.996438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
FLT3 mutations are one of the most common genetic alterations in acute myeloid leukemia (AML) and are identified in approximately one-third of newly diagnosed patients. Aberrant FLT3 receptor signaling has important implications for the biology and clinical management of AML. In recent years, targeting FLT3 has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and contributes to substantially prolonged survival. At the same time, wide application of next-generation sequencing (NGS) technology has revealed a series of non-canonical FLT3 mutations, including point mutations and small insertions/deletions. Some of these mutations may be able to influence downstream phosphorylation and sensitivity to FLT3 inhibitors, while the correlation with clinical outcomes remains unclear. Exploration of FLT3-targeted therapy has made substantial progress, but resistance to FLT3 inhibitors has become a pressing issue. The mechanisms underlying FLT3 inhibitor tolerance can be roughly divided into primary resistance and secondary resistance. Primary resistance is related to abnormalities in signaling factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves on-target mutations and off-target aberrations. To overcome this problem, novel agents such as FF-10101 have shown promising potential. Multitarget strategies directed at FLT3 and anomalous signaling factors simultaneously are in active clinical development and show promising results.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia 2022; 36:2396-2407. [PMID: 35999260 PMCID: PMC9522593 DOI: 10.1038/s41375-022-01678-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.
Collapse
|
21
|
Wu Y, Zhang J, Zhu X, Zhang Y. Developing PROteolysis TArgeting Chimeras (PROTACs) for hematologic malignancies. Cancer Lett 2022; 544:215808. [DOI: 10.1016/j.canlet.2022.215808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
22
|
FLT3-targeted treatment for acute myeloid leukemia. Int J Hematol 2022; 116:351-363. [DOI: 10.1007/s12185-022-03374-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
|
23
|
Kropp EM, Li Q. Mechanisms of Resistance to Targeted Therapies for Relapsed or Refractory Acute Myeloid Leukemia. Exp Hematol 2022; 111:13-24. [PMID: 35417742 PMCID: PMC10116852 DOI: 10.1016/j.exphem.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or refractory AML has increased therapeutic resistance and poor long-term survival. In recent years, advancements in the mechanistic understanding of leukemogenesis have allowed for the development of targeted therapies. These therapies offer novel alternatives to intensive chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a significant portion of patients do not respond to these therapies and relapse occurs in most patients who initially responded. This review focuses on the mechanisms of resistance to targeted therapies in relapsed or refractory AML.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI.
| |
Collapse
|
24
|
Hamed G, Omar HM, Sarhan AM, Salah HE. Proviral Integration of Moloney Virus-2 (PIM-2) Expression Level as a Prognostic Marker in Patients with Acute Myeloid Leukemia. Int J Gen Med 2022; 15:4247-4258. [PMID: 35480994 PMCID: PMC9035444 DOI: 10.2147/ijgm.s354092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to assess PIM-2 gene expression level as a prognostic marker in AML patients and to correlate the results with their clinical outcome. Patients and Methods This study was conducted on 50 de novo younger AML patients (median age 44). Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression level of the PIM-2 gene. The transcription level of the target gene (PIM-2) was normalized to that of the reference gene (GAPDH). Twenty control samples were withdrawn from 20 age- and sex-matched individuals for the analysis of the results using the 2−ΔΔCT method. On day 28 following induction chemotherapy, patients’ bone marrow (BM) was examined for evaluation of their remission status. Results PIM-2 gene expression was higher among AML patients who did not achieve complete remission (CR); also, it was higher in patients in the intermediate and poor cytogenetic risk groups. A significant positive correlation was found between PIM-2 level and BM blasts on day 28. In AML patients, PIM-2 has been discovered to be an independent predictive factor for achieving CR following standard induction treatment. Receiver operating characteristic curve (ROC) and area under the curve (AUC) were performed for PIM-2 level at diagnosis to evaluate its role in achieving remission after induction. It was found that PIM-2 at cutoff ≤1.6 had an AUC (0.903) with a sensitivity (90.48%) and specificity (86.21%), P <0.001. Conclusion Overexpression of the PIM-2 gene is associated with induction failure and low CR.
Collapse
Affiliation(s)
- Gehad Hamed
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
- Correspondence: Gehad Hamed, Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, 44519, Egypt, Tel +201092034529, Email
| | - Hisham M Omar
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| | - Abbas M Sarhan
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| | - Hossam E Salah
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| |
Collapse
|
25
|
Dutta A, Nath D, Yang Y, Le BT, Rahman MFU, Faughnan P, Wang Z, Stuver M, He R, Tan W, Hutchison RE, Foulks JM, Warner SL, Zang C, Mohi G. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia 2022; 36:746-759. [PMID: 34741118 PMCID: PMC8891046 DOI: 10.1038/s41375-021-01464-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Myelofibrosis (MF) is the deadliest form of myeloproliferative neoplasm (MPN). The JAK inhibitor Ruxolitinib can reduce constitutional symptoms but it does not substantially improve bone marrow fibrosis. Pim1 expression is significantly elevated in MPN/MF hematopoietic progenitors. Here, we show that genetic ablation of Pim1 blocked the development of myelofibrosis induced by Jak2V617F and MPLW515L. Pharmacologic inhibition of Pim1 with a second-generation Pim kinase inhibitor TP-3654 significantly reduced leukocytosis and splenomegaly, and attenuated bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of MF. Combined treatment of TP-3654 and Ruxolitinib resulted in greater reduction of spleen size, normalization of blood leukocyte counts and abrogation of bone marrow fibrosis in murine models of MF. TP-3654 treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, we show that TP-3654 treatment significantly inhibits mTORC1, MYC and TGF-β signaling in Jak2V617F mutant hematopoietic cells and diminishes the expression of fibrotic markers in the bone marrow. Collectively, our results suggest that Pim1 plays an important role in the pathogenesis of MF, and inhibition of Pim1 with TP-3654 might be useful for treatment of MF.
Collapse
Affiliation(s)
- Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Dipmoy Nath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mohammad Ferdous-Ur Rahman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Patrick Faughnan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Stuver
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Rongquan He
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wuwei Tan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert E Hutchison
- Department of Pathology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Jason M Foulks
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Steven L Warner
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 2022; 52:100905. [PMID: 34774343 PMCID: PMC9846716 DOI: 10.1016/j.blre.2021.100905] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
FLT3 mutations are the most common genetic aberrations found in acute myeloid leukemia (AML) and associated with poor prognosis. Since the discovery of FLT3 mutations and their prognostic implications, multiple FLT3-targeted molecules have been evaluated. Midostaurin is approved in the U.S. and Europe for newly diagnosed FLT3 mutated AML in combination with standard induction and consolidation chemotherapy based on data from the RATIFY study. Gilteritinib is approved for relapsed or refractory FLT3 mutated AML as monotherapy based on the ADMIRAL study. Although significant progress has been made in the treatment of AML with FLT3-targeting, many challenges remain. Several drug resistance mechanisms have been identified, including clonal selection, stromal protection, FLT3-associated mutations, and off-target mutations. The benefit of FLT3 inhibitor maintenance therapy, either post-chemotherapy or post-transplant, remains controversial, although several studies are ongoing.
Collapse
Affiliation(s)
- Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Hiba Ahmad
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Kejal Amin
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Posttransplant blockade of CXCR4 improves leukemia complete remission rates and donor stem cell engraftment without aggravating GVHD. Cell Mol Immunol 2021; 18:2541-2553. [PMID: 34635806 PMCID: PMC8545944 DOI: 10.1038/s41423-021-00775-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a promising therapeutic option for hematological malignancies, but relapse resulting predominantly from residual disease in the bone marrow (BM) remains the major cause of treatment failure. Using immunodeficient mice grafted with laboratory-generated human B-ALL, our previous study suggested that leukemia cells within the BM are resistant to graft-versus-leukemia (GVL) effects and that mobilization with CXCR4 antagonists may dislodge leukemia cells from the BM, enabling them to be destroyed by GVL effects. In this study, we extended this approach to patient-derived xenograft (PDX) and murine T-ALL and AML models to determine its clinical relevance and effects on GVHD and donor hematopoietic engraftment. We found that posttransplant treatment with the CXCR4 antagonist AMD3100 significantly improved the eradication of leukemia cells in the BM in PDX mice grafted with B-ALL cells from multiple patients. AMD3100 also significantly improved GVL effects in murine T-ALL and AML models and promoted donor hematopoietic engraftment in mice following nonmyeloablative allo-HCT. Furthermore, posttransplant treatment with AMD3100 had no detectable deleterious effect related to acute or chronic GVHD. These findings provide important preclinical data supporting the initiation of clinical trials exploring combination therapy with CXCR4 antagonists and allo-HCT.
Collapse
|
28
|
Scarpa M, Kapoor S, Tvedte ES, Doshi KA, Zou YS, Singh P, Lee JK, Chatterjee A, Ali MKM, Bromley RE, Hotopp JCD, Rassool FV, Baer MR. Pim kinase inhibitor co-treatment decreases alternative non-homologous end-joining DNA repair and genomic instability induced by topoisomerase 2 inhibitors in cells with FLT3 internal tandem duplication. Oncotarget 2021; 12:1763-1779. [PMID: 34504649 PMCID: PMC8416564 DOI: 10.18632/oncotarget.28042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.
Collapse
Affiliation(s)
- Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Kshama A. Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ying S. Zou
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Julie C. Dunning Hotopp
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute for Genome Sciences, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V. Rassool
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
29
|
Richter WF, Shah RN, Ruthenburg AJ. Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia. eLife 2021; 10:64960. [PMID: 34263728 PMCID: PMC8315800 DOI: 10.7554/elife.64960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates HOXA9 and MEIS1, and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway. In this context, we define alternative proliferation pathways that more directly derive from H3K79me2 loss. By ICeChIP-seq, H3K79me2 is markedly depleted at pinometostat-downregulated and MLL-fusion targets, with paradoxical increases of H3K4me3 and loss of H3K27me3. Although downregulation of polycomb components accounts for some of the proliferation defect, transcriptional downregulation of FLT3 is the major pathway. Loss-of-FLT3-function recapitulates the cytotoxicity and gene expression consequences of low-dose pinometostat, whereas overexpression of constitutively active STAT5A, a target of FLT3-ITD-signaling, largely rescues these defects. This pathway also depends on MLL1, indicating combinations of DOT1L, MLL1 and FLT3 inhibitors should be explored for treating FLT3-mutant leukemia.
Collapse
Affiliation(s)
- William F Richter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Rohan N Shah
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Pritzker School of Medicine, The University of Chicago, Chicago, United States
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
30
|
RSK Isoforms in Acute Myeloid Leukemia. Biomedicines 2021; 9:biomedicines9070726. [PMID: 34202904 PMCID: PMC8301392 DOI: 10.3390/biomedicines9070726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.
Collapse
|
31
|
Scarpa M, Singh P, Bailey CM, Lee JK, Kapoor S, Lapidus RG, Niyongere S, Sangodkar J, Wang Y, Perrotti D, Narla G, Baer MR. PP2A-activating Drugs Enhance FLT3 Inhibitor Efficacy through AKT Inhibition-Dependent GSK-3β-Mediated c-Myc and Pim-1 Proteasomal Degradation. Mol Cancer Ther 2021; 20:676-690. [PMID: 33568357 PMCID: PMC8027945 DOI: 10.1158/1535-7163.mct-20-0663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Fms-like tyrosine-like kinase 3 internal tandem duplication (FLT3-ITD) is present in acute myeloid leukemia (AML) in 30% of patients and is associated with short disease-free survival. FLT3 inhibitor efficacy is limited and transient but may be enhanced by multitargeting of FLT3-ITD signaling pathways. FLT3-ITD drives both STAT5-dependent transcription of oncogenic Pim-1 kinase and inactivation of the tumor-suppressor protein phosphatase 2A (PP2A), and FLT3-ITD, Pim-1, and PP2A all regulate the c-Myc oncogene. We studied mechanisms of action of cotreatment of FLT3-ITD-expressing cells with FLT3 inhibitors and PP2A-activating drugs (PADs), which are in development. PADs, including FTY720 and DT-061, enhanced FLT3 inhibitor growth suppression and apoptosis induction in FLT3-ITD-expressing cell lines and primary AML cells in vitro and MV4-11 growth suppression in vivo PAD and FLT3 inhibitor cotreatment independently downregulated c-Myc and Pim-1 protein through enhanced proteasomal degradation. c-Myc and Pim-1 downregulation was preceded by AKT inactivation, did not occur in cells expressing myristoylated (constitutively active) AKT1, and could be induced by AKT inhibition. AKT inactivation resulted in activation of GSK-3β, and GSK-3β inhibition blocked downregulation of both c-Myc and Pim-1 by PAD and FLT3 inhibitor cotreatment. GSK-3β activation increased c-Myc proteasomal degradation through c-Myc phosphorylation on T58; infection with c-Myc with T58A substitution, preventing phosphorylation, blocked downregulation of c-Myc by PAD and FLT3 inhibitor cotreatment. GSK-3β also phosphorylated Pim-1L/Pim-1S on S95/S4. Thus, PADs enhance efficacy of FLT3 inhibitors in FLT3-ITD-expressing cells through a novel mechanism involving AKT inhibition-dependent GSK-3β-mediated increased c-Myc and Pim-1 proteasomal degradation.
Collapse
Affiliation(s)
- Mario Scarpa
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
- Department of Medicine
| | - Prerna Singh
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Christopher M Bailey
- Department of Surgery and
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jonelle K Lee
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Shivani Kapoor
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Rena G Lapidus
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
- Department of Medicine
| | - Sandrine Niyongere
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
- Department of Medicine
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yin Wang
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
- Department of Surgery and
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
- Department of Medicine
| | - Goutham Narla
- Division of Genetic Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Maria R Baer
- The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center,
- Department of Medicine
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
32
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
33
|
OTS167 blocks FLT3 translation and synergizes with FLT3 inhibitors in FLT3 mutant acute myeloid leukemia. Blood Cancer J 2021; 11:48. [PMID: 33658483 PMCID: PMC7930094 DOI: 10.1038/s41408-021-00433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Internal tandem duplication (-ITD) mutations of Fms-like tyrosine kinase 3 (FLT3) provide growth and pro-survival signals in the context of established driver mutations in FLT3 mutant acute myeloid leukemia (AML). Maternal embryonic leucine zipper kinase (MELK) is an aberrantly expressed gene identified as a target in AML. The MELK inhibitor OTS167 induces cell death in AML including cells with FLT3 mutations, yet the role of MELK and mechanisms of OTS167 function are not understood. OTS167 alone or in combination with tyrosine kinase inhibitors (TKIs) were used to investigate the effect of OTS167 on FLT3 signaling and expression in human FLT3 mutant AML cell lines and primary cells. We describe a mechanism whereby OTS167 blocks FLT3 expression by blocking FLT3 translation and inhibiting phosphorylation of eukaryotic initiation factor 4E–binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4B (eIF4B). OTS167 in combination with TKIs results in synergistic induction of FLT3 mutant cell death in FLT3 mutant cell lines and prolonged survival in a FLT3 mutant AML xenograft mouse model. Our findings suggest signaling through MELK is necessary for the translation and expression of FLT3-ITD, and blocking MELK with OTS167 represents a viable therapeutic strategy for patients with FLT3 mutant AML.
Collapse
|
34
|
Toth RK, Warfel NA. Targeting PIM Kinases to Overcome Therapeutic Resistance in Cancer. Mol Cancer Ther 2020; 20:3-10. [PMID: 33303645 DOI: 10.1158/1535-7163.mct-20-0535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Cancer progression and the onset of therapeutic resistance are often the results of uncontrolled activation of survival kinases. The proviral integration for the Moloney murine leukemia virus (PIM) kinases are oncogenic serine/threonine kinases that regulate tumorigenesis by phosphorylating a wide range of substrates that control cellular metabolism, proliferation, and survival. Because of their broad impact on cellular processes that facilitate progression and metastasis in many cancer types, it has become clear that the activation of PIM kinases is a significant driver of resistance to various types of anticancer therapies. As a result, efforts to target PIM kinases for anticancer therapy have intensified in recent years. Clinical and preclinical studies indicate that pharmacologic inhibition of PIM has the potential to significantly improve the efficacy of standard and targeted therapies. This review focuses on the signaling pathways through which PIM kinases promote cancer progression and resistance to therapy, as well as highlights biological contexts and promising strategies to exploit PIM as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Rachel K Toth
- University of Arizona Cancer Center, Tucson, Arizona
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, Arizona. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Gebru MT, Wang HG. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 2020; 13:155. [PMID: 33213500 PMCID: PMC7678146 DOI: 10.1186/s13045-020-00992-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by several gene mutations and cytogenetic abnormalities affecting differentiation and proliferation of myeloid lineage cells. FLT3 is a receptor tyrosine kinase commonly overexpressed or mutated, and its mutations are associated with poor prognosis in AML. Although aggressive chemotherapy often followed by hematopoietic stem cell transplant is the current standard of care, the recent approval of FLT3-targeted drugs is revolutionizing AML treatment that had remained unchanged since the 1970s. However, despite the dramatic clinical response to targeted agents, such as FLT3 inhibitors, remission is almost invariably short-lived and ensued by relapse and drug resistance. Hence, there is an urgent need to understand the molecular mechanisms driving drug resistance in order to prevent relapse. In this review, we discuss FLT3 as a target and highlight current understanding of FLT3 inhibitor resistance.
Collapse
Affiliation(s)
- Melat T Gebru
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
36
|
Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments. Cells 2020; 9:cells9112493. [PMID: 33212779 PMCID: PMC7697863 DOI: 10.3390/cells9112493] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we still observe primary and secondary resistance to TKI both in monotherapy and in combination with chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and reducing the development of resistance in AML. Tailored treatment approaches that address additional molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.
Collapse
|
37
|
Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis 2020; 9:94. [PMID: 33093450 PMCID: PMC7581748 DOI: 10.1038/s41389-020-00278-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis. Vacuolar protein sorting 34 (VPS34) is a member of the phosphatidylinositol-3-kinase lipid kinase family that controls the canonical autophagy pathway and vesicular trafficking. Using a recently developed specific inhibitor (VPS34-IN1), we found that VPS34 inhibition induces apoptosis in AML cells but not in normal CD34+ hematopoietic cells. Complete and acute inhibition of VPS34 was required for the antileukemic activity of VPS34-IN1. This inhibitor also has pleiotropic effects against various cellular functions related to class III PI3K in AML cells that may explain their survival impairment. VPS34-IN1 inhibits basal and L-asparaginase-induced autophagy in AML cells. A synergistic cell death activity of this drug was also demonstrated. VPS34-IN1 was additionally found to impair vesicular trafficking and mTORC1 signaling. From an unbiased approach based on phosphoproteomic analysis, we identified that VPS34-IN1 specifically inhibits STAT5 phosphorylation downstream of FLT3-ITD signaling in AML. The identification of the mechanisms controlling FLT3-ITD signaling by VPS34 represents an important insight into the oncogenesis of AML and could lead to new therapeutic strategies.
Collapse
|
38
|
Mosquera Orgueira A, Bao Pérez L, Mosquera Torre A, Peleteiro Raíndo A, Cid López M, Díaz Arias JÁ, Ferreiro Ferro R, Antelo Rodríguez B, González Pérez MS, Albors Ferreiro M, Alonso Vence N, Pérez Encinas MM, Bello López JL, Martinelli G, Cerchione C. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. Minerva Med 2020; 111:427-442. [PMID: 32955823 DOI: 10.23736/s0026-4806.20.06989-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain - .,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain - .,University of Santiago de Compostela, Santiago de Compostela, Spain -
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Alicia Mosquera Torre
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Á Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta S González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel Albors Ferreiro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel M Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
39
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
40
|
Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, Jiang JK, Wilson KM, Zhang X, Sutter P, Wang A, Xu X, Choi K, Tawa G, Lorimer D, Abendroth J, O'Brien E, Hoyt SB, Berman E, Famulare CA, Mulloy JC, Levine RL, Perentesis JP, Thomas CJ, Starczynowski DT. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 2020; 11:11/508/eaaw8828. [PMID: 31484791 DOI: 10.1126/scitranslmed.aaw8828] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.
Collapse
Affiliation(s)
- Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellin Berman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
41
|
Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 2020; 8:biomedicines8080245. [PMID: 32722298 PMCID: PMC7459983 DOI: 10.3390/biomedicines8080245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent, and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may improve clinical approaches by detecting additional targetable mutations and determining individual patterns of clonal evolution.
Collapse
Affiliation(s)
- Motoki Eguchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Ayumi Kuzume
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| |
Collapse
|
42
|
Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv 2020; 3:1061-1072. [PMID: 30944098 DOI: 10.1182/bloodadvances.2018029850] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Activating mutations in Fms-like tyrosine kinase 3 (FLT3) occur in ∼30% of adult cases of acute myeloid leukemia (AML). Selective second- and third-generation FLT3 inhibitors have shown significant clinical activity in patients with relapsed FLT3-mutant AML. However, clearance of FLT3-mutant clones does not consistently occur, and disease will progress in most patients after an initial response. This scenario challenges the model of FLT3-mutant AML being oncogene addicted, and it suggests that redundant signaling pathways regulate AML cell survival after FLT3 inhibition. We show that primary FLT3-mutant AML cells escape apoptosis induced by FLT3 inhibition in vitro in the presence of cytokines produced normally in the bone marrow, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3). Despite reactivating canonical FLT3-signaling pathways, GM-CSF and IL-3 maintain cell survival without rescuing proliferation. Cytokine-mediated resistance through GM-CSF and IL-3 is dependent on JAK kinase, STAT5, and proviral integration site of Moloney murine leukemia virus (PIM) but not MAPK or mammalian target of rapamycin signaling. Cotreatment with FLT3 inhibitors and inhibitors of JAK or PIM kinases blocks GM-CSF and IL-3 rescue of cell survival in vitro and in vivo. Altogether, these data provide a strong rationale for combination therapy with FLT3 inhibitors to potentially improve clinical responses in AML.
Collapse
|
43
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
44
|
Nair-Gupta P, Rudnick SI, Luistro L, Smith M, McDaid R, Li Y, Pillarisetti K, Joseph J, Heidrich B, Packman K, Attar R, Gaudet F. Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment. Blood Cancer J 2020; 10:65. [PMID: 32483120 PMCID: PMC7264144 DOI: 10.1038/s41408-020-0331-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Redirecting T cells to specifically kill malignant cells has been validated as an effective anti-cancer strategy in the clinic with the approval of blinatumomab for acute lymphoblastic leukemia. However, the immunosuppressive nature of the tumor microenvironment potentially poses a significant hurdle to T cell therapies. In hematological malignancies, the bone marrow (BM) niche is protective to leukemic stem cells and has minimized the efficacy of several anti-cancer drugs. In this study, we investigated the impact of the BM microenvironment on T cell redirection. Using bispecific antibodies targeting specific tumor antigens (CD123 and BCMA) and CD3, we observed that co-culture of acute myeloid leukemia or multiple myeloma cells with BM stromal cells protected tumor cells from bispecific antibody-T cell-mediated lysis in vitro and in vivo. Impaired CD3 redirection cytotoxicity was correlated with reduced T cell effector responses and cell-cell contact with stromal cells was implicated in reducing T cell activation and conferring protection of cancer cells. Finally, blocking the VLA4 adhesion pathway in combination with CD3 redirection reduced the stromal-mediated inhibition of cytotoxicity and T cell activation. Our results lend support to inhibiting VLA4 interactions along with administering CD3 redirection therapeutics as a novel combinatorial regimen for robust anti-cancer responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B-Cell Maturation Antigen/antagonists & inhibitors
- B-Cell Maturation Antigen/immunology
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/immunology
- Cell Line, Tumor
- Female
- Humans
- Integrin alpha4beta1/antagonists & inhibitors
- Integrin alpha4beta1/immunology
- Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-3 Receptor alpha Subunit/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | | | - Melissa Smith
- Janssen Research & Development LLC, Spring House, PA, USA
| | - Ronan McDaid
- Janssen Research & Development LLC, Spring House, PA, USA
| | - Yingzhe Li
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | - Jocelin Joseph
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | | | - Ricardo Attar
- Janssen Research & Development LLC, Spring House, PA, USA
| | | |
Collapse
|
45
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
46
|
Sun Z, Zeng L, Zhang M, Zhang Y, Yang N. PIM1 inhibitor synergizes the anti-tumor effect of osimertinib via STAT3 dephosphorylation in EGFR-mutant non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:366. [PMID: 32355810 PMCID: PMC7186747 DOI: 10.21037/atm.2020.02.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background An increasing amount of evidence has demonstrated that combined or multiple targeted therapies could bring about more durable clinical outcomes, and it is known that epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance is related to bypass activation. This study aims to explore a specific solution for third-generation EGFR-TKI resistance caused by bypass activation, and to examine the antitumor effects of the combination of a novel inhibitor CX-6258 HCl with osimertinib, along with its underlining mechanisms. Methods A bioinformatics analysis was performed to detect the relations between the provirus integration site for Moloney murine leukemia virus 1 (PIM1) expression and prognosis of lung cancer. The EGFR-mutated lung cancer cell lines were treated with the combination of CX-6258 HCl and osimertinib to analyze cell proliferation using the Cell Counting Kit-8, colony formation, and in vivo experiments. Cell migration was analyzed using wound healing and Transwell assays. The apoptosis level was detected using Annexin V-propidium iodide flow cytometry. The expression levels of EGFR and STAT3 were determined using Western blot analysis. Results High expression level of PIM1 was related to the poor prognosis of non-small cell lung cancer (NSCLC). The combined administration of osimertinib and CX-6258 HCl significantly inhibited cell proliferation and migration and effectively induced apoptosis in lung cancer cells. It was more efficient in suppressing EGFR activation and phosphorylation of STAT3 compared with osimertinib treatment alone. Furthermore, it showed a durable efficacy in a xenograft model. Conclusions This study showed that PIM1 is a poor prognostic factor for NSCLC. CX-6258 HCl is a potential molecular inhibitor to sensitize the antitumor effects of osimertinib through the inhibiting of the phosphorylation of STAT3 in NSCLC.
Collapse
Affiliation(s)
- Ziyi Sun
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital, and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China
| | - Miaomiao Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China
| |
Collapse
|
47
|
Lam SS, Leung AY. Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. Int J Mol Sci 2020; 21:E1537. [PMID: 32102366 PMCID: PMC7073218 DOI: 10.3390/ijms21041537] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Acute myeloid leukaemia (AML) carrying internal tandem duplication (ITD) of Fms-Like Tyrosine kinase 3 (FLT3) gene is associated with high risk of relapse and poor clinical outcome upon treatment with conventional chemotherapy. FLT3 inhibitors have been approved for the treatment of this AML subtype but leukaemia relapse remains to be a major cause of treatment failure. Mechanisms of drug resistance have been proposed, including evolution of resistant leukaemic clones; adaptive cellular mechanisms and a protective leukaemic microenvironment. These models have provided important leads that may inform design of clinical trials. Clinically, FLT3 inhibitors in combination with conventional chemotherapy as induction treatment for fit patients; with low-intensity treatment as salvage treatment or induction for unfit patients as well as maintenance treatment with FLT3 inhibitors post HSCT hold promise to improve survival in this AML subtype.
Collapse
Affiliation(s)
| | - Anskar Y.H. Leung
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
48
|
Waldeck S, Rassner M, Keye P, Follo M, Herchenbach D, Endres C, Charlet A, Andrieux G, Salzer U, Boerries M, Duyster J, von Bubnoff N. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML. Mol Oncol 2020; 14:779-794. [PMID: 31955503 PMCID: PMC7138400 DOI: 10.1002/1878-0261.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
FLT3‐ITD tyrosine kinase inhibitors (TKI) show limited clinical activity in acute myeloid leukemia (AML) due to emerging resistance. TKI resistance is mediated by secondary FLT3‐ITD mutations only in a minority of cases. We hypothesize that the cytokine CCL5 protects AML cells from TKI‐mediated cell death and contributes to treatment resistance. We generated PKC412‐ and sorafenib‐resistant MOLM‐13 cell lines as an in vitro model to study TKI resistance in AML. Increased CCL5 levels were detected in supernatants from PKC412‐resistant cell lines compared to TKI‐sensitive cells. Moreover, CCL5 treatment of TKI‐sensitive cells induced resistance to PKC412. In resistant cell lines with high CCL5 release, we observed a significant downregulation of the CCL5‐receptor CCR5 and CXCR4. In these cell lines, TKI resistance could be partly overcome by addition of the CXCR4‐receptor antagonist plerixafor. Microarray and intracellular flow cytometry analyses revealed increased p‐Akt or p‐Stat5 levels in PKC412‐resistant cell lines releasing high amounts of CCL5. Treatment with the CXCR4 antagonist plerixafor, αCCL5, or CCR5‐targeting siRNA led to a decrease of p‐Akt‐positive cells. Transient transfection of sensitive MOLM‐13 cells with a CCL5‐encoding vector mediated resistance against PKC412 and led to an increase in p‐Akt‐positive and p‐Stat5‐positive cells. Isolated AML blasts from patients treated with PKC412 revealed that CCL5 transcript levels increase significantly at relapse. Taken together, our findings indicate that CCL5 mediates resistance to FLT3‐TKIs in FLT3‐ITD‐mutated AML and could possibly serve as a biomarker to predict drug resistance.
Collapse
Affiliation(s)
- Silvia Waldeck
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Rassner
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Philip Keye
- Department of Ophthalmology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Dieter Herchenbach
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Charlet
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
49
|
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov 2020; 10:506-525. [DOI: 10.1158/2159-8290.cd-19-1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
50
|
Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020; 5:7. [PMID: 32296034 PMCID: PMC6992635 DOI: 10.1038/s41392-020-0109-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future.
Collapse
Affiliation(s)
- Sabina Luszczak
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Christopher Kumar
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Kathy A Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Dublin, Ireland
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK.
| |
Collapse
|