1
|
Bispo DSC, Graça ICR, Jesus CSH, Rodrigues JE, Correia MC, Atella S, Duarte IF, Goodfellow BJ, Oliveira MB, Mano JF, Gil AM. Metabolic markers detect early ostedifferentiation of mesenchymal stem cells from multiple donors. Stem Cell Res Ther 2025; 16:294. [PMID: 40483499 PMCID: PMC12145603 DOI: 10.1186/s13287-025-04419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) are pivotal bioengineering tools, offering significant promise for applications in bone regeneration. However, their therapeutic potential is limited by inter-donor variability and experimental issues. This study aimed to identify robust metabolic markers of osteodifferentiation applicable across multiple donors, while providing insight into the metabolic pathways actively involved in the process. METHODS Untargeted nuclear magnetic resonance (NMR) metabolomics was applied to characterize the intra- and extracellular metabolic adaptations of human adipose-derived MSC (hAMSC) undergoing osteogenic differentiation, compared to proliferation alone. Multivariate and univariate statistical analysis was carried out on data from three independent donors, and cross-validation was employed to evaluate the predictive capacity of the proposed markers. RESULTS Variations in the levels of selected (nine) intracellular and (seventeen) extracellular metabolites detect osteodifferentiation by day 7 (out of 21), with nearly 100% accuracy. These signatures suggest a metabolic shift from glycolysis/OxPhos to lactic fermentation, fatty acid β-oxidation and phosphocreatine hydrolysis. Intracellular glucose, lactate, citrate and specific amino acids are redirected towards protein synthesis and glycosylation, with some of the secreted metabolites (e.g., citrate) seemingly involved in biomineralization and other extracellular roles. Membrane metabolism, antioxidant mechanisms and adenosine metabolism are also impacted by osteodifferentiation. CONCLUSIONS These findings reveal effective donor-independent markers of hAMSC osteodifferentiation, with a robust extracellular signature standing out for potential rapid and non-invasive detection of osteocommitted cells.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Inês C R Graça
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - João E Rodrigues
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Marlene C Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Sabrina Atella
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Brian J Goodfellow
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal.
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal.
| |
Collapse
|
2
|
Shi Y, Wan Y, Yang J, Lu Y, Xie X, Pan J, Wang H, Qu H. Bioprocess biomarker identification and diagnosis for industrial mAb production based on metabolic profiling and multivariate data analysis. Bioprocess Biosyst Eng 2025; 48:771-783. [PMID: 40064687 DOI: 10.1007/s00449-025-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
Monoclonal antibody (mAb) production is a complex bioprocess influenced by various cellular and metabolic factors. Understanding these interactions is critical for optimizing manufacturing and improving yields. In this study, we proposed a diagnostic and identification strategy using quantitative proton nuclear magnetic resonance (1H qNMR) technology-based pharmaceutical process-omics to analyze bioprocess variability and unveil significant metabolites affecting cell growth and yield during industrial mAb manufacturing. First, batch level model (BLM) and orthogonal partial least squares-discriminant analysis (OPLS-DA) identified glucose and lactate as primary contributors to culture run variability. Maintaining an optimal glucose set point was crucial for high-yield runs. Second, a partial least squares (PLS) regression model was established, which revealed viable cell density (VCD), along with glutamine, maltose, tyrosine, citrate, methionine, and lactate, as critical variables impacting mAb yield. Finally, hierarchical clustering analysis (HCA) highlighted one-carbon metabolism metabolites, such as choline, pyroglutamate, and formate, as closely associated with VCD. These findings provide a foundation for future bioprocess optimization through cell line engineering and media formulation adjustments, ultimately enhancing mAb production efficiency.
Collapse
Affiliation(s)
- Yingting Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Wan
- BioRay Pharmaceutical Co., Ltd, Taizhou, 318000, China
| | - Jiayu Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyuan Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd, Taizhou, 318000, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Baraniuk JN. Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). Sci Rep 2025; 15:7381. [PMID: 40025157 PMCID: PMC11873053 DOI: 10.1038/s41598-025-91324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
We proposed that cerebrospinal fluid would provide objective evidence for disrupted brain metabolism in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). The concept of postexertional malaise (PEM) with disabling symptom exacerbation after limited exertion that does not respond to rest is a diagnostic criterion for ME/CFS. We proposed that submaximal exercise provocation would cause additional metabolic perturbations. The metabolomic and lipidomic constituents of cerebrospinal fluid from separate nonexercise and postexercise cohorts of ME/CFS and sedentary control subjects were contrasted using targeted mass spectrometry (Biocrates) and frequentist multivariate general linear regression analysis with diagnosis, exercise, gender, age and body mass index as independent variables. ME/CFS diagnosis was associated with elevated serine but reduced 5-methyltetrahydrofolate (5MTHF). One carbon pathways were disrupted. Methylation of glycine led to elevated sarcosine but further methylation to dimethylglycine and choline was decreased. Creatine and purine intermediates were elevated. Transaconitate from the tricarboxylic acid cycle was elevated in ME/CFS along with essential aromatic amino acids, lysine, purine, pyrimidine and microbiome metabolites. Serine is a precursor of phospholipids and sphingomyelins that were also elevated in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. The findings differ from prior hypometabolic findings in ME/CFS plasma. The novel findings generate new hypotheses regarding serine-folate-glycine one carbon and serine-phospholipid metabolism, elevation of end products of catabolic pathways, shifts in folate, thiamine and other vitamins with exercise, and changes in sphingomyelins that may indicate myelin and white matter dysfunction in ME/CFS.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine and Interdisciplinary Program in Neuroscience, Georgetown University, 3900 Reservoir Road, Washington, DC, 20007, USA.
| |
Collapse
|
4
|
Mao Z, Liu W, Zou R, Sun L, Huang S, Wu L, Chen L, Wu J, Lu S, Song Z, Li X, Huang Y, Rao Y, Huang YY, Li B, Hu Z, Li J. Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification. Signal Transduct Target Ther 2025; 10:67. [PMID: 39962087 PMCID: PMC11833132 DOI: 10.1038/s41392-025-02157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondrial metabolism-regulated epigenetic modification is a driving force of aging and a promising target for therapeutic intervention. Mitochondrial malate dehydrogenase (MDH2), an enzyme in the TCA cycle, was identified as an anti-aging target through activity-based protein profiling in present study. The expression level of MDH2 was positively correlated with the cellular senescence in Mdh2 knockdown or overexpression fibroblasts. Glibenclamide (Gli), a classic anti-glycemic drug, was found to inhibit the activity of MDH2 and relieve fibroblast senescence in an MDH2-dependent manner. The anti-aging effects of Gli were also further validated in vivo, as it extended the lifespan and reduced the frailty index of naturally aged mice. Liver specific Mdh2 knockdown eliminated Gli's beneficial effects in naturally aged mice, reducing p16INK4a expression and hepatic fibrosis. Mechanistically, MDH2 inhibition or knockdown disrupted central carbon metabolism, then enhanced the methionine cycle flux, and subsequently promoted histone methylation. Notably, the tri-methylation of H3K27, identified as a crucial methylation site in reversing cellular senescence, was significantly elevated in hepatic tissues of naturally aged mice with Mdh2 knockdown. Taken together, these findings reveal that MDH2 inhibition or knockdown delays the aging process through metabolic-epigenetic regulation. Our research not only identified MDH2 as a potential therapeutic target and Gli as a lead compound for anti-aging drug development, but also shed light on the intricate interplay of metabolism and epigenetic modifications in aging.
Collapse
Affiliation(s)
- Zhifan Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Rong Zou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shuman Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyu Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Liru Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jiale Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shijie Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhouzhi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xie Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Baoli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Zelan Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
5
|
Baraniuk JN. Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics-Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2025; 26:1282. [PMID: 39941050 PMCID: PMC11818353 DOI: 10.3390/ijms26031282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort ("fatigue") that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and lipid flux and to provide objective evidence of pathophysiological dysfunction. Two cohorts of ME/CFS and sedentary control subjects had lumbar punctures at baseline (non-exercise) or after submaximal exercise (post-exercise). Cerebrospinal fluid metabolites and lipids were quantified by targeted Biocrates mass spectrometry methods. Significant differences between ME/CFS and control, non-exercise vs. post-exercise, and by gender were examined by multivariate general linear regression and Bayesian regression methods. Differences were found at baseline between ME/CFS and control groups indicating disease-related pathologies, and between non-exercise and post-exercise groups implicating PEM-related pathologies. A new, novel finding was elevated serine and its derivatives sarcosine and phospholipids with a decrease in 5-methyltetrahydrofolate (5MTHF), which suggests general dysfunction of folate and one-carbon metabolism in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. In general, the frequentist and Bayesian analyses generated complementary but not identical sets of analytes that matched the metabolic modules and pathway analysis. Cerebrospinal fluid is unique because it samples the choroid plexus, brain interstitial fluid, and cells of the brain parenchyma. The quantitative outcomes were placed into the context of the cell danger response hypothesis to explain shifts in serine and phospholipid synthesis; folate and one-carbon metabolism that affect sarcosine, creatine, purines, and thymidylate; aromatic and anaplerotic amino acids; glucose, TCA cycle, trans-aconitate, and coenzyme A in energy metabolism; and vitamin activities that may be altered by exertion. The metabolic and phospholipid profiles suggest the additional hypothesis that white matter dysfunction may contribute to the cognitive dysfunction in ME/CFS.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
6
|
Serrano JJ, Medina MÁ. Metabolic Reprogramming at the Edge of Redox: Connections Between Metabolic Reprogramming and Cancer Redox State. Int J Mol Sci 2025; 26:498. [PMID: 39859211 PMCID: PMC11765076 DOI: 10.3390/ijms26020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer. This shift has broadened cancer research beyond strictly genetic perspectives. The interaction between metabolism and redox systems in carcinogenesis involves the regulation of essential metabolic pathways, such as glycolysis and the Krebs cycle, as well as the involvement of redox-active components like specific amino acids and cofactors. The feedback mechanisms linking redox systems and metabolism in cancer highlight the development of redox patterns that enhance the flexibility and adaptability of tumor processes, influencing larger-scale biological phenomena such as circadian rhythms and epigenetics.
Collapse
Affiliation(s)
- José J. Serrano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER, Spanish Network of Research Center in Rare Diseases), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
7
|
Zagare A, Kurlovics J, Almeida C, Ferrante D, Frangenberg D, Vitali A, Gomez-Giro G, Jäger C, Antony P, Halder R, Krüger R, Glaab E, Stalidzans E, Arena G, Schwamborn JC. Insulin resistance compromises midbrain organoid neuronal activity and metabolic efficiency predisposing to Parkinson's disease pathology. J Tissue Eng 2025; 16:20417314241295928. [PMID: 39882547 PMCID: PMC11775974 DOI: 10.1177/20417314241295928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 01/31/2025] Open
Abstract
Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function. We combined experimental methods with metabolic modelling to identify the most insulin resistance-dependent pathogenic processes. We demonstrate that insulin resistance compromises organoid metabolic efficiency, leading to increased levels of oxidative stress. Additionally, insulin-resistant midbrain organoids showed decreased neuronal activity and reduced amount of dopaminergic neurons, highlighting insulin resistance as a significant target in PD prevention.
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Health Sciences Research Center, Faculty of Health Sciences Research, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Daniele Ferrante
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniela Frangenberg
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armelle Vitali
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Sequencing Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
9
|
Sánchez-Castillo A, Savelkouls KG, Baldini A, Hounjet J, Sonveaux P, Verstraete P, De Keersmaecker K, Dewaele B, Björkblom B, Melin B, Wu WY, Sjöberg RL, Rouschop KMA, Broen MPG, Vooijs M, Kampen KR. Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas. Oncogenesis 2024; 13:39. [PMID: 39537592 PMCID: PMC11561346 DOI: 10.1038/s41389-024-00540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Alessandra Baldini
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
| | - Paulien Verstraete
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, Laboratory for Genetics of Malignant Disorders, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | | | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Wendy Y Wu
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Kasper M A Rouschop
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
10
|
Hesse F, Low J, Cao J, Bulat F, Kreis F, Wright AJ, Brindle KM. Deuterium MRI of serine metabolism in mouse models of glioblastoma. Magn Reson Med 2024; 92:1811-1821. [PMID: 38946234 DOI: 10.1002/mrm.30198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Serine is a major source of one-carbon units needed for the synthesis of nucleotides and the production of intramitochondrial nicotinamide adenine dinucleotide phosphate (NADPH), and it plays an important role in cancer cell proliferation. The aim of this study was to develop a deuterium (2H) MRS imaging method for imaging tumor serine metabolism. METHODS Sequential (2H) spectra and spectroscopic images were used to monitor the metabolism of [2,3,3-2H3]serine in patient-derived glioblastoma cells in vitro and in tumors obtained by their orthotopic implantation in mouse brain. RESULTS [14,14-2H2] 5,10-methylene-tetrahydrofolate, [2H]glycine, [2H]formate, and labeled water were detected in cell suspensions and water labeling in spectroscopic images of tumors. Studies in cells and tumors with variable mitochondrial content and inhibitor studies in cells demonstrated that most of the labeled serine was metabolized in the mitochondria. Water labeling in the cell suspensions was correlated with formate labeling; therefore, water labeling observed in tumors could be used to provide a surrogate measure of flux in the pathway of one-carbon metabolism in vivo. CONCLUSION The method has the potential to be used clinically to select patients for treatment with inhibitors of one-carbon metabolism and subsequently to detect their early responses to such treatment.
Collapse
Affiliation(s)
- Friederike Hesse
- Cancer Research UK Cambridge Institute, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Jacob Low
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Flaviu Bulat
- Cancer Research UK Cambridge Institute, Cambridge, UK
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Felix Kreis
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Pérez SE, Gooz M, Maldonado EN. Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections. Cells 2024; 13:1789. [PMID: 39513896 PMCID: PMC11545457 DOI: 10.3390/cells13211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus-mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities.
Collapse
Affiliation(s)
- Sandra E. Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil CC7000, Buenos Aires, Argentina;
| | - Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Meiser J, Frezza C. Presenting metabolomics analyses: what's in a number? EMBO J 2024; 43:4444-4450. [PMID: 38664540 PMCID: PMC11480362 DOI: 10.1038/s44318-024-00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/09/2024] Open
Abstract
As part of a metabolism methods advice series, this commentary highlights frequent pitfalls and offers guidance related to designing, processing, and communicating metabolomics analyses.
Collapse
Affiliation(s)
- Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Li J, Jiang J, Zhu Y, Zhang Y, Zhu J, Ming Y. Metabolomics analysis of patients with Schistosoma japonicum infection based on UPLC-MS method. Parasit Vectors 2024; 17:350. [PMID: 39164750 PMCID: PMC11334362 DOI: 10.1186/s13071-024-06429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Schistosomiasis is still one of the most serious parasitic diseases. Evidence showed that the metabolite profile in serum can potentially act as a marker for parasitic disease diagnosis and evaluate disease progression and prognosis. However, the serum metabolome in patients with Schistosoma japonicum infection is not well defined. In this study, we investigated the metabolite profiles of patients with chronic and with advanced S. japonicum infection. METHODS The sera of 33 chronic S. japonicum patients, 15 patients with advanced schistosomiasis and 17 healthy volunteers were collected. Samples were extracted for metabolites and analyzed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS We observed significant differences in metabolite profiles in positive and negative ion modes between patients with advanced and chronic S. japonicum infection. In patients with chronic S. japonicum infection, 199 metabolites were significantly upregulated while 207 metabolites were downregulated in advanced infection. These differential metabolites were mainly concentrated in steroid hormone biosynthesis, cholesterol metabolism and bile secretion pathways. We also found that certain bile acid levels were significantly upregulated in the progression from chronic to advanced S. japonicum infection. In receiver operator characteristic (ROC) analysis, we identified three metabolites with area under the curve (AUC) > 0.8, including glycocholic (GCA), glycochenodeoxycholate (GCDCA) and taurochenodeoxycholic acid (TCDCA) concentrated in cholesterol metabolism, biliary secretion and primary bile acid biosynthesis. CONCLUSIONS This study provides evidence that GCA, GCDCA and TCDCA can potentially act as novel metabolite biomarkers to distinguish patients in different stages of S. japonicum infection. This study will contribute to the understanding of the metabolite mechanisms of the transition from chronic to advanced S. japonicum infection, although more studies are needed to validate this potential role and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yi Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jiang Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Yoon D, Oh SM, Na HS, Choi BR, Kim KW, Lee YS, Lee DR, Lee DY. Metabolomics study to reveal cognitive improvement with treatment of Scrophularia buergeriana. Sci Rep 2024; 14:17007. [PMID: 39043762 PMCID: PMC11266482 DOI: 10.1038/s41598-024-66371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Population aging around the world is rapidly progressing; as a result, cognitive decline developing into dementia is becoming a social problem. There is no drug that can cure dementia, and though drugs that alleviate the symptoms of dementia have been developed, they also have side effects. Therefore, we conducted a study on improving cognitive function using natural products that have secured safety. We confirmed the effect of an extract of Scrophularia buergeriana on scopolamine-induced cognitive impairment through mouse behavioral experiments, and we observed metabolic changes in the cortex and hippocampus via brain tissue dissection after the behavioral experiment. Mitigating effects of S. buergeriana on cognitive impairment caused by scopolamine were observed in passive avoidance and Morris water maze tests. A metabolic analysis revealed biomarkers related to the alleviating effect of cognitive impairment. Niacinamide, tyrosine, uridine, and valine in the cortex and GABA, choline, creatine, formate, fumarate, hypoxanthine, leucine, myo-inositol, pyroglutamate, and taurine in the hippocampus were identified as biomarker candidates for recovering cognitive impairment. In addition to behavioral experiments, this metabolomics study using specific regions of the brain may be helpful in understanding the effects of cognitive improvement.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Seon Min Oh
- Natural Product Research Center and Natural Product Central Bank, KRIBB, Ochang, 28116, Republic of Korea
| | - Hyeon Seon Na
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | | | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Lee CM, Hwang Y, Kim M, Park YC, Kim H, Fang S. PHGDH: a novel therapeutic target in cancer. Exp Mol Med 2024; 56:1513-1522. [PMID: 38945960 PMCID: PMC11297271 DOI: 10.1038/s12276-024-01268-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
Serine is a key contributor to the generation of one-carbon units for DNA synthesis during cellular proliferation. In addition, it plays a crucial role in the production of antioxidants that prevent abnormal proliferation and stress in cancer cells. In recent studies, the relationship between cancer metabolism and the serine biosynthesis pathway has been highlighted. In this context, 3-phosphoglycerate dehydrogenase (PHGDH) is notable as a key enzyme that functions as the primary rate-limiting enzyme in the serine biosynthesis pathway, facilitating the conversion of 3-phosphoglycerate to 3-phosphohydroxypyruvate. Elevated PHGDH activity in diverse cancer cells is mediated through genetic amplification, posttranslational modification, increased transcription, and allosteric regulation. Ultimately, these characteristics allow PHGDH to not only influence the growth and progression of cancer but also play an important role in metastasis and drug resistance. Consequently, PHGDH has emerged as a crucial focal point in cancer research. In this review, the structural aspects of PHGDH and its involvement in one-carbon metabolism are investigated, and PHGDH is proposed as a potential therapeutic target in diverse cancers. By elucidating how PHGDH expression promotes cancer growth, the goal of this review is to provide insight into innovative treatment strategies. This paper aims to reveal how PHGDH inhibitors can overcome resistance mechanisms, contributing to the development of effective cancer treatments.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ye-Chan Park
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Hou R, Huang W, Lin Y, Li W, Dong J, Huang X, Xu M, Li Q, Zhang Y, Yang Y. Screening of postoperative adjuvant chemotherapy-related serum metabolic markers in breast cancer patients based on 1H NMR metabonomics. Transl Cancer Res 2024; 13:2721-2734. [PMID: 38988914 PMCID: PMC11231764 DOI: 10.21037/tcr-23-2352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 07/12/2024]
Abstract
Background Breast cancer (BC) has the highest incidence rate among female malignant tumors. Adjuvant chemotherapy is commonly used to reduce micrometastasis in postoperative patients. However, monitoring the efficacy of chemotherapy in BC is a major challenge in clinical practice. In this study, 1H nuclear magnetic resonance (NMR) metabonomics was performed to explore the serum metabolic characteristics of BC patients before and after adjuvant chemotherapy. Methods In this study, we collected serum samples from 51 healthy controls and 61 BC patients before and after chemotherapy for 1H NMR metabolomic analysis, and tested the performance of each metabolite and combination segment by the receiver operating characteristic (ROC) curves. Results Nine metabolites, namely glutamine, citrate, creatine, glycerophosphatidylcholine/phosphatidylcholine, glycine, 1-methylhistidine, lactate, pyruvate and formate had significant changes in BC patients before chemotherapy compared with healthy controls. Lactate, pyruvate, 1-methylhistidine and formate were found to be inversely regulated by chemotherapy. ROC analysis showed that a combination of the four metabolites had good prediction for chemotherapy efficacy with area under the curve of 0.958, sensitivity of 98.36% and specificity of 91.30%. There was no significant correlation between chemotherapy-related metabolites and clinical indicators of cancer patients, indicating that they can be used to evaluate the chemotherapy efficacy of patients with different clinical indicators. Conclusions Effectively, dynamic and non-invasive metabolic markers for the evaluation of the efficacy of chemotherapy were identified in this study.
Collapse
Affiliation(s)
- Ranran Hou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yufeng Lin
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiping Li
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwei Dong
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinping Huang
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Man Xu
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian Li
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine (TCM) Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
17
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Xu X, Chen Z, Bartman CR, Xing X, Olszewski K, Rabinowitz JD. One-carbon unit supplementation fuels purine synthesis in tumor-infiltrating T cells and augments checkpoint blockade. Cell Chem Biol 2024; 31:932-943.e8. [PMID: 38759619 PMCID: PMC12118570 DOI: 10.1016/j.chembiol.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.
Collapse
Affiliation(s)
- Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Zihong Chen
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Caroline R Bartman
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Xi Xing
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Kellen Olszewski
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
20
|
Benzarti M, Neises L, Oudin A, Krötz C, Viry E, Gargiulo E, Pulido C, Schmoetten M, Pozdeev V, Lorenz NI, Ronellenfitsch MW, Sumpton D, Warmoes M, Jaeger C, Lesur A, Becker B, Moussay E, Paggetti J, Niclou SP, Letellier E, Meiser J. PKM2 diverts glycolytic flux in dependence on mitochondrial one-carbon cycle. Cell Rep 2024; 43:113868. [PMID: 38421868 DOI: 10.1016/j.celrep.2024.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.
Collapse
Affiliation(s)
- Mohaned Benzarti
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg; Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Krötz
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Coralie Pulido
- Animal Facility, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Maryse Schmoetten
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Vitaly Pozdeev
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Nadia I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David Sumpton
- Cancer Research U.K. Scotland Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Marc Warmoes
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christian Jaeger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Björn Becker
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
21
|
Haitzmann T, Schindlmaier K, Frech T, Mondal A, Bubalo V, Konrad B, Bluemel G, Stiegler P, Lackner S, Hrzenjak A, Eichmann T, Köfeler HC, Leithner K. Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. Cancer Metab 2024; 12:9. [PMID: 38515202 PMCID: PMC10956291 DOI: 10.1186/s40170-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.
Collapse
Affiliation(s)
- Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Frech
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Visnja Bubalo
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Konrad
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, 5020, Salzburg, Austria
| | - Philipp Stiegler
- Division of General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Stefanie Lackner
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010, Graz, Austria
| | - Thomas Eichmann
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
22
|
Becker B, Wottawa F, Bakr M, Koncina E, Mayr L, Kugler J, Yang G, Windross SJ, Neises L, Mishra N, Harris D, Tran F, Welz L, Schwärzler J, Bánki Z, Stengel ST, Ito G, Krötz C, Coleman OI, Jaeger C, Haller D, Paludan SR, Blumberg R, Kaser A, Cicin-Sain L, Schreiber S, Adolph TE, Letellier E, Rosenstiel P, Meiser J, Aden K. Serine metabolism is crucial for cGAS-STING signaling and viral defense control in the gut. iScience 2024; 27:109173. [PMID: 38496294 PMCID: PMC10943449 DOI: 10.1016/j.isci.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.
Collapse
Affiliation(s)
- Björn Becker
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mohamed Bakr
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Eric Koncina
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Kugler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Guang Yang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | | | - Laura Neises
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Danielle Harris
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Go Ito
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christina Krötz
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | | | - Richard Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, England, UK
| | - Luka Cicin-Sain
- Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Johannes Meiser
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
23
|
Zarou MM, Rattigan KM, Sarnello D, Shokry E, Dawson A, Ianniciello A, Dunn K, Copland M, Sumpton D, Vazquez A, Helgason GV. Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing. Nat Commun 2024; 15:1931. [PMID: 38431691 PMCID: PMC10908830 DOI: 10.1038/s41467-024-46114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
24
|
Barman M, Gio-Batta M, Andrieux L, Stråvik M, Saalman R, Fristedt R, Rabe H, Sandin A, Wold AE, Sandberg AS. Short-chain fatty acids (SCFA) in infants' plasma and corresponding mother's milk and plasma in relation to subsequent sensitisation and atopic disease. EBioMedicine 2024; 101:104999. [PMID: 38340558 PMCID: PMC10869761 DOI: 10.1016/j.ebiom.2024.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) in intestinal contents may influence immune function, while less is known about SCFAs in blood plasma. The aims were to investigate the relation between infants' and maternal plasma SCFAs, as well as SCFAs in mother's milk, and relate SCFA concentrations in infant plasma to subsequent sensitisation and atopic disease. METHODS Infant plasma (N = 148) and corresponding mother's milk and plasma were collected four months postpartum. Nine SCFA (formic, acetic, propionic, isobutyric, butyric, succinic, valeric, isovaleric, and caproic acid) were analysed by UPLC-MS. At 12 months of age, atopic disease was diagnosed by a pediatric allergologist, and sensitisation was measured by skin prick test. All families participated in the Swedish birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). FINDINGS Infants with sensitisation, atopic eczema, or food allergy had significantly lower concentrations of five, three, and two SCFAs, respectively, in plasma at four months. Logistic regressions models showed significant negative associations between formic, succinic, and caproic acid and sensitisation [ORadj (95% CI) per SD: 0.41 (0.19-0.91); 0.19 (0.05-0.75); 0.25 (0.09-0.66)], and between acetic acid and atopic eczema [0.42 (0.18-0.95)], after adjusting for maternal allergy. Infants' and maternal plasma SCFA concentrations correlated strongly, while milk SCFA concentrations were unrelated to both. Butyric and caproic acid concentrations were enriched around 100-fold, and iso-butyric and valeric acid around 3-5-fold in mother's milk, while other SCFAs were less prevalent in milk than in plasma. INTERPRETATION Butyric and caproic acid might be actively transported into breast milk to meet the needs of the infant, although mechanistic studies are needed to confirm this. The negative associations between certain SCFAs on sensitisation and atopic disease adds to prior evidence regarding their immunoregulatory potential. FUNDING Swedish Research Council (Nr. 2013-3145, 2019-0137 and 2023-02217 to A-S.S.), Swedish Research Council for Health, Working Life and Welfare FORTE, Nr 2018-00485 to A.W.), The Swedish Asthma and Allergy Association's Research Fund (2020-0020 to A.S.).
Collapse
Affiliation(s)
- Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Léna Andrieux
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden; Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
| | - Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Robert Saalman
- Institute of Clinical Sciences, Department of Pediatrics, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Rikard Fristedt
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Umeå 901 87, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
25
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
26
|
McBride MJ, Hunter CJ, Zhang Z, TeSlaa T, Xu X, Ducker GS, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. Cell Metab 2024; 36:103-115.e4. [PMID: 38171330 PMCID: PMC11892390 DOI: 10.1016/j.cmet.2023.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gregory S Ducker
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
27
|
Ramos L, Henriksson M, Helleday T, Green AC. Targeting MTHFD2 to Exploit Cancer-Specific Metabolism and the DNA Damage Response. Cancer Res 2024; 84:9-16. [PMID: 37922465 DOI: 10.1158/0008-5472.can-23-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.
Collapse
Affiliation(s)
- Louise Ramos
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Vancouver Prostate Centre and Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem 2023; 299:105457. [PMID: 37949226 PMCID: PMC10758965 DOI: 10.1016/j.jbc.2023.105457] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Adam G Maynard
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
29
|
Xu X, Chen Z, Bartman CR, Xing X, Olszewski K, Rabinowitz JD. One-carbon unit supplementation fuels tumor-infiltrating T cells and augments checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565193. [PMID: 37961420 PMCID: PMC10635052 DOI: 10.1101/2023.11.01.565193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate the contributions to purine nucleotides of salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic T cells) synthesize purines de novo. Purine synthesis requires two 1C units, which come from serine catabolism and circulating formate. Shortage of 1C units is a potential bottleneck for anti-tumor immunity. Elevating circulating formate drives its usage by tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling control of formate-production kinetics. In MC38 tumors, safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.
Collapse
Affiliation(s)
- Xincheng Xu
- Department of Chemistry, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
- These authors contributed equally
| | - Zihong Chen
- Department of Chemistry, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
- These authors contributed equally
| | - Caroline R Bartman
- Department of Chemistry, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
| | - Xi Xing
- Department of Chemistry, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
| | - Kellen Olszewski
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
- These authors contributed equally
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University
| |
Collapse
|
30
|
Xu W, Xue W, Zhou Z, Wang J, Qi H, Sun S, Jin T, Yao P, Zhao JY, Lin F. Formate Might Be a Novel Potential Serum Metabolic Biomarker for Type 2 Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:3147-3160. [PMID: 37842336 PMCID: PMC10576463 DOI: 10.2147/dmso.s428933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.
Collapse
Affiliation(s)
- Weisheng Xu
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200331, People’s Republic of China
| | - Wangsheng Xue
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Zeyu Zhou
- School of Life Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Jiying Wang
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hui Qi
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Shiyu Sun
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Tong Jin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Ping Yao
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200090, People’s Republic of China
| | - Fuqing Lin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
31
|
Delbrouck C, Kiweler N, Chen O, Pozdeev VI, Haase L, Neises L, Oudin A, Fouquier d'Hérouël A, Shen R, Schlicker L, Halder R, Lesur A, Schuster A, Lorenz NI, Jaeger C, Feucherolles M, Frache G, Szpakowska M, Chevigne A, Ronellenfitsch MW, Moussay E, Piraud M, Skupin A, Schulze A, Niclou SP, Letellier E, Meiser J. Formate promotes invasion and metastasis in reliance on lipid metabolism. Cell Rep 2023; 42:113034. [PMID: 37651228 DOI: 10.1016/j.celrep.2023.113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Metabolic rewiring is essential for cancer onset and progression. We previously showed that one-carbon metabolism-dependent formate production often exceeds the anabolic demand of cancer cells, resulting in formate overflow. Furthermore, we showed that increased extracellular formate concentrations promote the in vitro invasiveness of glioblastoma cells. Here, we substantiate these initial observations with ex vivo and in vivo experiments. We also show that exposure to exogeneous formate can prime cancer cells toward a pro-invasive phenotype leading to increased metastasis formation in vivo. Our results suggest that the increased local formate concentration within the tumor microenvironment can be one factor to promote metastases. Additionally, we describe a mechanistic interplay between formate-dependent increased invasiveness and adaptations of lipid metabolism and matrix metalloproteinase activity. Our findings consolidate the role of formate as pro-invasive metabolite and warrant further research to better understand the interplay between formate and lipid metabolism.
Collapse
Affiliation(s)
- Catherine Delbrouck
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Oleg Chen
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Vitaly I Pozdeev
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Lara Haase
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Aymeric Fouquier d'Hérouël
- Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Ruolin Shen
- Helmholtz AI Central Unit, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rashi Halder
- RNAseq Platform, Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Christian Jaeger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maureen Feucherolles
- Molecular and Thermal Analysis Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Gilles Frache
- Molecular and Thermal Analysis Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigne
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Etienne Moussay
- Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Marie Piraud
- Helmholtz AI Central Unit, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Alexander Skupin
- Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Department of Neurosciences, University of California San Diego, La Jolla, CA 92092, USA; Department of Physics and Material Science, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simone P Niclou
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg.
| |
Collapse
|
32
|
Jiachen Z, Paul Kwong Hang T, Kenneth Kak Yuen W, Vincent Chi Hang L. Pathological role of methionine in the initiation and progression of biliary atresia. Front Pediatr 2023; 11:1263836. [PMID: 37772039 PMCID: PMC10522914 DOI: 10.3389/fped.2023.1263836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Methionine (Met) is an essential amino acid, and its excessive dietary intake and/or its metabolism disturbance could lead to accumulation/depletion of hepatic Met and some of the key intermediates of these pathways, which would interfere normal liver function and would be associated with liver diseases. Biliary atresia (BA) is a life-threatening disease characterized by inflammatory fibrosclerosing changes of the intrahepatic and extrahepatic biliary systems and is the primary cause of obstructive neonatal cholestasis with a rapid course of liver failure. However, its pathogenesis remains unknown. Previous studies reported elevated Met level in patients with obstructive cholestasis, suggesting a potential link between Met and BA. This paper reviews the Met metabolism in normal conditions and its dysregulation under abnormal conditions, the possible causes of hypermethioninemia, and its connection to BA pathogenesis: Abnormal hepatic level of Met could lead to a perturbation of redox homeostasis and mitochondrial functions of hepatocytes, enhancement of viral infectivity, and dysregulation of innate and adaptative immune cells in response to infection/damage of the liver contributing to the initiation/progression of BA.
Collapse
Affiliation(s)
- Zheng Jiachen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tam Paul Kwong Hang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wong Kenneth Kak Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lui Vincent Chi Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Miyazawa SI, Ujino-Ihara T, Miyama T, Tahara K, Tobita H, Suzuki Y, Nishiguchi M. Different photorespiratory mechanisms in conifer leaves, where peroxisomes have intrinsically low catalase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1004-1020. [PMID: 37162489 DOI: 10.1111/tpj.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Photorespiration is an essential metabolic mechanism associated with photosynthesis; however, little is known about the photorespiratory pathway of conifer gymnosperms. Metabolite analyses of the leaves of 27 tree species showed that the mean glycerate content in conifer leaves was lower than that in angiosperm leaves. We performed experiments where [13 C]-serine was fed to detached shoots of a conifer (Cryptomeria japonica), via the transpiration stream, and compared the labeling patterns of photorespiratory metabolites with those of an angiosperm tree (Populus nigra), because glycerate is produced from serine via hydroxypyruvate in peroxisomes. In P. nigra, hydroxypyruvate, glycerate and glycine were labeled with 13 C, whereas in C. japonica, glycolate and a non-canonical photorespiratory metabolite, formate, were also labeled, suggesting that an H2 O2 -mediated non-enzymatic decarboxylation (NED) reaction occurs in C. japonica. We analyzed changes in the metabolite contents of leaves kept in the dark and leaves exposed to illuminated photorespiration-promoting conditions: a positive relationship between formate and serine levels in C. japonica implied that the active C1 -metabolism pathway synthesizes serine from formate. Leaf gas exchange analyses revealed that CO2 produced through NED was recaptured by chloroplasts. Database analysis of the peroxisomal targeting signal motifs of an H2 O2 -scavenging enzyme, catalase, derived from various species, including nine coniferous species, as well as analyses of peroxisomal fractions isolated from C. japonica and P. nigra leaves indicated that conifer peroxisomes had less catalase activity. These results suggest that NED and the subsequent C1 metabolism are involved in the photorespiratory pathway of conifer leaves, where peroxisomes have intrinsically low catalase activity.
Collapse
Affiliation(s)
- Shin-Ichi Miyazawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Takafumi Miyama
- Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Ko Tahara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Hiroyuki Tobita
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Japan
| | - Mitsuru Nishiguchi
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| |
Collapse
|
34
|
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, Panina Y, Blagih J, Stevenson D, Strathdee D, Schneider-Luftman D, Grönroos E, Cheung EC, Yuneva M, Swanton C, Vousden KH. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep 2023; 42:112562. [PMID: 37245210 DOI: 10.1016/j.celrep.2023.112562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.
Collapse
Affiliation(s)
- Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven E Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christiaan F Labuschagne
- Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchesfstoom 2531, South Africa
| | - Jack Coomes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Loic Mervant
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Younghwan Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Kreuzaler
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Yulia Panina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- Department of Obstetrics-Gynaecology, University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | | | | | | | - Eva Grönroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
35
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
36
|
Green AC, Marttila P, Kiweler N, Chalkiadaki C, Wiita E, Cookson V, Lesur A, Eiden K, Bernardin F, Vallin KSA, Borhade S, Long M, Ghahe EK, Jiménez-Alonso JJ, Jemth AS, Loseva O, Mortusewicz O, Meyers M, Viry E, Johansson AI, Hodek O, Homan E, Bonagas N, Ramos L, Sandberg L, Frödin M, Moussay E, Slipicevic A, Letellier E, Paggetti J, Sørensen CS, Helleday T, Henriksson M, Meiser J. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat Metab 2023; 5:642-659. [PMID: 37012496 PMCID: PMC10132981 DOI: 10.1038/s42255-023-00771-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
Collapse
Affiliation(s)
- Alanna C Green
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Chalkiadaki
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Victoria Cookson
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Kim Eiden
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - François Bernardin
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karl S A Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Sanjay Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RedGlead Discover, Lund, Sweden
| | - Maeve Long
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elahe Kamali Ghahe
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Julio J Jiménez-Alonso
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Marianne Meyers
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Louise Ramos
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Lars Sandberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ana Slipicevic
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- One-carbon Therapeutics AB, Stockholm, Sweden
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Thomas Helleday
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
37
|
Fiddler JL, Blum JE, Heyden KE, Castillo LF, Thalacker-Mercer AE, Field MS. Impairments in SHMT2 expression or cellular folate availability reduce oxidative phosphorylation and pyruvate kinase activity. GENES & NUTRITION 2023; 18:5. [PMID: 36959541 PMCID: PMC10037823 DOI: 10.1186/s12263-023-00724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Serine hydroxymethyltransferase 2 (SHMT2) catalyzes the reversible conversion of tetrahydrofolate (THF) and serine-producing THF-conjugated one-carbon units and glycine in the mitochondria. Biallelic SHMT2 variants were identified in humans and suggested to alter the protein's active site, potentially disrupting enzymatic function. SHMT2 expression has also been shown to decrease with aging in human fibroblasts. Immortalized cell models of total SHMT2 loss or folate deficiency exhibit decreased oxidative capacity and impaired mitochondrial complex I assembly and protein levels, suggesting folate-mediated one-carbon metabolism (FOCM) and the oxidative phosphorylation system are functionally coordinated. This study examined the role of SHMT2 and folate availability in regulating mitochondrial function, energy metabolism, and cellular proliferative capacity in both heterozygous and homozygous cell models of reduced SHMT2 expression. In this study, primary mouse embryonic fibroblasts (MEF) were isolated from a C57Bl/6J dam crossed with a heterozygous Shmt2+/- male to generate Shmt2+/+ (wild-type) or Shmt2+/- (HET) MEF cells. In addition, haploid chronic myeloid leukemia cells (HAP1, wild-type) or HAP1 cells lacking SHMT2 expression (ΔSHMT2) were cultured for 4 doublings in either low-folate or folate-sufficient culture media. Cells were examined for proliferation, total folate levels, mtDNA content, protein levels of pyruvate kinase and PGC1α, pyruvate kinase enzyme activity, mitochondrial membrane potential, and mitochondrial function. RESULTS Homozygous loss of SHMT2 in HAP1 cells impaired cellular folate accumulation and altered mitochondrial DNA content, formate production, membrane potential, and basal respiration. Formate rescued proliferation in HAP1, but not ΔSHMT2, cells cultured in low-folate medium. Pyruvate kinase activity and protein levels were impaired in ΔSHMT2 cells and in MEF cells exposed to low-folate medium. Mitochondrial biogenesis protein levels were elevated in Shmt2+/- MEF cells, while mitochondrial mass was increased in both homozygous and heterozygous models of SHMT2 loss. CONCLUSIONS The results from this study indicate disrupted mitochondrial FOCM impairs mitochondrial folate accumulation and respiration, mitochondrial formate production, glycolytic activity, and cellular proliferation. These changes persist even after a potentially compensatory increase in mitochondrial biogenesis as a result of decreased SHMT2 levels.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Luisa F Castillo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
38
|
Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol 2023; 44:231-244. [PMID: 36774330 DOI: 10.1016/j.it.2023.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
T cell subsets adapt and rewire their metabolism according to their functions and surrounding microenvironment. Whereas naive T cells rely on mitochondrial metabolic pathways characterized by low nutrient requirements, effector T cells induce kinetically faster pathways to generate the biomass and energy needed for proliferation and cytokine production. Recent findings support the concept that alterations in metabolism also affect the epigenetics of T cells. In this review we discuss the connections between T cell metabolism and epigenetic changes such as histone post-translational modifications (PTMs) and DNA methylation, as well as the 'extra-metabolic' roles of metabolic enzymes and molecules. These findings collectively point to a new group of potential therapeutic targets for the treatment of T cell-dependent autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
39
|
Soriano-Baguet L, Grusdat M, Kurniawan H, Benzarti M, Binsfeld C, Ewen A, Longworth J, Bonetti L, Guerra L, Franchina DG, Kobayashi T, Horkova V, Verschueren C, Helgueta S, Gérard D, More TH, Henne A, Dostert C, Farinelle S, Lesur A, Gérardy JJ, Jäger C, Mittelbronn M, Sinkkonen L, Hiller K, Meiser J, Brenner D. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions. Cell Rep 2023; 42:112153. [PMID: 36848289 DOI: 10.1016/j.celrep.2023.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/05/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Mohaned Benzarti
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sergio Helgueta
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Deborah Gérard
- Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Tushar H More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Antonia Henne
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Antoine Lesur
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Christian Jäger
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
40
|
Kawamukai A, Iwano A, Shibata M, Kishi Y, Matsuura A. Serine metabolism contributes to cell survival by regulating extracellular pH and providing an energy source in Saccharomyces cerevisiae. Yeast 2023; 40:59-67. [PMID: 36624702 DOI: 10.1002/yea.3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Changes in extracellular pH affect the homeostasis and survival of unicellular organisms. Supplementation of culture media with amino acids can extend the lifespan of budding yeast, Saccharomyces cerevisiae, by alleviating the decrease in pH. However, the optimal amino acids to use to achieve this end, and the underlying mechanisms involved, remain unclear. Here, we describe the specific role of serine metabolism in the regulation of pH in a medium. The addition of serine to synthetic minimal medium suppressed acidification, and at higher doses increased the pH. CHA1, which encodes a catabolic serine hydratase that degrades serine into ammonium and pyruvate, is essential for serine-mediated alleviation of acidification. Moreover, serine metabolism supports extra growth after glucose depletion. Therefore, medium supplementation with serine can play a prominent role in the batch culture of budding yeast, controlling extracellular pH through catabolism into ammonium and acting as an energy source after glucose exhaustion.
Collapse
Affiliation(s)
- Arisa Kawamukai
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Ayana Iwano
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Momoka Shibata
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuko Kishi
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
McBride MJ, Hunter CJ, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523668. [PMID: 36711816 PMCID: PMC9882094 DOI: 10.1101/2023.01.11.523668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered but SHMT2- and serine dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis does not respond to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 as a major glycine-consuming enzyme.
Collapse
|
42
|
Jin Y, Fan S, Jiang W, Zhang J, Yang L, Xiao J, An H, Ren L. Two effective models based on comprehensive lipidomics and metabolomics can distinguish BC versus HCs, and TNBC versus non-TNBC. Proteomics Clin Appl 2022; 17:e2200042. [PMID: 36443927 DOI: 10.1002/prca.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Lipidomics and metabolomics are closely related to tumor phenotypes, and serum lipoprotein subclasses and small-molecule metabolites are considered as promising biomarkers for breast cancer (BC) diagnosis. This study aimed to explore potential biomarker models based on lipidomic and metabolomic analysis that could distinguish BC from healthy controls (HCs) and triple-negative BC (TNBC) from non-TNBC. METHODS Blood samples were collected from 114 patients with BC and 75 HCs. A total of 112 types of lipoprotein subclasses and 30 types of small-molecule metabolites in the serum were detected by 1 H-NMR. All lipoprotein subclasses and small-molecule metabolites were subjected to a three-step screening process in the order of significance (p < 0.05), univariate regression (p < 0.1), and lasso regression (nonzero coefficient). Discriminant models of BC versus HCs and TNBC versus non-TNBC were established using binary logistic regression. RESULTS We developed a valid discriminant model based on three-biomarker panel (formic acid, TPA2, and L6TG) that could distinguish patients with BC from HCs. The area under the receiver operating characteristic curve (AUC) was 0.999 (95% confidence interval [CI]: 0.995-1.000) and 0.990 (95% CI: 0.959-1.000) in the training and validation sets, respectively. Based on the panel (D-dimer, CA15-3, CEA, L5CH, glutamine, and ornithine), a discriminant model was established to differentiate between TNBC and non-TNBC, with AUC of 0.892 (95% CI: 0.778-0.967) and 0.905 (95% CI: 0.754-0.987) in the training and validation sets, respectively. CONCLUSION This study revealed lipidomic and metabolomic differences between BC versus HCs and TNBC versus non-TNBC. Two validated discriminatory models established against lipidomic and metabolomic differences can accurately distinguish BC from HCs and TNBC from non-TNBC. IMPACT Two validated discriminatory models can be used for early BC screening and help BC patients avoid time-consuming, expensive, and dangerous BC screening.
Collapse
Affiliation(s)
- Yu Jin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shuoqing Fan
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingya Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lexin Yang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiawei Xiao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Haohua An
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
43
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
44
|
Lopes-Coelho F, Martins F, Hipólito A, Conde SV, Pereira SA, Gonçalves LG, Serpa J. A Metabolic Signature to Monitor Endothelial Cell Differentiation, Activation, and Vascular Organization. Biomedicines 2022; 10:biomedicines10092293. [PMID: 36140393 PMCID: PMC9496047 DOI: 10.3390/biomedicines10092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The formation of new blood vessels is an important step in the morphogenesis and organization of tissues and organs; hence, the success of regenerative medicine procedures is highly dependent on angiogenesis control. Despite the biotechnological advances, tissue engineering is still a challenge. Regarding vascular network formation, the regulators are well known, yet the identification of markers is pivotal in order to improve the monitoring of the differentiation and proliferation of endothelial cells, as well as the establishment of a vascular network supporting tissue viability for an efficacious implantation. The metabolic profile accompanies the physiological stages of cells involved in angiogenesis, being a fruitful hub of biomarkers, whose levels can be easily retrieved. Through NMR spectroscopy, we identified branched amino acids, acetate, and formate as central biomarkers of monocyte-to-endothelial-cell differentiation and endothelial cell proliferation. This study reinforces the successful differentiation process of monocytes into endothelial cells, allowing self-to-self transplantation of patient-derived vascular networks, which is an important step in tissue engineering, since monocytes are easily isolated and autologous transplantation reduces the immune rejection events.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Sílvia V. Conde
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
45
|
O'Connell TM, Logsdon DL, Payne RM. Metabolomics analysis reveals dysregulation in one carbon metabolism in Friedreich Ataxia. Mol Genet Metab 2022; 136:306-314. [PMID: 35798654 DOI: 10.1016/j.ymgme.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Friedreich Ataxia (FA) is a rare and often fatal autosomal recessive disease in which a mitochondrial protein, frataxin (FXN), is severely reduced in all tissues. With loss of FXN, mitochondrial metabolism is severely disrupted. Multiple therapeutic approaches are in development, but a key limitation is the lack of biomarkers reflecting the activity of FXN in a timely fashion. We predicted this dysregulated metabolism would present a unique metabolite profile in blood of FA patients versus Controls (Con). Plasma from 10 FA and 11 age and sex matched Con subjects was analyzed by targeted mass spectrometry and untargeted NMR. This combined approach yielded quantitative measurements for 540 metabolites and found 59 unique metabolites (55 from MS and 4 from NMR) that were significantly different between cohorts. Correlation-based network analysis revealed several clusters of pathway related metabolites including a cluster associated with one‑carbon (1C) metabolism composed of formate, sarcosine, hypoxanthine, and homocysteine. Receiver operator characteristics analyses demonstrated an excellent ability to discriminate between Con and FA with AUC values >0.95. These results are the first reported metabolomic analyses of human patients with FA. The metabolic perturbations, especially those related to 1C metabolism, may serve as a valuable biomarker panel of disease progression and response to therapy. The identification of dysregulated 1C metabolism may also inform the search for new therapeutic targets related to this pathway.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - David L Logsdon
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - R Mark Payne
- Department of Pediatrics, Division of Cardiology, and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
46
|
Comparative Metabolomics Study of the Impact of Articaine and Lidocaine on the Metabolism of SH-SY5Y Neuronal Cells. Metabolites 2022; 12:metabo12070581. [PMID: 35888705 PMCID: PMC9323911 DOI: 10.3390/metabo12070581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Articaine (ATC) and lidocaine (LDC) are the local anesthetics (LAs) currently most employed in dentistry. Cases of paresthesia, reported more frequently for ATC, have raised concerns about their potential neurotoxicity, calling for further investigation of their biological effects in neuronal cells. In this work, the impact of ATC and LDC on the metabolism of SH-SY5Y cells was investigated through 1H NMR metabolomics. For each LA, in vitro cultured cells were exposed to concentrations causing 10 and 50% reductions in cell viability, and their metabolic intracellular and extracellular profiles were characterized. Most effects were common to ATC and LDC, although with varying magnitudes. The metabolic variations elicited by the two LAs suggested (i) downregulation of glycolysis and of glucose-dependent pathways (e.g., one-carbon metabolism and hexosamine biosynthetic pathway), (ii) disturbance of branched chain amino acids (BCAA) catabolism, (iii) downregulation of TCA cycle anaplerotic fueling and activation of alternative energy producing pathways, (iv) interference with choline metabolism and (v) lipid droplet build-up. Interestingly, LDC had a greater impact on membrane phospholipid turnover, as suggested by higher phosphatidylcholine to phosphocholine conversion. Moreover, LDC elicited an increase in triglycerides, whereas cholesteryl esters accumulated in ATC-exposed cells, suggesting a different composition and handling of lipid droplets.
Collapse
|
47
|
Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X, Liu B, Dong B, Gao H. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. Lab Invest 2022; 20:275. [PMID: 35715864 PMCID: PMC9205125 DOI: 10.1186/s12967-022-03478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Background Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. Methods In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Results Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. Conclusions Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03478-5.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Binrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| |
Collapse
|
48
|
Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nat Commun 2022; 13:2699. [PMID: 35577770 PMCID: PMC9110368 DOI: 10.1038/s41467-022-30363-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential. Chemotherapeutic antifolates, such as methotrexate (MTX), impair cancer cell proliferation by inhibiting nucleotide synthesis. Here, the authors show that MTX sustains an autarkic mitochondrial one-carbon metabolism leading to serine synthesis to promote cancer cell migration and metastasis.
Collapse
|
49
|
Shi X, Reinstadler B, Shah H, To TL, Byrne K, Summer L, Calvo SE, Goldberger O, Doench JG, Mootha VK, Shen H. Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS. Nat Commun 2022; 13:2483. [PMID: 35513392 PMCID: PMC9072411 DOI: 10.1038/s41467-022-30126-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
The SLC25 carrier family consists of 53 transporters that shuttle nutrients and co-factors across mitochondrial membranes. The family is highly redundant and their transport activities coupled to metabolic state. Here, we use a pooled, dual CRISPR screening strategy that knocks out pairs of transporters in four metabolic states - glucose, galactose, OXPHOS inhibition, and absence of pyruvate - designed to unmask the inter-dependence of these genes. In total, we screen 63 genes in four metabolic states, corresponding to 2016 single and pair-wise genetic perturbations. We recover 19 gene-by-environment (GxE) interactions and 9 gene-by-gene (GxG) interactions. One GxE interaction hit illustrates that the fitness defect in the mitochondrial folate carrier (SLC25A32) KO cells is genetically buffered in galactose due to a lack of substrate in de novo purine biosynthesis. GxG analysis highlights a buffering interaction between the iron transporter SLC25A37 (A37) and the poorly characterized SLC25A39 (A39). Mitochondrial metabolite profiling, organelle transport assays, and structure-guided mutagenesis identify A39 as critical for mitochondrial glutathione (GSH) import. Functional studies reveal that A39-mediated glutathione homeostasis and A37-mediated mitochondrial iron uptake operate jointly to support mitochondrial OXPHOS. Our work underscores the value of studying family-wide genetic interactions across different metabolic environments.
Collapse
Affiliation(s)
- Xiaojian Shi
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Bryn Reinstadler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik Shah
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Katie Byrne
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Luanna Summer
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale West Campus, West Haven, CT, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hongying Shen
- Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA.
- Systems Biology Institute, Yale West Campus, West Haven, CT, USA.
| |
Collapse
|
50
|
Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022; 14:nu14091722. [PMID: 35565690 PMCID: PMC9103817 DOI: 10.3390/nu14091722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Since Otto Warburg's first report on the increased uptake of glucose and lactate release by cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the link between cancer-nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the roles of relatively underappreciated metabolites in cancer-nerve crosstalk, including lactate, vitamins, and amino acids, and propose the investigation of nutrients in cancer-nerve crosstalk based on their tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of cancer-nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and may lead to the identification of potential targets for future cancer therapies.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Casey Atwood
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|