1
|
Bressan P. Why humans evolved blue eyes. Front Psychol 2025; 16:1442500. [PMID: 40309207 PMCID: PMC12041803 DOI: 10.3389/fpsyg.2025.1442500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/03/2025] [Indexed: 05/02/2025] Open
Abstract
A surprising number of humans are equipped with a subpar eye model-featuring pale, colorful irides that are nowhere as good as the original dark ones at guarding the retina from sunlight and do, in fact, raise one's risk of eye disease. Here I apply evolutionary theory to understand why. I propose that the allele for human blue eyes, which arose just once, managed to spread from one individual to millions at an astonishing speed because it is a greenbeard. "Greenbeards"-imaginary genes, or groups of genes, that produce both a green beard and a behavior that favors other bearers of a green beard-have been deemed exceedingly unlikely to show up in the real world. And yet, as individuals who prefer blue eyes are more inclined to mate with blue-eyed partners and invest in blue-eyed offspring, any blue-eye preference (whether random or arising from the bias for colorful stimuli shared by all recognition systems) becomes rapidly linked to the blue-eye trait. Thus, blue eyes gain an edge by working like a peacock's colorful tail and a nestling's colorful mouth: twice self-reinforcing, "double runaway" evolution via sexual and parental selection. The blue-eye ornament gene, by binding to a behavior that favors other bearers of the blue-eye ornament gene, is ultimately recognizing and helping copies of itself in both kin and strangers-and greatly prospering, just like theory predicts.
Collapse
Affiliation(s)
- Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padua, Italy
| |
Collapse
|
2
|
El Fahime E, Kartti S, Chemao-Elfihri MW, Festali R, Hakmi M, Ibrahimi A, Boutayeb S, Belyamani L. Moroccan genome project: genomic insight into a North African population. Commun Biol 2025; 8:584. [PMID: 40204857 PMCID: PMC11982406 DOI: 10.1038/s42003-025-08020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Africa's 1.5 billion people are underrepresented in genomic databases. The African Genome Variation Project exclusively focuses on Sub-Saharan populations, making Morocco, located in North Africa, a valuable site for studying genetic diversity. Understanding genetic variation and customized therapy requires population-specific reference genomes. This study presents Phase 1 results from the Moroccan Genome Project (MGP), which sequenced 109 Moroccan genomes. We report over 27 million variants, including 1.4 million novel ones, of which 15,378 are highly prevalent in the Moroccan population. Furthermore, we propose a Moroccan Major Allele Reference Genome (MMARG), generated using high-coverage consensus sequences from the 109 whole genomes. This MMARG represents more accurately the Moroccan genetic variation than GRCh38. This baseline study also generates an informative genetic variation database that supports regional population-specific initiatives and precision medicine in Morocco and North Africa. The results stress the necessity of population-relevant data in Human genetic research.
Collapse
Affiliation(s)
- Elmostafa El Fahime
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco.
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco.
| | - Souad Kartti
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
| | - Mohammed Walid Chemao-Elfihri
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
| | - Rihab Festali
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
| | - Mohammed Hakmi
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
| | | | - Saber Boutayeb
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
| | - Lahcen Belyamani
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, 20370, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, 10100, Morocco
- 3Mohammed V University (UM5), Rabat, B.P:8007.N.U, Morocco
| |
Collapse
|
3
|
Arencibia V, Muñoz M, Crespo CM, Russo MG, Vera P, Lia VV, García Guraieb S, Goñi RA, Avena S, Puebla A, Dejean CB. Novel B2 mitogenomes from Continental southern Patagonia's Late Holocene: New insights into the peopling of the Southern Cone. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24822. [PMID: 37548135 DOI: 10.1002/ajpa.24822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVES The main aim of this study is to discuss the migratory processes and peopling dynamics that shaped the genetic variability of populations during the settlement of the Southern Cone, through the analysis of complete mitogenomes of individuals from southern Patagonia. MATERIALS AND METHODS Complete mitogenomes were sequenced through massively parallel sequencing from two late Holocene individuals (SAC 1-1-3 and SAC 1-1-4) buried in the same chenque at Salitroso Lake Basin (Santa Cruz province, Argentina). To evaluate matrilineal phylogenetic affinities with other haplotypes, maximum likelihood and Bayesian phylogenetic reconstructions were performed, as well as a haplotype median-joining network. RESULTS The mitogenomes were assigned to haplogroups B2 and B2b, exhibiting an average depth of 54X and 89X (≥1X coverage of 98.6% and 100%), and a high number of nucleotide differences among them. The phylogenetic analyses showed a relatively close relationship between the haplotype found in SAC 1-1-4 and those retrieved from a Middle Holocene individual from Laguna Chica (Buenos Aires province), and from a group of individuals from the Peruvian coast. For the SAC 1-1-3, no clear affiliations to any other haplotype were established. DISCUSSION The large divergence between the haplotypes presented in this study suggests either a highly variable founder gene pool, or a later enrichment by frequent biological contact with other populations. Our results underline the persistence of genetic signals related to the first waves of peopling in South America, suggesting that the regional settlement of the southern end of the continent has been much more complex than initially thought.
Collapse
Affiliation(s)
- Valeria Arencibia
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marianne Muñoz
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristian M Crespo
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - M Gabriela Russo
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Vera
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Solana García Guraieb
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael A Goñi
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Avena
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Puebla
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristina B Dejean
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Instituto de Ciencias Antropológicas, Sección Antropología Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Figueiro G. Simulating the effects of kinship and postmarital residence patterns on mitochondrial DNA diversity in mortuary contexts. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24910. [PMID: 38317510 DOI: 10.1002/ajpa.24910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES We explore the observable outcome in mtDNA diversity of different kinship systems and associated postmarital residence patterns in the archeological record, using simulations at the intrapopulation level. MATERIALS AND METHODS Four kinship systems were simulated from a set of variable fertility and mortality scenarios. Initial conditions consisted of six clusters of variable size and a random number of assigned haplotypes, with individuals migrating between groups and reproducing for 15 generations. Each 15-generation span was simulated 500 times to obtain representative intrasite mtDNA diversity distributions for each kinship system. Additional simulations were devised to consider the effect of migration and different rates of adherence to kinship norms. RESULTS Matrilineal kinship generates low male and female haplotype diversities that are statistically indistinguishable from each other, while female diversity in bilateral kinship with matrilocality is significantly lower than that observed in male diversity. Furthermore, mtDNA diversity generated by patrilineal kinship is very high. The effect of noncompliance with kinship rules is low; migration has a considerable impact on diversity, eventually obscuring the effect of kinship practices. DISCUSSION The results of the simulations can be applied to ancient mtDNA data from archeological contexts, as exemplified with data from two studies. On a broader scale, the kinship system followed by the sampled population, can lead to either over- or underestimation of mtDNA population diversity. The results of the simulations can be used in the design of inferential frameworks to discern kinship scenarios in the archeological record, based on mtDNA and other types of evidence.
Collapse
Affiliation(s)
- Gonzalo Figueiro
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Ding Y, Guo H, Hong X, Li Q, Miao Z, Pan Q, Zheng K, Wang W. The distinct spatiotemporal evolutionary landscape of HBV and HDV largely determines the unique epidemic features of HDV globally. Mol Phylogenet Evol 2024; 197:108114. [PMID: 38825156 DOI: 10.1016/j.ympev.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Chronic infection of hepatitis B virus (HBV) and hepatitis D virus (HDV) causes the most severe form of viral hepatitis. Due to the dependence on HBV, HDV was deemed to co-evolve and co-migrate with HBV. However, we previously found that the naturally occurred HDV/HBV combinations do not always reflect the most efficient virological adaptation (Wang et al., 2021). Moreover, regions with heavy HBV burden do not always correlate with high HDV prevalence (e.g., East Asia), and vice versa (e.g., Central Asia). Herein, we systematically elucidated the spatiotemporal evolutionary landscape of HDV to understand the unique epidemic features of HDV. We found that the MRCA of HDV was from South America around the late 13th century, was globally dispersed mainly via Central Asia, and evolved into eight genotypes from the 19th to 20th century. In contrast, the MRCA of HBV was from Europe ∼23.7 thousand years ago (Kya), globally dispersed mainly via Africa and East Asia, and evolved into eight genotypes ∼1100 years ago. When HDV stepped in, all present-day HBV genotypes had already formed and its global genotypic distribution had stayed stable geographically. Nevertheless, regionalized HDV adapted to local HBV genotypes and human lineages, contributing to the global geographical separation of HDV genotypes. Additionally, a sharp increase in HDV infections was observed after the 20th century. In conclusion, HDV exhibited a distinct spatiotemporal distribution path compared with HBV. This unique evolutionary relationship largely fostered the unique epidemic features we observe nowadays. Moreover, HDV infections may continue to ramp up globally, thus more efforts are urgently needed to combat this disease.
Collapse
Affiliation(s)
- Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Xinfang Hong
- Second Medical Center of PLA General Hospital, Beijing, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zhijiang Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Navarro-Romero MT, Muñoz MDL, Krause-Kyora B, Cervini-Silva J, Alcalá-Castañeda E, David RE. Bioanthropological analysis of human remains from the archaic and classic period discovered in Puyil cave, Mexico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24903. [PMID: 38308451 DOI: 10.1002/ajpa.24903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVES Determine the geographic place of origin and maternal lineage of prehistoric human skeletal remains discovered in Puyil Cave, Tabasco State, Mexico, located in a region currently populated by Olmec, Zoque and Maya populations. MATERIALS AND METHODS All specimens were radiocarbon (14C) dated (beta analytic), had dental modifications classified, and had an analysis of 13 homologous reference points conducted to evaluate artificial cranial deformation (ACD). Following DNA purification, hypervariable region I (HVR-1) of the mitogenome was amplified and Sanger sequenced. Finally, Next Generation Sequencing (NGS) was performed for total DNA. Mitochondrial DNA (mtDNA) variants and haplogroups were determined using BioEdit 7.2 and IGV software and confirmed with MITOMASTER and WebHome softwares. RESULTS Radiocarbon dating (14C) demonstrated that the inhabitants of Puyil Cave lived during the Archaic and Classic Periods and displayed tabular oblique and tabular mimetic ACD. These pre-Hispanic remains exhibited five mtDNA lineages: A, A2, C1, C1c and D4. Network analysis revealed a close genetic affinity between pre-Hispanic Puyil Cave inhabitants and contemporary Maya subpopulations from Mexico and Guatemala, as well as individuals from Bolivia, Brazil, the Dominican Republic, and China. CONCLUSIONS Our results elucidate the dispersal of pre-Hispanic Olmec and Maya ancestors and suggest that ACD practices are closely related to Olmec and Maya practices. Additionally, we conclude that ACD has likely been practiced in the region since the Middle-Archaic Period.
Collapse
Affiliation(s)
- María Teresa Navarro-Romero
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Javiera Cervini-Silva
- Department of Process and Technology, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| | - Enrique Alcalá-Castañeda
- Department of Archaeological Studies, Instituto Nacional de Antropología e Historia, Mexico City, Mexico
| | - Randy E David
- Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Saltré F, Chadœuf J, Higham T, Ochocki M, Block S, Bunney E, Llamas B, Bradshaw CJA. Environmental conditions associated with initial northern expansion of anatomically modern humans. Nat Commun 2024; 15:4364. [PMID: 38777837 PMCID: PMC11111671 DOI: 10.1038/s41467-024-48762-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The ability of our ancestors to switch food sources and to migrate to more favourable environments enabled the rapid global expansion of anatomically modern humans beyond Africa as early as 120,000 years ago. Whether this versatility was largely the result of environmentally determined processes or was instead dominated by cultural drivers, social structures, and interactions among different groups, is unclear. We develop a statistical approach that combines both archaeological and genetic data to infer the more-likely initial expansion routes in northern Eurasia and the Americas. We then quantify the main differences in past environmental conditions between the more-likely routes and other potential (less-likely) routes of expansion. We establish that, even though cultural drivers remain plausible at finer scales, the emergent migration corridors were predominantly constrained by a combination of regional environmental conditions, including the presence of a forest-grassland ecotone, changes in temperature and precipitation, and proximity to rivers.
Collapse
Affiliation(s)
- Frédérik Saltré
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, NSW, Australia.
| | - Joël Chadœuf
- UR 1052, French National Institute for Agricultural Research (INRA), Montfavet, France
| | - Thomas Higham
- Department of Evolutionary Biology, University of Vienna, University Biology Building, Carl Djerassi Platz 1, A-1030, Wien, Austria
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3TG, UK
| | - Monty Ochocki
- Department of Evolutionary Biology, University of Vienna, University Biology Building, Carl Djerassi Platz 1, A-1030, Wien, Austria
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3TG, UK
| | - Sebastián Block
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544-1003, USA
| | - Ellyse Bunney
- Commonwealth Scientific and Industrial Research Organisation, Urrbrae, SA, 5064, Australia
| | - Bastien Llamas
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, NSW, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences, The Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, 5000, Australia
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, NSW, Australia
| |
Collapse
|
8
|
Davidson R, Williams MP, Roca-Rada X, Kassadjikova K, Tobler R, Fehren-Schmitz L, Llamas B. Allelic bias when performing in-solution enrichment of ancient human DNA. Mol Ecol Resour 2023; 23:1823-1840. [PMID: 37712846 DOI: 10.1111/1755-0998.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
In-solution hybridisation enrichment of genetic variation is a valuable methodology in human paleogenomics. It allows enrichment of endogenous DNA by targeting genetic markers that are comparable between sequencing libraries. Many studies have used the 1240k reagent-which enriches 1,237,207 genome-wide SNPs-since 2015, though access was restricted. In 2021, Twist Biosciences and Daicel Arbor Biosciences independently released commercial kits that enabled all researchers to perform enrichments for the same 1240 k SNPs. We used the Daicel Arbor Biosciences Prime Plus kit to enrich 132 ancient samples from three continents. We identified a systematic assay bias that increases genetic similarity between enriched samples and that cannot be explained by batch effects. We present the impact of the bias on population genetics inferences (e.g. Principal Components Analysis, ƒ-statistics) and genetic relatedness (READ). We compare the Prime Plus bias to that previously reported of the legacy 1240k enrichment assay. In ƒ-statistics, we find that all Prime-Plus-generated data exhibit artefactual excess shared drift, such that within-continent relationships cannot be correctly determined. The bias is more subtle in READ, though interpretation of the results can still be misleading in specific contexts. We expect the bias may affect analyses we have not yet tested. Our observations support previously reported concerns for the integration of different data types in paleogenomics. We also caution that technological solutions to generate 1240k data necessitate a thorough validation process before their adoption in the paleogenomic community.
Collapse
Affiliation(s)
- Roberta Davidson
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew P Williams
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Biology Department, The Pennsylvania State University, Pennsylvania, USA
| | - Xavier Roca-Rada
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kalina Kassadjikova
- UCSC Paleogenomics, Department of Anthropology, University of California, California, USA
| | - Raymond Tobler
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, Department of Anthropology, University of California, California, USA
- UCSC Genomics Institute, University of California, California, USA
| | - Bastien Llamas
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Tretmanis JM, Jay F, Avila-Árcos MC, Huerta-Sanchez E. Simulation-based Benchmarking of Ancient Haplotype Inference for Detecting Population Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560049. [PMID: 37808674 PMCID: PMC10557694 DOI: 10.1101/2023.09.28.560049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paleogenomic data has informed us about the movements, growth, and relationships of ancient populations. It has also given us context for medically relevant adaptations that appear in present-day humans due to introgression from other hominids, and it continues to help us characterize the evolutionary history of humans. However, ancient DNA (aDNA) presents several practical challenges as various factors such as deamination, high fragmentation, environmental contamination of aDNA, and low amounts of recoverable endogenous DNA, make aDNA recovery and analysis more difficult than modern DNA. Most studies with aDNA leverage only SNP data, and only a few studies have made inferences on human demographic history based on haplotype data, possibly because haplotype estimation (or phasing) has not yet been systematically evaluated in the context of aDNA. Here, we evaluate how the unique challenges of aDNA can impact phasing quality. We also develop a software tool that simulates aDNA taking into account the features of aDNA as well as the evolutionary history of the population. We measured phasing error as a function of aDNA quality and demographic history, and found that low phasing error is achievable even for very ancient individuals (~ 400 generations in the past) as long as contamination and read depth are adequate. Our results show that population splits or bottleneck events occurring between the reference and phased populations affect phasing quality, with bottlenecks resulting in the highest average error rates. Finally, we found that using estimated haplotypes, even if not completely accurate, is superior to using the simulated genotype data when reconstructing changes in population structure after population splits between present-day and ancient populations.
Collapse
Affiliation(s)
| | - Flora Jay
- Interdisciplinary Laboratory of Numerical Sciences, Université Paris-Saclay
| | | | | |
Collapse
|
10
|
Uricoechea Patiño D, Collins A, García OJR, Santos Vecino G, Cuenca JVR, Bernal JE, Benavides Benítez E, Vergara Muñoz S, Briceño Balcázar I. High Mitochondrial Haplotype Diversity Found in Three Pre-Hispanic Groups from Colombia. Genes (Basel) 2023; 14:1853. [PMID: 37895202 PMCID: PMC10606881 DOI: 10.3390/genes14101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The analysis of mitochondrial DNA (mtDNA) hypervariable region (HVR) sequence data from ancient human remains provides valuable insights into the genetic structure and population dynamics of ancient populations. mtDNA is particularly useful in studying ancient populations, because it is maternally inherited and has a higher mutation rate compared to nuclear DNA. To determine the genetic structure of three Colombian pre-Hispanic populations and compare them with current populations, we determined the haplotypes from human bone remains by sequencing several mitochondrial DNA segments. A wide variety of mitochondrial polymorphisms were obtained from 33 samples. Our results support a high population heterogeneity among pre-Hispanic populations in Colombia.
Collapse
Affiliation(s)
- Daniel Uricoechea Patiño
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| | - Andrew Collins
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | | | - Gustavo Santos Vecino
- Department of Anthropology, Faculty of Social and Human Science, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | - Jaime E. Bernal
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Escilda Benavides Benítez
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Saray Vergara Muñoz
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Ignacio Briceño Balcázar
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| |
Collapse
|
11
|
Carlo Colonese A, McGrath K. Genetic insights into Brazil's ancient shell mound builders. Nat Ecol Evol 2023; 7:1179-1180. [PMID: 37524798 DOI: 10.1038/s41559-023-02134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Affiliation(s)
- André Carlo Colonese
- Institute of Environmental Science and Technology (ICTA-UAB), ICTA-ICP, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Prehistory, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Krista McGrath
- Institute of Environmental Science and Technology (ICTA-UAB), ICTA-ICP, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Prehistory, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Salazar L, Burger R, Forst J, Barquera R, Nesbitt J, Calero J, Washburn E, Verano J, Zhu K, Sop K, Kassadjikova K, Ibarra Asencios B, Davidson R, Bradley B, Krause J, Fehren-Schmitz L. Insights into the genetic histories and lifeways of Machu Picchu's occupants. SCIENCE ADVANCES 2023; 9:eadg3377. [PMID: 37494435 PMCID: PMC11318671 DOI: 10.1126/sciadv.adg3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Machu Picchu originally functioned as a palace within the estate of the Inca emperor Pachacuti between ~1420 and 1532 CE. Before this study, little was known about the people who lived and died there, where they came from or how they were related to the inhabitants of the Inca capital of Cusco. We generated genome-wide data for 34 individuals buried at Machu Picchu who are believed to have been retainers or attendants assigned to serve the Inca royal family, as well as 34 individuals from Cusco for comparative purposes. When the ancient DNA results are contextualized using historical and archaeological data, we conclude that the retainer population at Machu Picchu was highly heterogeneous with individuals exhibiting genetic ancestries associated with groups from throughout the Inca Empire and Amazonia. The results suggest a diverse retainer community at Machu Picchu in which people of different genetic backgrounds lived, reproduced, and were interred together.
Collapse
Affiliation(s)
- Lucy Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Richard Burger
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
| | - Janine Forst
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Jason Nesbitt
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Jorge Calero
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Eden Washburn
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Verano
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Kimberly Zhu
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Korey Sop
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kalina Kassadjikova
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bebel Ibarra Asencios
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
- Department of Archaeology, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz 02002, Peru
| | - Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Brenda Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
13
|
Moreno-Mayar JV. Human genetics: Rich genomic history of two isolated Indigenous peoples of South America. Curr Biol 2023; 33:R715-R717. [PMID: 37433271 DOI: 10.1016/j.cub.2023.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Genome-wide data from two Indigenous South American groups reveal their dynamic population history. The Mapuche from Southern Chile and the Ashaninka from Amazonian Peru remained largely isolated over time. Yet, both groups interacted with other South American peoples sporadically.
Collapse
Affiliation(s)
- J Víctor Moreno-Mayar
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Malyarchuk BA. The role of Beringia in human adaptation to Arctic conditions based on results of genomic studies of modern and ancient populations. Vavilovskii Zhurnal Genet Selektsii 2023; 27:373-382. [PMID: 37465192 PMCID: PMC10350865 DOI: 10.18699/vjgb-23-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 07/20/2023] Open
Abstract
The results of studies in Quaternary geology, archeology, paleoanthropology and human genetics demonstrate that the ancestors of Native Americans arrived in mid-latitude North America mainly along the Pacific Northwest Coast, but had previously inhabited the Arctic and during the last glacial maximum were in a refugium in Beringia, a land bridge connecting Eurasia and North America. The gene pool of Native Americans is represented by unique haplogroups of mitochondrial DNA and the Y chromosome, the evolutionary age of which ranges from 13 to 22 thousand years. The results of a paleogenomic analysis also show that during the last glacial maximum Beringia was populated by human groups that had arisen as a result of interaction between the most ancient Upper Paleolithic populations of Northern Eurasia and newcomer groups from East Asia. Approximately 20 thousand years ago the Beringian populations began to form, and the duration of their existence in relative isolation is estimated at about 5 thousand years. Thus, the adaptation of the Beringians to the Arctic conditions could have taken several millennia. The adaptation of Amerindian ancestors to high latitudes and cold climates is supported by genomic data showing that adaptive genetic variants in Native Americans are associated with various metabolic pathways: melanin production processes in the skin, hair and eyes, the functioning of the cardiovascular system, energy metabolism and immune response characteristics. Meanwhile, the analysis of the existing hypotheses about the selection of some genetic variants in the Beringian ancestors of the Amerindians in connection with adaptation to the Arctic conditions (for example, in the FADS, ACTN3, EDAR genes) shows the ambiguity of the testing results, which may be due to the loss of some traces of the "Beringian" adaptation in the gene pools of modern Native Americans. The most optimal strategy for further research seems to be the search for adaptive variant.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia N.A. Shilo North-East Interdisciplinary Scientific Research Institute, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
15
|
Aqil A, Gill S, Gokcumen O, Malhi RS, Reese EA, Smith JL, Heaton TT, Lindqvist C. A paleogenome from a Holocene individual supports genetic continuity in Southeast Alaska. iScience 2023; 26:106581. [PMID: 37138779 PMCID: PMC10149335 DOI: 10.1016/j.isci.2023.106581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Many specifics of the population histories of the Indigenous peoples of North America remain contentious owing to a dearth of physical evidence. Only few ancient human genomes have been recovered from the Pacific Northwest Coast, a region increasingly supported as a coastal migration route for the initial peopling of the Americas. Here, we report paleogenomic data from the remains of a ∼3,000-year-old female individual from Southeast Alaska, named Tatóok yík yées sháawat (TYYS). Our results demonstrate at least 3,000 years of matrilineal genetic continuity in Southeast Alaska, and that TYYS is most closely related to ancient and present-day northern Pacific Northwest Coast Indigenous Americans. We find no evidence of Paleo-Inuit (represented by Saqqaq) ancestry in present-day or ancient Pacific Northwest peoples. Instead, our analyses suggest the Saqqaq genome harbors Northern Native American ancestry. This study sheds further light on the human population history of the northern Pacific Northwest Coast.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Stephanie Gill
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Ripan S. Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Jane L. Smith
- USDA-Forest Service, Tongass National Forest, Petersburg, AK 99833, USA
| | - Timothy T. Heaton
- Department of Earth Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Corresponding author
| |
Collapse
|
16
|
Villa-Islas V, Izarraras-Gomez A, Larena M, Campos EMP, Sandoval-Velasco M, Rodríguez-Rodríguez JE, Bravo-Lopez M, Moguel B, Fregel R, Garfias-Morales E, Medina Tretmanis J, Velázquez-Ramírez DA, Herrera-Muñóz A, Sandoval K, Nieves-Colón MA, Zepeda García Moreno G, Villanea FA, Medina EFV, Aguayo-Haro R, Valdiosera C, Ioannidis AG, Moreno-Estrada A, Jay F, Huerta-Sanchez E, Moreno-Mayar JV, Sánchez-Quinto F, Ávila-Arcos MC. Demographic history and genetic structure in pre-Hispanic Central Mexico. Science 2023; 380:eadd6142. [PMID: 37167382 DOI: 10.1126/science.add6142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.
Collapse
Affiliation(s)
- Viridiana Villa-Islas
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Alan Izarraras-Gomez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Maximilian Larena
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Cuidad de México, Mexico
| | | | - Miriam Bravo-Lopez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Barbara Moguel
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
- Centro de Geociencias, UNAM Juriquilla, Juriquilla, Querétaro, México
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ernesto Garfias-Morales
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | | | - Karla Sandoval
- Equity and Gender Office of the Centre for Research and Advanced Studies (CODIGO-C), CINVESTAV, Mexico City, Mexico
| | - Maria A Nieves-Colón
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | - Fernando A Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Cristina Valdiosera
- Departamento de Historia, Geografía y Comunicaciones, Universidad de Burgos, Burgos, Spain
- Department of History and Archaeology, La Trobe University, Melbourne, Australia
| | - Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Flora Jay
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS, INRIA, 91400 Orsay, France
| | | | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
17
|
Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, Yang LQ, Zhang SH, Li CT, Achilli A, Semino O, Torroni A, Kong QP. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep 2023:112413. [PMID: 37164007 DOI: 10.1016/j.celrep.2023.112413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zong-Liang Gao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Su-Hua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China.
| |
Collapse
|
18
|
Motti JMB, Pauro M, Scabuzzo C, García A, Aldazábal V, Vecchi R, Bayón C, Pastor N, Demarchi DA, Bravi CM, Reich D, Cabana GS, Nores R. Ancient mitogenomes from the Southern Pampas of Argentina reflect local differentiation and limited extra-regional linkages after rapid initial colonization. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:216-230. [PMID: 36919783 DOI: 10.1002/ajpa.24727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE This study aims to contribute to the recovery of Indigenous evolutionary history in the Southern Pampas region of Argentina through an analysis of ancient complete mitochondrial genomes. MATERIALS AND METHODS We generated DNA data for nine complete mitogenomes from the Southern Pampas, dated to between 2531 and 723 cal BP. In combination with previously published ancient mitogenomes from the region and from throughout South America, we documented instances of extra-regional lineage-sharing, and estimated coalescent ages for local lineages using a Bayesian method with tip calibrations in a phylogenetic analysis. RESULTS We identified a novel mitochondrial haplogroup, B2b16, and two recently defined haplogroups, A2ay and B2ak1, as well as three local haplotypes within founder haplogroups C1b and C1d. We detected lineage-sharing with ancient and contemporary individuals from Central Argentina, but not with ancient or contemporary samples from North Patagonian or Littoral regions of Argentina, despite archeological evidence of cultural interactions with the latter regions. The estimated coalescent age of these shared lineages is ~10,000 years BP. DISCUSSION The history of the human populations in the Southern Pampas is temporally deep, exhibiting long-term continuity of mitogenome lineages. Additionally, the identification of highly localized mtDNA clades accords with a model of relatively rapid initial colonization of South America by Indigenous communities, followed by more local patterns of limited gene flow and genetic drift in various South American regions, including the Pampas.
Collapse
Affiliation(s)
- Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quequén, Buenos Aires, Argentina
| | - Maia Pauro
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Clara Scabuzzo
- Centro de Investigación Científica y de Transferencia a la Producción (CICyTTP)-CONICET, Provincia de Entre Ríos-Universidad Autónoma de Entre Ríos (UADER)-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Diamante, Entre Ríos, Argentina
| | - Angelina García
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Aldazábal
- Instituto Multidisciplinario de Historia y Ciencias Humanas, CONICET, Buenos Aires, Argentina
| | - Rodrigo Vecchi
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bayón
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Nicolás Pastor
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Darío A Demarchi
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular, Centro Científico Tecnológica (CCT) La Plata CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute, Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Graciela S Cabana
- Molecular Anthropology Laboratories, Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Rodrigo Nores
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
19
|
Couto-Silva CM, Nunes K, Venturini G, Araújo Castro e Silva M, Pereira LV, Comas D, Pereira A, Hünemeier T. Indigenous people from Amazon show genetic signatures of pathogen-driven selection. SCIENCE ADVANCES 2023; 9:eabo0234. [PMID: 36888716 PMCID: PMC9995071 DOI: 10.1126/sciadv.abo0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Ecological conditions in the Amazon rainforests are historically favorable for the transmission of numerous tropical diseases, especially vector-borne diseases. The high diversity of pathogens likely contributes to the strong selective pressures for human survival and reproduction in this region. However, the genetic basis of human adaptation to this complex ecosystem remains unclear. This study investigates the possible footprints of genetic adaptation to the Amazon rainforest environment by analyzing the genomic data of 19 native populations. The results based on genomic and functional analysis showed an intense signal of natural selection in a set of genes related to Trypanosoma cruzi infection, which is the pathogen responsible for Chagas disease, a neglected tropical parasitic disease native to the Americas that is currently spreading worldwide.
Collapse
Affiliation(s)
- Cainã M. Couto-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos Araújo Castro e Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Lygia V. Pereira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - David Comas
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alexandre Pereira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva (CSIC/Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
20
|
Ice and ocean constraints on early human migrations into North America along the Pacific coast. Proc Natl Acad Sci U S A 2023; 120:e2208738120. [PMID: 36745804 PMCID: PMC9963817 DOI: 10.1073/pnas.2208738120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.
Collapse
|
21
|
Hoffecker JF, Elias SA, Scott GR, O'Rourke DH, Hlusko LJ, Potapova O, Pitulko V, Pavlova E, Bourgeon L, Vachula RS. Beringia and the peopling of the Western Hemisphere. Proc Biol Sci 2023; 290:20222246. [PMID: 36629115 PMCID: PMC9832545 DOI: 10.1098/rspb.2022.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Did Beringian environments represent an ecological barrier to humans until less than 15 000 years ago or was access to the Americas controlled by the spatial-temporal distribution of North American ice sheets? Beringian environments varied with respect to climate and biota, especially in the two major areas of exposed continental shelf. The East Siberian Arctic Shelf ('Great Arctic Plain' (GAP)) supported a dry steppe-tundra biome inhabited by a diverse large-mammal community, while the southern Bering-Chukchi Platform ('Bering Land Bridge' (BLB)) supported mesic tundra and probably a lower large-mammal biomass. A human population with west Eurasian roots occupied the GAP before the Last Glacial Maximum (LGM) and may have accessed mid-latitude North America via an interior ice-free corridor. Re-opening of the corridor less than 14 000 years ago indicates that the primary ancestors of living First Peoples, who already had spread widely in the Americas at this time, probably dispersed from the NW Pacific coast. A genetic 'arctic signal' in non-arctic First Peoples suggests that their parent population inhabited the GAP during the LGM, before their split from the former. We infer a shift from GAP terrestrial to a subarctic maritime economy on the southern BLB coast before dispersal in the Americas from the NW Pacific coast.
Collapse
Affiliation(s)
- John F. Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA,Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Scott A. Elias
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
| | - G. Richard Scott
- Department of Anthropology, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Dennis H. O'Rourke
- Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Leslea J. Hlusko
- Human Evolution Research Center, University of California-Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Olga Potapova
- Pleistocene Park Foundation, Philadelphia, PA 19006, USA,Department of Mammoth Fauna Studies, Academy of Sciences of Sakha, Yakutsk, Russia,The Mammoth Site of Hot Springs, Hot Springs, SD 57747, USA
| | - Vladimir Pitulko
- Institute of the History of Material Culture, Russian Academy of Sciences, Dvortsovaya nab., 18, 191186 St Petersburg, Russia,Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, 3, Universitetskaya nab., St Petersburg 199034, Russian Federation
| | - Elena Pavlova
- Arctic and Antarctic Research Institute, Russian Federal Service for Hydrometeorology and Environmental Monitoring, 38 Bering Street, 199397 St Petersburg, Russia
| | - Lauriane Bourgeon
- Kansas Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, KS 66047, USA
| | - Richard S. Vachula
- Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, AL 36849-5305, USA
| |
Collapse
|
22
|
Davis LG, Madsen DB, Sisson DA, Becerra-Valdivia L, Higham T, Stueber D, Bean DW, Nyers AJ, Carroll A, Ryder C, Sponheimer M, Izuho M, Iizuka F, Li G, Epps CW, Halford FK. Dating of a large tool assemblage at the Cooper's Ferry site (Idaho, USA) to ~15,785 cal yr B.P. extends the age of stemmed points in the Americas. SCIENCE ADVANCES 2022; 8:eade1248. [PMID: 36563150 PMCID: PMC9788777 DOI: 10.1126/sciadv.ade1248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The timing and character of the Pleistocene peopling of the Americas are measured by the discovery of unequivocal artifacts from well-dated contexts. We report the discovery of a well-dated artifact assemblage containing 14 stemmed projectile points from the Cooper's Ferry site in western North America, dating to ~16,000 years ago. These stemmed points are several thousand years older than Clovis fluted points (~13,000 cal yr B.P.) and are ~2300 years older than stemmed points found previously at the site. These points date to the end of Marine Isotope Stage 2 when glaciers had closed off an interior land route into the Americas. This assemblage includes an array of stemmed projectile points that resemble pre-Jomon Late Upper Paleolithic tools from the northwestern Pacific Rim dating to ~20,000 to 19,000 years ago, leading us to hypothesize that some of the first technological traditions in the Americas may have originated in the region.
Collapse
Affiliation(s)
- Loren G. Davis
- Department of Anthropology, Oregon State University, 203 Waldo Hall, Corvallis, OR 97331, USA
| | - David B. Madsen
- Department of Anthropology, University of Nevada-Reno, 512 Ansari, Reno, NV 89557, USA
| | - David A. Sisson
- Bureau of Land Management, Cottonwood Field Office, 2 Butte Drive, Cottonwood, ID 83522, USA
| | - Lorena Becerra-Valdivia
- Oxford Radiocarbon Accelerator Unit, School of Archaeology, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Thomas Higham
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, A-1030 Vienna, Austria
| | - Daniel Stueber
- Department of Anthropology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Daniel W. Bean
- Department of Anthropology, Oregon State University, 203 Waldo Hall, Corvallis, OR 97331, USA
| | - Alexander J. Nyers
- Department of Anthropology, Oregon State University, 203 Waldo Hall, Corvallis, OR 97331, USA
- Northwest Archaeometrics, 5060 SW Philomath Blvd, #331, Corvallis, OR 97333, USA
| | - Amanda Carroll
- SWCA Environmental Consultants, 1800 NW Upshur St, Ste. 100, Portland, OR 97209, USA
| | - Christina Ryder
- Department of Anthropology, University of Colorado Boulder, Hale Science Building, 1350 Pleasant St., Boulder, CO 80309, USA
| | - Matt Sponheimer
- Department of Anthropology, University of Colorado Boulder, Hale Science Building, 1350 Pleasant St., Boulder, CO 80309, USA
| | - Masami Izuho
- Tokyo Metropolitan University, Faculty of Humanities and Social Sciences, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Fumie Iizuka
- Department of Anthropology and Research Reactor Center, University of Missouri, Swallow Hall, 112 S 9th Street, Columbia, MO 65211, USA
| | - Guoqiang Li
- Research School of Arid Environment and Climate Change, MOE Key Laboratory of West China’s Environmental System, Lanzhou University, 222 Tianshuinanlu, Lanzhou, Gansu 730000, China
| | - Clinton W. Epps
- Oregon State University Department of Fisheries, Wildlife, and Conservation Sciences, 104 Nash Hall, Corvallis, OR 97331, USA
| | - F. Kirk Halford
- Department of Anthropology, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
23
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
24
|
Caro-Consuegra R, Nieves-Colón MA, Rawls E, Rubin-de-Celis V, Lizárraga B, Vidaurre T, Sandoval K, Fejerman L, Stone AC, Moreno-Estrada A, Bosch E. Uncovering signals of positive selection in Peruvian populations from three ecological regions. Mol Biol Evol 2022; 39:6647595. [PMID: 35860855 PMCID: PMC9356722 DOI: 10.1093/molbev/msac158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perú hosts extremely diverse ecosystems which can be broadly classified into three major ecoregions: the Pacific desert coast, the Andean highlands, and the Amazon rainforest. Since its initial peopling approximately 12,000 years ago, the populations inhabiting such ecoregions might have differentially adapted to their contrasting environmental pressures. Previous studies have described several candidate genes underlying adaptation to hypobaric hypoxia among Andean highlanders. However, the adaptive genetic diversity of coastal and rainforest populations has been less studied. Here, we gathered genome-wide SNP-array data from 286 Peruvians living across the three ecoregions and analysed signals of recent positive selection through population differentiation and haplotype-based selection scans. Among highland populations, we identify candidate genes related to cardiovascular function (TLL1, DUSP27, TBX5, PLXNA4, SGCD), to the Hypoxia-Inducible Factor pathway (TGFA, APIP), to skin pigmentation (MITF), as well as to glucose (GLIS3) and glycogen metabolism (PPP1R3C, GANC). In contrast, most signatures of adaptation in coastal and rainforest populations comprise candidate genes related to the immune system (including SIGLEC8, TRIM21, CD44 and ICAM1 in the coast; CBLB and PRDM1 in rainforest and the BRD2- HLA-DOA- HLA-DPA1 region in both), possibly as a result of strong pathogen-driven selection. This study identifies candidate genes related to human adaptation to the diverse environments of South America.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Maria A Nieves-Colón
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Erin Rawls
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Verónica Rubin-de-Celis
- Laboratorio de Genómica Molecular Evolutiva, Instituto de Ciencia y Tecnología, Universidad Ricardo Palma, Lima, Perú
| | - Beatriz Lizárraga
- Emeritus Professor, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | | - Karla Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Elena Bosch
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| |
Collapse
|
25
|
Pezo P, Orellana-Soto M, de la Fuente C, Leiva X, Herrera L, Flores-Alvarado S, Galimany J, de Saint Pierre M, Bravi C, Moraga M. Native American mitochondrial lineages in admixed populations from Chile: Detecting recent migrations during post-Columbian times using geographically restricted lineages. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:504-512. [PMID: 36790622 DOI: 10.1002/ajpa.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To analyze the mitochondrial diversity in three admixed populations and evaluate the historical migration effect of native southern population movement to Santiago (capital of Chile). The intensity of migration was quantified using three mitochondrial lineages restricted to South-Central native groups. METHODS D-loop sequences were genotyped in 550 unrelated individuals from San Felipe-Los Andes (n = 108), Santiago (n = 217), and Concepción (n = 225). Sequence processing, alignment, and haplogroup inference were carried out, and different genetic structure analyses were performed for haplogroup frequencies and D-loop sequences. RESULTS The Native lineages B2i2, C1b13, and D1g were the most frequent haplogroups, especially in Santiago (71.8%). Despite the distance, this city showed a high-genetic affinity with southern populations, including Concepción (~500 km distant) and native groups, rather than with those from San Felipe-Los Andes (<100 km distant). In fact, there was a negative correlation between geographical and genetic distance among these cities (r corr = -0.5593, p value = 0.8387). Network analysis revealed shared haplotypes between Santiago, Concepción, and other southern populations. Finally, we found lineages from Concepción acting as ancestral nodes in the northern clade. CONCLUSIONS Considering the geographic distances from these cities, the results were not consistent with a model of genetic isolation by geographic distance, revealing the effects of a historical migration process from the south to the capital. We also show evidence of possible north-to-south migration during admixture onset in Concepción and in addition, we were able to identify previously unreported mitochondrial diversity in urban populations that became lost in Native groups post-European contact.
Collapse
Affiliation(s)
- Patricio Pezo
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michael Orellana-Soto
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Ximena Leiva
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Flores-Alvarado
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Bioestadística, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jacqueline Galimany
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Claudio Bravi
- CCT La Plata, IMBICE, La Plata, Argentina.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mauricio Moraga
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Tournebize R, Chu G, Moorjani P. Reconstructing the history of founder events using genome-wide patterns of allele sharing across individuals. PLoS Genet 2022; 18:e1010243. [PMID: 35737729 PMCID: PMC9223333 DOI: 10.1371/journal.pgen.1010243] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Founder events play a critical role in shaping genetic diversity, fitness and disease risk in a population. Yet our understanding of the prevalence and distribution of founder events in humans and other species remains incomplete, as most existing methods require large sample sizes or phased genomes. Thus, we developed ASCEND that measures the correlation in allele sharing between pairs of individuals across the genome to infer the age and strength of founder events. We show that ASCEND can reliably estimate the parameters of founder events under a range of demographic scenarios. We then apply ASCEND to two species with contrasting evolutionary histories: ~460 worldwide human populations and ~40 modern dog breeds. In humans, we find that over half of the analyzed populations have evidence for recent founder events, associated with geographic isolation, modes of sustenance, or cultural practices such as endogamy. Notably, island populations have lower population sizes than continental groups and most hunter-gatherer, nomadic and indigenous groups have evidence of recent founder events. Many present-day groups––including Native Americans, Oceanians and South Asians––have experienced more extreme founder events than Ashkenazi Jews who have high rates of recessive diseases due their known history of founder events. Using ancient genomes, we show that the strength of founder events differs markedly across geographic regions and time––with three major founder events related to the peopling of Americas and a trend in decreasing strength of founder events in Europe following the Neolithic transition and steppe migrations. In dogs, we estimate extreme founder events in most breeds that occurred in the last 25 generations, concordant with the establishment of many dog breeds during the Victorian times. Our analysis highlights a widespread history of founder events in humans and dogs and elucidates some of the demographic and cultural practices related to these events. A founder event occurs when small numbers of ancestral individuals give rise to a large fraction of the population. Founder events reduce genetic variation and increase the risk of recessive diseases. Despite their importance in evolutionary and disease studies, we still only have a limited comprehension of their prevalence and properties in humans and other species, as most existing methods require large sample sizes or phased genomes. Here, we present a flexible method, ASCEND, to infer the timing and the strength of founder events that is suitable for sparse datasets with few samples or limited coverage. ASCEND provides reliable estimates across a wide range of demographic scenarios. By applying it to data from two species (humans and dogs), we document a widespread history of recent founder events in both species and provide insights about the demographic processes related to these events. Our analysis helps to identify groups with strong founder events that should be prioritized for future studies as they offer a unique opportunity for biological discovery and reducing disease burden through mapping of recessive disease-causing genes and pathways, as previously shown in studies of Ashkenazi Jews and Finns.
Collapse
Affiliation(s)
- Rémi Tournebize
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RT); (PM)
| | - Gillian Chu
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, United States of America
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RT); (PM)
| |
Collapse
|
27
|
Ludwig-Słomczyńska AH, Rehm M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity (Silver Spring) 2022; 30:1156-1169. [PMID: 35491673 DOI: 10.1002/oby.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
Two genomes regulate the energy metabolism of eukaryotic cells: the nuclear genome, which codes for most cellular proteins, and the mitochondrial genome, which, together with the nuclear genome, coregulates cellular bioenergetics. Therefore, mitochondrial genome variations can affect, directly or indirectly, all energy-dependent cellular processes and shape the metabolic state of the organism. This review provides a current and up-to-date overview on how codependent these two genomes are, how they appear to have coevolved, and how variations within the mitochondrial genome might be associated with the manifestation of metabolic diseases. This review summarizes and structures results obtained from epidemiological studies that identified links between mitochondrial haplogroups and individual risks for developing obesity and diabetes. This is complemented by findings on the compatibility of mitochondrial and nuclear genomes and cellular bioenergetic fitness, which have been acquired from well-controlled studies in conplastic animal models. These elucidate, more mechanistically, how single-nucleotide variants can influence cellular metabolism and physiology. Overall, it seems that certain mitochondrial genome variations negatively affect mitochondrial-nuclear compatibility and are statistically linked with the onset of metabolic diseases, whereas, for others, greater uncertainty exists, and additional research into this exciting field is required.
Collapse
Affiliation(s)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
28
|
Pedigree derived mutation rate across the entire mitochondrial genome of the Norfolk Island population. Sci Rep 2022; 12:6827. [PMID: 35473946 PMCID: PMC9042960 DOI: 10.1038/s41598-022-10530-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Estimates of mutation rates for various regions of the human mitochondrial genome (mtGenome) vary widely, depending on whether they are inferred using a phylogenetic approach or obtained directly from pedigrees. Traditionally, only the control region, or small portions of the coding region have been targeted for analysis due to the cost and effort required to produce whole mtGenome Sanger profiles. Here, we report one of the first pedigree derived mutation rates for the entire human mtGenome. The entire mtGenome from 225 individuals originating from Norfolk Island was analysed to estimate the pedigree derived mutation rate and compared against published mutation rates. These individuals were from 45 maternal lineages spanning 345 generational events. Mutation rates for various portions of the mtGenome were calculated. Nine mutations (including two transitions and seven cases of heteroplasmy) were observed, resulting in a rate of 0.058 mutations/site/million years (95% CI 0.031-0.108). These mutation rates are approximately 16 times higher than estimates derived from phylogenetic analysis with heteroplasmy detected in 13 samples (n = 225, 5.8% individuals). Providing one of the first pedigree derived estimates for the entire mtGenome, this study provides a better understanding of human mtGenome evolution and has relevance to many research fields, including medicine, anthropology and forensics.
Collapse
|
29
|
The age of the opening of the Ice-Free Corridor and implications for the peopling of the Americas. Proc Natl Acad Sci U S A 2022; 119:e2118558119. [PMID: 35312340 PMCID: PMC9168949 DOI: 10.1073/pnas.2118558119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Ice-Free Corridor (IFC) has long played a key role in hypotheses about the peopling of the Americas. Earlier assessments of its age suggested that the IFC was available for a Clovis-first migration, but subsequent developments now suggest a pre-Clovis occupation of the Americas that occurred before the opening of the IFC, thus supporting a Pacific coastal migration route instead. However, large uncertainties in existing ages from the IFC cannot preclude its availability as a route for the first migrations. Resolving this debate over migration route is important for addressing the questions of when and how the first Americans arrived. We report cosmogenic nuclide exposure ages that show that the final opening of the IFC occurred well after pre-Clovis occupation. The Clovis-first model for the peopling of the Americas by ∼13.4 ka has long invoked the Ice-Free Corridor (IFC) between the retreating margins of the Cordilleran and Laurentide ice sheets as the migration route from Alaska and the Yukon down to the Great Plains. Evidence from archaeology and ancient genomics, however, now suggests that pre-Clovis migrations occurred by at least ∼15.5 to 16.0 ka or earlier than most recent assessments of the age of IFC opening at ∼14 to 15 ka, lending support to the use of a Pacific coast migration route instead. Uncertainties in ages from the IFC used in these assessments, however, allow for an earlier IFC opening which would be consistent with the availability of the IFC as a migration route by ∼15.5 to 16.0 ka. Here, we use 64 cosmogenic (10Be) exposure ages to closely date the age of the full opening of the IFC at 13.8 ± 0.5 ka. Our results thus clearly establish that the IFC was not available for the first peopling of the Americas after the Last Glacial Maximum, whereas extensive geochronological data from the Pacific coast support its earlier availability as a coastal migration route.
Collapse
|
30
|
Menéndez LP, Paul KS, de la Fuente C, Almeida T, Delgado M, Figueiro G, Jorgensen K, Kuzminsky S, López-Sosa MC, Nichols J, Roksandic M, Scott GR, O'Rourke D, Hubbe M. Towards an interdisciplinary perspective for the study of human expansions and biocultural diversity in the Americas. Evol Anthropol 2022; 31:62-68. [PMID: 35043498 DOI: 10.1002/evan.21937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Lumila P Menéndez
- Department of Anthropology of the Americas, University of Bonn, Bonn, Germany.,Theoretical Biology Unit, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Tatiana Almeida
- Clinical Laboratory & BigData and Analytics, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Laboratório de Estudos em Antropologia Biológica, Bioarqueologia e Evolução Humana, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Miguel Delgado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), República Argentina (CONICET), División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina.,Ministry of Education Key Laboratory of Contemporary Anthropology Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai, China
| | - Gonzalo Figueiro
- Departamento de Antropología Biológica, Universidad de la República, Montevideo, Uruguay
| | - Kelsey Jorgensen
- Department of Anthropology, Wayne State University, Detroit, Michigan, USA
| | - Susan Kuzminsky
- Department of Anthropology and Applied Archaeology, Eastern New Mexico University, Portales, New Mexico, USA.,Anthropology Department, University of California, Santa Cruz, California, USA
| | | | - Johanna Nichols
- Department of Slavic Languages and Literatures, University of California, Berkeley, California, USA
| | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Dennis O'Rourke
- Department of Anthropology, University of Kansas, Lawrence, Kansas, USA
| | - Mark Hubbe
- Department of Anthropology, Ohio State University, Columbus, Ohio, USA.,Instituto de Arqueología y Antropología, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
31
|
Nores R, Tavella MP, Fabra M, Demarchi DA. Ancient DNA analysis reveals temporal and geographical patterns of mitochondrial diversity in pre-Hispanic populations from Central Argentina. Am J Hum Biol 2022; 34:e23733. [PMID: 35238427 DOI: 10.1002/ajhb.23733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES The study of the ancient populations of Central Argentina has a crucial importance for our understanding of the evolutionary processes in the Southern Cone of South America, given its geographic position as a crossroads. Therefore, the aim of this study is to evaluate the temporal and geographical patterns of genetic variation among the groups that inhabited the current territory of Córdoba Province during the Middle and Late Holocene. METHODS We analyzed the mitochondrial haplogroups of 74 individuals and 46 Hypervariable Region I (HVR-I) sequences, both novel and previously reported, from archeological populations of the eastern Plains and western Sierras regions of the province of Córdoba. The HVR-I sequences were also compared with other ancient groups from Argentina and with present-day populations from Central Argentina by pairwise distance analysis and identification of shared haplotypes. RESULTS Significant differences in haplogroup and haplotype distributions between the two geographical regions were found. Sierras showed genetic affinities with certain ancient populations of Northwestern Argentina, while Plains resembled its neighbors from Santiago del Estero Province and the Pampas region. We did not observe genetic differences among the pre 1200 and post 1200 yBP temporal subsets of individuals defined by the emergence of horticulture, considering both geographical samples jointly. CONCLUSIONS The observed patterns of geographical heterogeneity could indicate the existence of biologically distinct populations inhabiting the mountainous region and the eastern plains of Córdoba Province in pre-Hispanic times. Maternal lineages analyses support a scenario of local evolution with great temporal depth in Central Argentina, with continuity until the present.
Collapse
Affiliation(s)
- Rodrigo Nores
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - María Pía Tavella
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - Mariana Fabra
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - Darío A Demarchi
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| |
Collapse
|
32
|
Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, Patterson N, Reich D, Kelleher J, McVean G. A unified genealogy of modern and ancient genomes. Science 2022; 375:eabi8264. [PMID: 35201891 PMCID: PMC10027547 DOI: 10.1126/science.abi8264] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The sequencing of modern and ancient genomes from around the world has revolutionized our understanding of human history and evolution. However, the problem of how best to characterize ancestral relationships from the totality of human genomic variation remains unsolved. Here, we address this challenge with nonparametric methods that enable us to infer a unified genealogy of modern and ancient humans. This compact representation of multiple datasets explores the challenges of missing and erroneous data and uses ancient samples to constrain and date relationships. We demonstrate the power of the method to recover relationships between individuals and populations as well as to identify descendants of ancient samples. Finally, we introduce a simple nonparametric estimator of the geographical location of ancestors that recapitulates key events in human history.
Collapse
Affiliation(s)
- Anthony Wilder Wohns
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ali Akbari
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Swapan Mallick
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; 1090 Vienna, Austria
| | - Nick Patterson
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - David Reich
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
- Corresponding author.
| |
Collapse
|
33
|
Argüelles JM, Fuentes A, Yáñez B. Analyzing asymmetries and praxis in aDNA research: A bioanthropological critique. AMERICAN ANTHROPOLOGIST 2022. [DOI: 10.1111/aman.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Pedersen MW, Antunes C, De Cahsan B, Moreno-Mayar JV, Sikora M, Vinner L, Mann D, Klimov PB, Black S, Michieli CT, Braig HR, Perotti MA. Ancient human genomes and environmental DNA from the cement attaching 2,000 year-old head lice nits. Mol Biol Evol 2021; 39:6481551. [PMID: 34963129 PMCID: PMC8829908 DOI: 10.1093/molbev/msab351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500–2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.
Collapse
Affiliation(s)
- Mikkel W Pedersen
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Catia Antunes
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Binia De Cahsan
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Sikora
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lasse Vinner
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Darren Mann
- Oxford University Museum of Natural History, Oxford, United Kingdom
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Department of Ecology and Evolutionary Biology, University of Michigan, Museum of Zoology, Ann Arbor, USA
| | - Stuart Black
- Department of Geography and Environmental Science, Wager Building, University of Reading, Reading, United Kingdom
| | - Catalina Teresa Michieli
- Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier", Universidad Nacional de San Juan, San Juan, Argentina
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Institute and Museum of Natural Sciences, Faculty of Exact, Physical and Natural Sciences, National University of San Juan, San Juan, Argentina
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
35
|
Lezirovitz K, Mingroni-Netto RC. Genetic etiology of non-syndromic hearing loss in Latin America. Hum Genet 2021; 141:539-581. [PMID: 34652575 DOI: 10.1007/s00439-021-02354-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a complex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions of admixture between the Native American, European and African components. In the first years following the findings of the role of the GJB2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar contributions of some genes, such as GJB2/GJB6, when compared to European and North American countries, Latin American populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific geographic regions.
Collapse
Affiliation(s)
- Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM32, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Regina Célia Mingroni-Netto
- Departamento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
García-Olivares V, Muñoz-Barrera A, Lorenzo-Salazar JM, Zaragoza-Trello C, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Iñigo-Campos A, González-Montelongo R, Flores C. A benchmarking of human mitochondrial DNA haplogroup classifiers from whole-genome and whole-exome sequence data. Sci Rep 2021; 11:20510. [PMID: 34654896 PMCID: PMC8519921 DOI: 10.1038/s41598-021-99895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, and medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups that provide ancestral information and pedigree relationships. Because of this and the advent of high-throughput sequencing (HTS) technology, there is a diversity of bioinformatic tools for haplogroup classification. We present a benchmarking of the 11 most salient tools for human mtDNA classification using empirical whole-genome (WGS) and whole-exome (WES) short-read sequencing data from 36 unrelated donors. We also assessed the best performing tool in third-generation long noisy read WGS data obtained with nanopore technology for a subset of the donors. We found that, for short-read WGS, most of the tools exhibit high accuracy for haplogroup classification irrespective of the input file used for the analysis. However, for short-read WES, Haplocheck and MixEmt were the most accurate tools. Based on the performance shown for WGS and WES, and the accompanying qualitative assessment, Haplocheck stands out as the most complete tool. For third-generation HTS data, we also showed that Haplocheck was able to accurately retrieve mtDNA haplogroups for all samples assessed, although only after following assembly-based approaches (either based on a referenced-based assembly or a hybrid de novo assembly). Taken together, our results provide guidance for researchers to select the most suitable tool to conduct the mtDNA analyses from HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Kocher A, Papac L, Barquera R, Key FM, Spyrou MA, Hübler R, Rohrlach AB, Aron F, Stahl R, Wissgott A, van Bömmel F, Pfefferkorn M, Mittnik A, Villalba-Mouco V, Neumann GU, Rivollat M, van de Loosdrecht MS, Majander K, Tukhbatova RI, Musralina L, Ghalichi A, Penske S, Sabin S, Michel M, Gretzinger J, Nelson EA, Ferraz T, Nägele K, Parker C, Keller M, Guevara EK, Feldman M, Eisenmann S, Skourtanioti E, Giffin K, Gnecchi-Ruscone GA, Friederich S, Schimmenti V, Khartanovich V, Karapetian MK, Chaplygin MS, Kufterin VV, Khokhlov AA, Chizhevsky AA, Stashenkov DA, Kochkina AF, Tejedor-Rodríguez C, de Lagrán ÍGM, Arcusa-Magallón H, Garrido-Pena R, Royo-Guillén JI, Nováček J, Rottier S, Kacki S, Saintot S, Kaverzneva E, Belinskiy AB, Velemínský P, Limburský P, Kostka M, Loe L, Popescu E, Clarke R, Lyons A, Mortimer R, Sajantila A, de Armas YC, Hernandez Godoy ST, Hernández-Zaragoza DI, Pearson J, Binder D, Lefranc P, Kantorovich AR, Maslov VE, Lai L, Zoledziewska M, Beckett JF, Langová M, Danielisová A, Ingman T, Atiénzar GG, de Miguel Ibáñez MP, Romero A, Sperduti A, Beckett S, Salter SJ, Zilivinskaya ED, Vasil'ev DV, von Heyking K, Burger RL, Salazar LC, Amkreutz L, Navruzbekov M, Rosenstock E, Alonso-Fernández C, Slavchev V, Kalmykov AA, Atabiev BC, Batieva E, Calmet MA, et alKocher A, Papac L, Barquera R, Key FM, Spyrou MA, Hübler R, Rohrlach AB, Aron F, Stahl R, Wissgott A, van Bömmel F, Pfefferkorn M, Mittnik A, Villalba-Mouco V, Neumann GU, Rivollat M, van de Loosdrecht MS, Majander K, Tukhbatova RI, Musralina L, Ghalichi A, Penske S, Sabin S, Michel M, Gretzinger J, Nelson EA, Ferraz T, Nägele K, Parker C, Keller M, Guevara EK, Feldman M, Eisenmann S, Skourtanioti E, Giffin K, Gnecchi-Ruscone GA, Friederich S, Schimmenti V, Khartanovich V, Karapetian MK, Chaplygin MS, Kufterin VV, Khokhlov AA, Chizhevsky AA, Stashenkov DA, Kochkina AF, Tejedor-Rodríguez C, de Lagrán ÍGM, Arcusa-Magallón H, Garrido-Pena R, Royo-Guillén JI, Nováček J, Rottier S, Kacki S, Saintot S, Kaverzneva E, Belinskiy AB, Velemínský P, Limburský P, Kostka M, Loe L, Popescu E, Clarke R, Lyons A, Mortimer R, Sajantila A, de Armas YC, Hernandez Godoy ST, Hernández-Zaragoza DI, Pearson J, Binder D, Lefranc P, Kantorovich AR, Maslov VE, Lai L, Zoledziewska M, Beckett JF, Langová M, Danielisová A, Ingman T, Atiénzar GG, de Miguel Ibáñez MP, Romero A, Sperduti A, Beckett S, Salter SJ, Zilivinskaya ED, Vasil'ev DV, von Heyking K, Burger RL, Salazar LC, Amkreutz L, Navruzbekov M, Rosenstock E, Alonso-Fernández C, Slavchev V, Kalmykov AA, Atabiev BC, Batieva E, Calmet MA, Llamas B, Schultz M, Krauß R, Jiménez-Echevarría J, Francken M, Shnaider S, de Knijff P, Altena E, Van de Vijver K, Fehren-Schmitz L, Tung TA, Lösch S, Dobrovolskaya M, Makarov N, Read C, Van Twest M, Sagona C, Ramsl PC, Akar M, Yener KA, Ballestero EC, Cucca F, Mazzarello V, Utrilla P, Rademaker K, Fernández-Domínguez E, Baird D, Semal P, Márquez-Morfín L, Roksandic M, Steiner H, Salazar-García DC, Shishlina N, Erdal YS, Hallgren F, Boyadzhiev Y, Boyadzhiev K, Küßner M, Sayer D, Onkamo P, Skeates R, Rojo-Guerra M, Buzhilova A, Khussainova E, Djansugurova LB, Beisenov AZ, Samashev Z, Massy K, Mannino M, Moiseyev V, Mannermaa K, Balanovsky O, Deguilloux MF, Reinhold S, Hansen S, Kitov EP, Dobeš M, Ernée M, Meller H, Alt KW, Prüfer K, Warinner C, Schiffels S, Stockhammer PW, Bos K, Posth C, Herbig A, Haak W, Krause J, Kühnert D. Ten millennia of hepatitis B virus evolution. Science 2021; 374:182-188. [PMID: 34618559 DOI: 10.1126/science.abi5658] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Felix M Key
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Ron Hübler
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Antje Wissgott
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Maria Pfefferkorn
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France
| | | | - Kerttu Majander
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Medicine (IEM), University of Zürich, 8057 Zürich, Switzerland
| | - Rezeda I Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Laboratory of Structural Biology, Kazan Federal University, Kazan, Russia
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Genetics and Physiology, 050060 Almaty, Kazakhstan
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Megan Michel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joscha Gretzinger
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cody Parker
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Arizona State University School of Human Evolution and Social Change, Tempe Arizona, USA
| | - Marcel Keller
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Feldman
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | | | - Valery Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | - Marina K Karapetian
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir V Kufterin
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey A Chizhevsky
- Institute of Archaeology named after A. Kh. Khalikov, Tatarstan Academy of Sciences, Kazan, Russia
| | - Dmitry A Stashenkov
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Anna F Kochkina
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Cristina Tejedor-Rodríguez
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | | | | | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, Autonomous University of Madrid, Spain
| | | | - Jan Nováček
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany.,University Medical School Göttingen, Institute of Anatomy and Cell Biology, 37075 Göttingen, Germany
| | | | - Sacha Kacki
- Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France.,Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Sylvie Saintot
- INRAP, ARAR UMR 5138, Maison de l'Orient et de la Méditerranée, Lyon, France
| | | | | | - Petr Velemínský
- Department of Anthropology, The National Museum, Prague, Czech Republic
| | - Petr Limburský
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Louise Loe
- Oxford Archaeology South, Janus House, Osney Mead, Oxford, OX2 0ES, UK
| | | | - Rachel Clarke
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | - Alice Lyons
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | | | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.,Forensic Medicine Unit, Finnish Institute of Health and Welfare, Helsinki, Finland
| | | | - Silvia Teresita Hernandez Godoy
- Grupo de Investigación y Desarrollo, Dirección Provincial de Cultura, Matanzas, Cuba.,Universidad de Matanzas, Matanzas, Cuba
| | - Diana I Hernández-Zaragoza
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico.,Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Jessica Pearson
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Didier Binder
- Université Côte d'Azur, CNRS, CEPAM UMR 7264, Nice, France
| | - Philippe Lefranc
- Université de Strasbourg, CNRS, Archimède UMR 7044, Strasbourg, France
| | - Anatoly R Kantorovich
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vladimir E Maslov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Luca Lai
- Department of Anthropology, University of South Florida, Tampa, FL, USA.,Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Michaela Langová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alžběta Danielisová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tara Ingman
- Koç University, Research Center for Anatolian Civilizations, Istanbul 34433, Turkey
| | - Gabriel García Atiénzar
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Maria Paz de Miguel Ibáñez
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Alejandro Romero
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain.,Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03690, Alicante, Spain
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome, Italy.,Dipartimento Asia Africa e Mediterraneo, Università di Napoli L'Orientale, Napoli, Italy
| | - Sophie Beckett
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Melbourne Dental School, University of Melbourne, Victoria 3010 Australia.,Cranfield Forensic Institute, Cranfield Defence and Security, Cranfield University, College Road, Cranfield, MK43 0AL, UK
| | - Susannah J Salter
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Emma D Zilivinskaya
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy, 80333 Munich, Germany
| | - Richard L Burger
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Lucy C Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Luc Amkreutz
- National Museum of Antiquities, 2301 EC Leiden, Netherlands
| | | | - Eva Rosenstock
- Freie Universität Berlin, Einstein Center Chronoi, 14195 Berlin, Germany
| | | | | | | | - Biaslan Ch Atabiev
- Institute for Caucasus Archaeology, 361401 Nalchik, Republic Kabardino-Balkaria, Russia
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov 346780, Russia
| | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia.,Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia.,National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
| | - Michael Schultz
- University Medical School Göttingen, Institute of Anatomy and Embryology, 37075 Göttingen, Germany.,Institute of Biology, University of Hildeshein, Germany
| | - Raiko Krauß
- Institute for Prehistory, Early History and Medieval Archaeology, University of Tübingen, 72070 Tübingen, Germany
| | | | - Michael Francken
- State Office for Cultural Heritage Baden-Württemberg, 78467 Konstanz, Germany
| | - Svetlana Shnaider
- ArchaeoZoology in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Novosibirsk, Russia
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Center for Archaeological Sciences, University of Leuven, Belgium.,Dienst Archeologie-Stad Mechelen, Belgium
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Laboratory, Department of Anthropology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Maria Dobrovolskaya
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Nikolaj Makarov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Chris Read
- Applied Archaeology School of Science, Institute of Technology Sligo, Ireland
| | - Melanie Van Twest
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK
| | - Claudia Sagona
- School of Historical and Philosophical Studies, University of Melbourne, Victoria 3010, Australia
| | - Peter C Ramsl
- Institute of Prehistoric and Historical Archaeology, University of Vienna, Austria
| | - Murat Akar
- Department of Archaeology, Hatay Mustafa Kemal University, Alahan-Antakya, Hatay 31060, Turkey
| | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY 10028, USA
| | - Eduardo Carmona Ballestero
- Territorial Service of Culture and Tourism from Valladolid, Castilla y León Regional Government, C/ San Lorenzo, 5, 47001, Valladolid, Spain.,Department of History, Geography and Comunication, University of Burgos, Paseo de Comendadores, s/n 09001 Burgos (Burgos), Spain
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica-CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | | | - Pilar Utrilla
- Área de Prehistoria, P3A DGA Research Group, IPH, University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Kurt Rademaker
- Department of Anthropology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Douglas Baird
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Lourdes Márquez-Morfín
- Osteology Laboratory, Post Graduate Studies Division, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada.,Caribbean Research Institute, Univeristy of Winnipeg, Winnipeg, MB, Canada.,DFG Center for Advanced Studies "Words, Bones, Genes, Tools," University of Tübingen, Tübingen, Germany
| | - Hubert Steiner
- South Tyrol Provincial Heritage Service, South Tyrol, Italy
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Natalia Shishlina
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia.,State Historical Museum, Moscow, Russia
| | - Yilmaz Selim Erdal
- Human_G Laboratory, Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| | | | - Yavor Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Kamen Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany
| | - Duncan Sayer
- School of Natural Sciences, University of Central Lancashire, Preston, UK
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Biology, University of Turku, 20500 Turku, Finland
| | - Robin Skeates
- Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Manuel Rojo-Guerra
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | - Alexandra Buzhilova
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Arman Z Beisenov
- Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Zainolla Samashev
- Branch of Institute of Archaeology named after A.Kh. Margulan, 24 of 511 Nur-Sultan, Kazakhstan.,State Historical and Cultural Museum-Reserve "Berel," Katon-Karagay district, East Kazakhstan region, Kazakhstan
| | - Ken Massy
- Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Marcello Mannino
- Department of Archeology and Heritage Studies, Aarhus University, 8270 Højbjerg, Denmark.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig Germany
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | | | - Oleg Balanovsky
- Research Centre for Medical Genetics, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | | | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Egor P Kitov
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia.,Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Ernée
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | - Kurt W Alt
- Danube Private University, Center of Natural and Cultural Human History, A - 3500 Krems-Stein, Austria.,Integrative Prehistory and Archaeological Science, Spalenring 145, CH-4055 Basel, Switzerland.,Department of Biomedical Engineering (DBE), Universitätsspital Basel (HFZ), CH-4123 Allschwil, Switzerland
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Kirsten Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
38
|
Di Corcia T, Scano G, Martínez-Labarga C, Sarno S, De Fanti S, Luiselli D, Rickards O. Uniparental Lineages from the Oldest Indigenous Population of Ecuador: The Tsachilas. Genes (Basel) 2021; 12:genes12081273. [PMID: 34440446 PMCID: PMC8391833 DOI: 10.3390/genes12081273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Together with Cayapas, the Tsachilas constitute the oldest population in the country of Ecuador and, according to some historians, they are the last descendants of the ancient Yumbos. Several anthropological issues underlie the interest towards this peculiar population: the uncertainty of their origin, their belonging to the Barbacoan linguistic family, which is still at the center of an intense linguistic debate, and the relations of their Yumbo ancestors with the Inca invaders who occupied their ancient territory. Our contribution to the knowledge of their complex past was the reconstruction of their genetic maternal and paternal inheritance through the sequencing of 70 entire mitochondrial genomes and the characterization of the non-recombinant region of the Y chromosome in 26 males. For both markers, we built comprehensive datasets of various populations from the surrounding geographical area, northwestern South America, NW, with a known linguistic affiliation, and we could then compare our sample against the overall variability to infer relationships with other Barbacoan people and with other NW natives. We found contrasting patterns of genetic diversity for the two markers, but generally, our results indicated a possible common origin between the Tsachilas, the Chachi, and other Ecuadorian and Colombian Barbacoans and are suggestive of an interesting ancient linkage to the Inca invaders in Yumbo country.
Collapse
Affiliation(s)
- Tullia Di Corcia
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Giuseppina Scano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Cristina Martínez-Labarga
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
| | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage (DBC), University of Bologna, Via degli Ariani, 1, 40121 Ravenna, Italy;
| | - Olga Rickards
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| |
Collapse
|
39
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
40
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
41
|
Dog domestication and the dual dispersal of people and dogs into the Americas. Proc Natl Acad Sci U S A 2021; 118:2010083118. [PMID: 33495362 DOI: 10.1073/pnas.2010083118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.
Collapse
|
42
|
Willerslev E, Meltzer DJ. Peopling of the Americas as inferred from ancient genomics. Nature 2021; 594:356-364. [PMID: 34135521 DOI: 10.1038/s41586-021-03499-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
In less than a decade, analyses of ancient genomes have transformed our understanding of the Indigenous peopling and population history of the Americas. These studies have shown that this history, which began in the late Pleistocene epoch and continued episodically into the Holocene epoch, was far more complex than previously thought. It is now evident that the initial dispersal involved the movement from northeast Asia of distinct and previously unknown populations, including some for whom there are no currently known descendants. The first peoples, once south of the continental ice sheets, spread widely, expanded rapidly and branched into multiple populations. Their descendants-over the next fifteen millennia-experienced varying degrees of isolation, admixture, continuity and replacement, and their genomes help to illuminate the relationships among major subgroups of Native American populations. Notably, all ancient individuals in the Americas, save for later-arriving Arctic peoples, are more closely related to contemporary Indigenous American individuals than to any other population elsewhere, which challenges the claim-which is based on anatomical evidence-that there was an early, non-Native American population in the Americas. Here we review the patterns revealed by ancient genomics that help to shed light on the past peoples who created the archaeological landscape, and together lead to deeper insights into the population and cultural history of the Americas.
Collapse
Affiliation(s)
- Eske Willerslev
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK. .,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Wellcome Trust Sanger Institute, Cambridge, UK.
| | - David J Meltzer
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Anthropology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
43
|
Gómez R, Vilar MG, Meraz-Ríos MA, Véliz D, Zúñiga G, Hernández-Tobías EA, Figueroa-Corona MDP, Owings AC, Gaieski JB, Schurr TG. Y chromosome diversity in Aztlan descendants and its implications for the history of Central Mexico. iScience 2021; 24:102487. [PMID: 34036249 PMCID: PMC8138773 DOI: 10.1016/j.isci.2021.102487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/08/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations. Enormous Y chromosome diversity observed in Native Mexican populations. Haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 were identified. Patterns of Y chromosome diversity not shaped by ethnicity, geography, or language. Multiple population dispersals contributed to Y chromosome diversity in Mexico.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Toxicología, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA.,National Geographic Society, Washington, DC 20005, USA
| | | | - David Véliz
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas, Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Gerardo Zúñiga
- Departamento de Zoología, Laboratorio de Variación Biológica y Evolución, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Amanda C Owings
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Jill B Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | | |
Collapse
|
44
|
García A, Nores R, Motti JMB, Pauro M, Luisi P, Bravi CM, Fabra M, Gosling AL, Kardailsky O, Boocock J, Solé-Morata N, Matisoo-Smith EA, Comas D, Demarchi DA. Ancient and modern mitogenomes from Central Argentina: new insights into population continuity, temporal depth and migration in South America. Hum Mol Genet 2021; 30:1200-1217. [PMID: 33856032 DOI: 10.1093/hmg/ddab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The inverted triangle shape of South America places Argentina territory as a geographical crossroads between the two principal peopling streams that followed either the Pacific or the Atlantic coasts, which could have then merged in Central Argentina (CA). Although the genetic diversity from this region is therefore crucial to decipher past population movements in South America, its characterization has been overlooked so far. We report 92 modern and 22 ancient mitogenomes spanning a temporal range of 5000 years, which were compared with a large set of previously reported data. Leveraging this dataset representative of the mitochondrial diversity of the subcontinent, we investigate the maternal history of CA populations within a wider geographical context. We describe a large number of novel clades within the mitochondrial DNA tree, thus providing new phylogenetic interpretations for South America. We also identify several local clades of great temporal depth with continuity until the present time, which stem directly from the founder haplotypes, suggesting that they originated in the region and expanded from there. Moreover, the presence of lineages characteristic of other South American regions reveals the existence of gene flow to CA. Finally, we report some lineages with discontinuous distribution across the Americas, which suggest the persistence of relic lineages likely linked to the first population arrivals. The present study represents to date the most exhaustive attempt to elaborate a Native American genetic map from modern and ancient complete mitochondrial genomes in Argentina and provides relevant information about the general process of settlement in South America.
Collapse
Affiliation(s)
- Angelina García
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Rodrigo Nores
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Josefina M B Motti
- FACSO (NEIPHPA), Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET, Quequén 7631, Argentina
| | - Maia Pauro
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Pierre Luisi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET, CICPBA, Universidad Nacional de La Plata, La Plata 1906, Argentina
| | - Mariana Fabra
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Anna L Gosling
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - James Boocock
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Darío A Demarchi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
45
|
Capodiferro MR, Aram B, Raveane A, Rambaldi Migliore N, Colombo G, Ongaro L, Rivera J, Mendizábal T, Hernández-Mora I, Tribaldos M, Perego UA, Li H, Scheib CL, Modi A, Gòmez-Carballa A, Grugni V, Lombardo G, Hellenthal G, Pascale JM, Bertolini F, Grieco GS, Cereda C, Lari M, Caramelli D, Pagani L, Metspalu M, Friedrich R, Knipper C, Olivieri A, Salas A, Cooke R, Montinaro F, Motta J, Torroni A, Martín JG, Semino O, Malhi RS, Achilli A. Archaeogenomic distinctiveness of the Isthmo-Colombian area. Cell 2021; 184:1706-1723.e24. [PMID: 33761327 PMCID: PMC8024902 DOI: 10.1016/j.cell.2021.02.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.
Collapse
Affiliation(s)
| | - Bethany Aram
- Department of Geography, History and Philosophy, the Pablo de Olavide University of Seville, Seville 41013, Spain
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy; Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Javier Rivera
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Tomás Mendizábal
- Patronato Panamá Viejo, Panama City 0823-05096, Panama; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Iosvany Hernández-Mora
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Hongjie Li
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Alberto Gòmez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Garrett Hellenthal
- UCL Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Juan Miguel Pascale
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | | | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence 50122, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology, University of Padua, Padua 35121, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Ronny Friedrich
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Corina Knipper
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology-Genetics, University of Bari, Bari 70125, Italy
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Juan Guillermo Martín
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Ripan Singh Malhi
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
46
|
Gorden EM, Sturk-Andreaggi K, Marshall C. Capture enrichment and massively parallel sequencing for human identification. Forensic Sci Int Genet 2021; 53:102496. [PMID: 33770700 DOI: 10.1016/j.fsigen.2021.102496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
In the past decade, hybridization capture has gained attention within the forensic field for its possible use in human identification. One of the primary benefits to capture enrichment is its applicability to degraded DNA fragments that, due to their reduced size, are not amenable to traditional PCR enrichment techniques. Hybridization capture is typically introduced after genomic library preparation of extracted DNA templates for the subsequent enrichment of mitochondrial DNA or single nucleotide polymorphisms within the nuclear genome. The enriched molecules are then subjected to massively parallel sequencing (MPS) for sensitive and high-throughput DNA sequence generation. Bioinformatic analysis of capture product removes PCR duplicates that were introduced during the laboratory workflow in order to characterize the original DNA template molecules. In the case of aged and degraded skeletal remains, the fraction of endogenous human DNA may be very low; therefore low-coverage sequence analysis may be required. This review contains an overview of current capture methodologies and the primary literature on hybridization capture as evaluated for forensic applications.
Collapse
Affiliation(s)
- Erin M Gorden
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE, USA; SNA International LLC, Alexandria, VA, USA
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE, USA; SNA International LLC, Alexandria, VA, USA; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE, USA; SNA International LLC, Alexandria, VA, USA; Forensic Science Program, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
47
|
da Silva Coelho FA, Gill S, Tomlin CM, Heaton TH, Lindqvist C. An early dog from southeast Alaska supports a coastal route for the first dog migration into the Americas. Proc Biol Sci 2021; 288:20203103. [PMID: 33622130 PMCID: PMC7934960 DOI: 10.1098/rspb.2020.3103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The oldest confirmed remains of domestic dogs in North America are from mid-continent archaeological sites dated approximately 9900 calibrated years before present (cal BP). Although this date suggests that dogs may not have arrived alongside the first Native Americans, the timing and routes for the entrance of New World dogs remain uncertain. Here, we present a complete mitochondrial genome of a dog from southeast Alaska, dated to 10 150 ± 260 cal BP. We compared this high-coverage genome with data from modern dog breeds, historical Arctic dogs and American precontact dogs (PCDs) from before European arrival. Our analyses demonstrate that the ancient dog belongs to the PCD lineage, which diverged from Siberian dogs around 16 700 years ago. This timing roughly coincides with the minimum suggested date for the opening of the North Pacific coastal (NPC) route along the Cordilleran Ice Sheet and genetic evidence for the initial peopling of the Americas. This ancient southeast Alaskan dog occupies an early branching position within the PCD clade, indicating it represents a close relative of the earliest PCDs that were brought alongside people migrating from eastern Beringia southward along the NPC to the rest of the Americas. The stable isotope δ13C value of this early dog indicates a marine diet, different from the younger mid-continent PCDs' terrestrial diet. Although PCDs were largely replaced by modern European dog breeds, our results indicate that their population decline started approximately 2000 years BP, coinciding with the expansion of Inuit peoples, who are associated with traditional sled-dog culture. Our findings suggest that dogs formed part of the initial human habitation of the New World, and provide insights into their replacement by both Arctic and European lineages.
Collapse
Affiliation(s)
| | - Stephanie Gill
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Timothy H Heaton
- Department of Earth Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
48
|
Davidson R, Fehren-Schmitz L, Llamas B. A Multidisciplinary Review of the Inka Imperial Resettlement Policy and Implications for Future Investigations. Genes (Basel) 2021; 12:215. [PMID: 33540755 PMCID: PMC7913103 DOI: 10.3390/genes12020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023] Open
Abstract
The rulers of the Inka empire conquered approximately 2 million km2 of the South American Andes in just under 100 years from 1438-1533 CE. Inside the empire, the elite conducted a systematic resettlement of the many Indigenous peoples in the Andes that had been rapidly colonised. The nature of this resettlement phenomenon is recorded within the Spanish colonial ethnohistorical record. Here we have broadly characterised the resettlement policy, despite the often incomplete and conflicting details in the descriptions. We then review research from multiple disciplines that investigate the empirical reality of the Inka resettlement policy, including stable isotope analysis, intentional cranial deformation morphology, ceramic artefact chemical analyses and genetics. Further, we discuss the benefits and limitations of each discipline for investigating the resettlement policy and emphasise their collective value in an interdisciplinary characterisation of the resettlement policy.
Collapse
Affiliation(s)
- Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics (NCIG), Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
49
|
Sun J, Ma PC, Cheng HZ, Wang CZ, Li YL, Cui YQ, Yao HB, Wen SQ, Wei LH. Post-last glacial maximum expansion of Y-chromosome haplogroup C2a-L1373 in northern Asia and its implications for the origin of Native Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:363-374. [PMID: 33241578 DOI: 10.1002/ajpa.24173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Peng-Cheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Chi-Zao Wang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Lan Li
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Yin-Qiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Hong-Bin Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Verma RK, Kalyakulina A, Giuliani C, Shinde P, Kachhvah AD, Ivanchenko M, Jalan S. Analysis of human mitochondrial genome co-occurrence networks of Asian population at varying altitudes. Sci Rep 2021; 11:133. [PMID: 33420243 PMCID: PMC7794584 DOI: 10.1038/s41598-020-80271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Networks have been established as an extremely powerful framework to understand and predict the behavior of many large-scale complex systems. We studied network motifs, the basic structural elements of networks, to describe the possible role of co-occurrence of genomic variations behind high altitude adaptation in the Asian human population. Mitochondrial DNA (mtDNA) variations have been acclaimed as one of the key players in understanding the biological mechanisms behind adaptation to extreme conditions. To explore the cumulative effects of variations in the mitochondrial genome with the variation in the altitude, we investigated human mt-DNA sequences from the NCBI database at different altitudes under the co-occurrence motifs framework. Analysis of the co-occurrence motifs using similarity clustering revealed a clear distinction between lower and higher altitude regions. In addition, the previously known high altitude markers 3394 and 7697 (which are definitive sites of haplogroup M9a1a1c1b) were found to co-occur within their own gene complexes indicating the impact of intra-genic constraint on co-evolution of nucleotides. Furthermore, an ancestral 'RSRS50' variant 10,398 was found to co-occur only at higher altitudes supporting the fact that a separate route of colonization at these altitudes might have taken place. Overall, our analysis revealed the presence of co-occurrence interactions specific to high altitude at a whole mitochondrial genome level. This study, combined with the classical haplogroups analysis is useful in understanding the role of co-occurrence of mitochondrial variations in high altitude adaptation.
Collapse
Affiliation(s)
- Rahul K Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Alena Kalyakulina
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Pramod Shinde
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Mikhail Ivanchenko
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India. .,Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India. .,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia. .,Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|