1
|
Shatadru RN, Solonenko NE, Sun CL, Sullivan MB. Synthetic community Hi-C benchmarking provides a baseline for virus-host inferences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637985. [PMID: 39990352 PMCID: PMC11844479 DOI: 10.1101/2025.02.12.637985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Microbiomes influence diverse ecosystems, but viruses increasingly appear to impose key constraints. While viromics has expanded genomic catalogs, host identification for these viruses remains challenging due to the limitations in scaling cultivation-based approaches and the uncertain reliability and relative low resolution of in silico predictions - particularly for understudied viral taxa. Towards this, Hi-C proximity ligation uses sequenced, cross-linked virus and host genomic fragments to infer virus-host linkages and has now been applied in at least nine studies. However, its accuracy remains unknown. Here we assess Hi-C performance in recovering virus-host interactions using synthetic communities (SynComs) composed of four bacterial strains and nine phages with known interactions and then apply optimized protocols to natural soil samples. In SynComs, standard Hi-C sample preparations and analyses showed poor normalized linkage score performance (26% specificity, 100% sensitivity, incorrect matches up to class level) that could be dramatically improved by Z-score filtering (Z ≥ 0.5, 99% specificity), though at reduced sensitivity (62% down from 100%). Detection limits were established as reproducibility was poor below minimal phage abundances of 10 5 PFU/mL. Applying optimized protocols to natural soil samples, we compared Hi-C inferred virus-linkages with in silico bioinformatic predictions. Prior to Z-score thresholding, agreement was relatively high at the phylum to family levels (72%), but not at the genus (43%) or species (15%) levels. Z-score thresholding reduced sensitivity (only 34% of predictions were retained), with only modest improvements in congruence with bioinformatic methods (48% or 18% at genus or species levels, respectively). Regardless, this led to 79 genus-level-congruent virus-host linkages and 293 new ones revealed by Hi-C alone - i.e., providing many new virus-host interactions to explore in already well-studied climate-critical soils. Overall, these findings provide empirical benchmarks and methodological guidelines to improve the accuracy and reliability of Hi-C for virus-host linkage studies in complex microbial communities.
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Raza A, Fatima P, Yasmeen B, Rana ZA, Ellakwa DES. From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2259-2273. [PMID: 39404843 DOI: 10.1007/s00210-024-03509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 03/19/2025]
Abstract
The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control.
Collapse
Affiliation(s)
- Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Pakiza Fatima
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bushra Yasmeen
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zulqarnain Amjad Rana
- Faculty of Veterinary Science, Khan Bahadar Choudhry Mushtaq Ahmed College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
4
|
Kursheed F, Naz E, Mateen S, Kulsoom U. CRISPR applications in microbial World: Assessing the opportunities and challenges. Gene 2025; 935:149075. [PMID: 39489225 DOI: 10.1016/j.gene.2024.149075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genome editing has emerged during the past few decades in the scientific research area to manipulate genetic composition, obtain desired traits, and deal with biological challenges by exploring genetic traits and their sequences at a level of precision. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing tool has offered a much better understanding of cellular and molecular mechanisms. This technology emerges as one of the most promising candidates for genome editing, offering several advantages over other techniques such as high accuracy and specificity. In the microbial world, CRISPR/Cas technology enables researchers to manipulate the genetic makeup of micro-organisms, allowing them to achieve almost impossible tasks. This technology initially discovered as a bacterial defense mechanism, is now being used for gene cutting and editing to explore more of its dimensions. CRISPR/Cas 9 systems are highly efficient and flexible, leading to its widespread uses in microbial research areas. Although this technology is widely used in the scientific community, many challenges, including off-target activity, low efficiency of Homology Directed Repair (HDR), and ethical considerations, still need to be overcome before it can be widely used. As CRISPR/Cas technology has revolutionized the field of microbiology, this review article aimed to present a comprehensive overview highlighting a brief history, basic mechanisms, and its application in the microbial world along with accessing the opportunities and challenges.
Collapse
Affiliation(s)
- Farhan Kursheed
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Esha Naz
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sana Mateen
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Ume Kulsoom
- Department of Biotechnology, Faculty of Engineering, Science and Technology (FEST). Research Officer, Office of Research Innovation and Commercialization (ORIC), Hamdard University, Karachi 74600, Pakistan, Pakistan.
| |
Collapse
|
5
|
Marinov GK, Doughty B, Kundaje A, Greenleaf WJ. The chromatin landscape of the histone-possessing Bacteriovorax bacteria. Genome Res 2025; 35:109-123. [PMID: 39572228 PMCID: PMC11789641 DOI: 10.1101/gr.279418.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared with histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription, and three-dimensional (3D) genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a 3D configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA;
| | - Benjamin Doughty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Arc Institute, Palo Alto, California 94304, USA
| |
Collapse
|
6
|
Hyman P. Are You My Host? An Overview of Methods Used to Link Bacteriophages with Hosts. Viruses 2025; 17:65. [PMID: 39861854 PMCID: PMC11769497 DOI: 10.3390/v17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host range of a bacteriophage thus meant infecting many different bacteria and seeing if the phage could kill each one. Detection of bacterial killing can be achieved on solid media (plaques, spots) or broth (culture clearing). More recently, additional methods to link phages and hosts have been developed. These include methods to show phage genome entry into host cells (e.g., PhageFISH); proximity of phage and host genomes (e.g., proximity ligation, polonies, viral tagging); and analysis of genomes and metagenomes (e.g., CRISPR spacer analysis, metagenomic co-occurrence). These methods have advantages and disadvantages. They also are not measuring the same interactions. Host range can be divided into multiple host ranges, each defined by how far the phage can progress in the infection cycle. For example, the ability to effect genome entry (penetrative host range) is different than the ability to produce progeny (productive host range). These different host ranges reflect bacterial defense mechanisms that block phage growth and development at various stages in the infection cycle. Here, I present a comparison of the various methods used to identify bacteriophage-host relationships with a focus on what type of host range is being measured or predicted.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland, OH 44805, USA
| |
Collapse
|
7
|
Castañeda-Barba S, Ridenhour BJ, Top EM, Stalder T. Detection of rare plasmid hosts using a targeted Hi-C approach. ISME COMMUNICATIONS 2025; 5:ycae161. [PMID: 40161467 PMCID: PMC11950669 DOI: 10.1093/ismeco/ycae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
Despite the significant role plasmids play in microbial evolution, there is limited knowledge of their ecology, evolution, and transfer in microbial communities. This is partly due to the limitations of current methods in associating a plasmid with its host in microbiomes. To address this knowledge gap, we developed and implemented a novel approach to identify rare plasmid hosts by combining Hi-C, a proximity ligation method, with enrichment for plasmid-specific DNA. We hereafter refer to this approach as Hi-C+. We applied Hi-C and Hi-C+ to soil microbial communities in which we mimicked increasingly rare transfer of an antimicrobial resistance plasmid from a donor to a recipient. This was achieved by inoculating agricultural soil with mixtures of known plasmid-containing and plasmid-free cells at different proportions. We demonstrated that Hi-C can link a plasmid to its host in soil when the relative abundance of that plasmid-host pair is as low as 0.001%. Hi-C+ further improved the detection limit of Hi-C 100-fold and allowed the identification of plasmid hosts at the genus level. As a culture-independent approach, Hi-C+ will significantly improve our understanding of the range and frequency of spread of antibiotic resistance and other genes that are introduced into soil and other microbiomes.
Collapse
Affiliation(s)
- Salvador Castañeda-Barba
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
- Bioinformatics and Computational Biology Graduate Program (BCB), University of Idaho, Moscow, ID 83844, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Benjamin J Ridenhour
- Bioinformatics and Computational Biology Graduate Program (BCB), University of Idaho, Moscow, ID 83844, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, United States
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, United States
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
- Bioinformatics and Computational Biology Graduate Program (BCB), University of Idaho, Moscow, ID 83844, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, United States
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
| |
Collapse
|
8
|
Kawano-Sugaya T, Arikawa K, Saeki T, Endoh T, Kamata K, Matsuhashi A, Hosokawa M. A single amplified genome catalog reveals the dynamics of mobilome and resistome in the human microbiome. MICROBIOME 2024; 12:188. [PMID: 39358771 PMCID: PMC11446047 DOI: 10.1186/s40168-024-01903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The increase in metagenome-assembled genomes (MAGs) has advanced our understanding of the functional characterization and taxonomic assignment within the human microbiome. However, MAGs, as population consensus genomes, often aggregate heterogeneity among species and strains, thereby obfuscating the precise relationships between microbial hosts and mobile genetic elements (MGEs). In contrast, single amplified genomes (SAGs) derived via single-cell genome sequencing can capture individual genomic content, including MGEs. RESULTS We introduce the first substantial SAG dataset (bbsag20) from the human oral and gut microbiome, comprising 17,202 SAGs above medium-quality without co-assembly. This collection unveils a diversity of bacterial lineages across 312 oral and 647 gut species, demonstrating different taxonomic compositions from MAGs. Moreover, the SAGs showed cellular-level evidence of the translocation of oral bacteria to the gut. We also identified broad-host-range MGEs harboring antibiotic resistance genes (ARGs), which were not detected in the MAGs. CONCLUSIONS The difference in taxonomic composition between SAGs and MAGs indicates that combining both methods would be effective in expanding the genome catalog. By connecting mobilomes and resistomes in individual samples, SAGs could meticulously chart a dynamic network of ARGs on MGEs, pinpointing potential ARG reservoirs and their spreading patterns in the microbial community. Video Abstract.
Collapse
Affiliation(s)
| | - Koji Arikawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Kazuma Kamata
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Masahito Hosokawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan.
| |
Collapse
|
9
|
Dorado-Morales P, Lambérioux M, Mazel D. Unlocking the potential of microbiome editing: A review of conjugation-based delivery. Mol Microbiol 2024; 122:273-283. [PMID: 37658686 DOI: 10.1111/mmi.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.
Collapse
Affiliation(s)
- Pedro Dorado-Morales
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Morgan Lambérioux
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| |
Collapse
|
10
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
11
|
Ngo VQH, Sotomski M, Guenne A, Mariadassou M, Krupovic M, Enault F, Bize A. Establishing Host-Virus Link Through Host Metabolism: Viral DNA SIP Validation Using T4 Bacteriophage and E. coli. Curr Microbiol 2024; 81:266. [PMID: 39003664 PMCID: PMC11247047 DOI: 10.1007/s00284-024-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
DNA Stable Isotope Probing is emerging as a potent methodology for investigating host-virus interactions, based on the essential reliance of viruses on host organisms for the production of virions. Despite the anticipated link between host isotopic compositions and the generated virions, the application of stable isotope probing to viral DNA has never been evaluated on simple biological models. In this study, we assessed the efficacy of this method on the bacteriophage T4 and its host, Escherichia coli. Through the cultivation of E. coli cells on a 13C-enriched substrate and subsequent propagation of T4 bacteriophage, we examine the degree of isotopic enrichment in viral DNA. Our investigation reveals a strong correlation between the proportion of 13C6-D-glucose in the growth substrate and the buoyant density in CsCl gradient of T4 DNA, confirming the validity of DNA SIP in viral ecology. These findings underscore the potential of DNA SIP as a robust tool for characterizing the diversity of viruses infecting hosts with specific metabolic activities and provide then a foundation for further exploration in viral ecology research.
Collapse
Affiliation(s)
| | | | - Angeline Guenne
- Université Paris-Saclay, INRAE, PROSE, 92761, Antony, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France
| | - Mart Krupovic
- CNRS UMR6047, Archaeal Virology Unit, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, 63000, Clermont-Ferrand, France
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, 92761, Antony, France.
| |
Collapse
|
12
|
Faleiros CA, Nunes AT, Gonçalves OS, Alexandre PA, Poleti MD, Mattos EC, Perna-Junior F, Rodrigues PHM, Fukumasu H. Exploration of mobile genetic elements in the ruminal microbiome of Nellore cattle. Sci Rep 2024; 14:13056. [PMID: 38844487 PMCID: PMC11156634 DOI: 10.1038/s41598-024-63951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.
Collapse
Affiliation(s)
- Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Osiel S Gonçalves
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Pâmela A Alexandre
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, QLD, Australia
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Elisângela C Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Flavio Perna-Junior
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Paulo H Mazza Rodrigues
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
13
|
Serizay J, Matthey-Doret C, Bignaud A, Baudry L, Koszul R. Orchestrating chromosome conformation capture analysis with Bioconductor. Nat Commun 2024; 15:1072. [PMID: 38316789 PMCID: PMC10844600 DOI: 10.1038/s41467-024-44761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data structures, computational methods and visualization tools available in Bioconductor to investigate Hi-C, micro-C and other 3C-related data, in R. An online book ( https://bioconductor.org/books/OHCA/ ) further provides prospective end users with a number of workflows to process, import, analyze and visualize any type of chromosome conformation capture data.
Collapse
Affiliation(s)
- Jacques Serizay
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| | - Cyril Matthey-Doret
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Swiss Data Science Center, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Lyam Baudry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Université de Lausanne, Center for Integrative Genomics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
14
|
Barcia-Cruz R, Goudenège D, Moura de Sousa JA, Piel D, Marbouty M, Rocha EPC, Le Roux F. Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages. Nat Commun 2024; 15:664. [PMID: 38253718 PMCID: PMC10803314 DOI: 10.1038/s41467-024-44965-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Phage satellites are bacterial genetic elements that co-opt phage machinery for their own dissemination. Here we identify a family of satellites, named Phage-Inducible Chromosomal Minimalist Islands (PICMIs), that are broadly distributed in marine bacteria of the family Vibrionaceae. A typical PICMI is characterized by reduced gene content, does not encode genes for capsid remodelling, and packages its DNA as a concatemer. PICMIs integrate in the bacterial host genome next to the fis regulator, and encode three core proteins necessary for excision and replication. PICMIs are dependent on virulent phage particles to spread to other bacteria, and protect their hosts from other competitive phages without interfering with their helper phage. Thus, our work broadens our understanding of phage satellites and narrows down the minimal number of functions necessary to hijack a tailed phage.
Collapse
Affiliation(s)
- Rubén Barcia-Cruz
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - David Goudenège
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France
| | - Jorge A Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Damien Piel
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Organization and Dynamics of Viral Genomes Group, CNRS UMR 3525, Paris, F-75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Frédérique Le Roux
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
15
|
Carroll-Portillo A, Lin DM, Lin HC. The Diversity of Bacteriophages in the Human Gut. Methods Mol Biol 2024; 2738:17-30. [PMID: 37966590 DOI: 10.1007/978-1-0716-3549-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, commonly referred to as phages, are viruses that infect bacteria and are among the most numerous microorganisms on the planet. They occur throughout nature occupying every habitat where their bacterial hosts can be found. Within these communities, phages are responsible for shaping the bacterial community structure and function through their interactions. Phages shape the community structure and function within the human gut but are also able to influence the human host. As such, there is increased interest in understanding the composition and activity of the gastrointestinal phages, although these studies have been hindered by the difficulties accompanying the study of the human gut. Here, we summarize the methods and findings pertaining to the diversity of the human gastrointestinal phages.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, USA.
| | - Derek M Lin
- Biomedical Research Institute of New Mexico, Albuquerque, NM, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, USA
| |
Collapse
|
16
|
Dylus D, Altenhoff A, Majidian S, Sedlazeck FJ, Dessimoz C. Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree. Nat Biotechnol 2024; 42:139-147. [PMID: 37081138 PMCID: PMC10791578 DOI: 10.1038/s41587-023-01753-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Current methods for inference of phylogenetic trees require running complex pipelines at substantial computational and labor costs, with additional constraints in sequencing coverage, assembly and annotation quality, especially for large datasets. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes and bypasses traditional steps in phylogeny inference, such as genome assembly, annotation and all-versus-all sequence comparisons, while retaining accuracy. In a benchmark encompassing a broad variety of datasets, Read2Tree is 10-100 times faster than assembly-based approaches and in most cases more accurate-the exception being when sequencing coverage is high and reference species very distant. Here, to illustrate the broad applicability of the tool, we reconstruct a yeast tree of life of 435 species spanning 590 million years of evolution. We also apply Read2Tree to >10,000 Coronaviridae samples, accurately classifying highly diverse animal samples and near-identical severe acute respiratory syndrome coronavirus 2 sequences on a single tree. The speed, accuracy and versatility of Read2Tree enable comparative genomics at scale.
Collapse
Affiliation(s)
- David Dylus
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- F. Hoffmann-La Roche Ltd, Immunology, Infectious Disease, and Ophthalmology (I2O), Roche Pharmaceutical Research and Early Development (pRED), Basel, Switzerland
| | - Adrian Altenhoff
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computer Science, ETH, Zurich, Switzerland
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computer Science, University College London, London, UK.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
17
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
18
|
Wu R, Davison MR, Nelson WC, Smith ML, Lipton MS, Jansson JK, McClure RS, McDermott JE, Hofmockel KS. Hi-C metagenome sequencing reveals soil phage-host interactions. Nat Commun 2023; 14:7666. [PMID: 37996432 PMCID: PMC10667309 DOI: 10.1038/s41467-023-42967-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William C Nelson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
19
|
Marinov GK, Doughty B, Kundaje A, Greenleaf WJ. The landscape of the histone-organized chromatin of Bdellovibrionota bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564843. [PMID: 37961278 PMCID: PMC10634947 DOI: 10.1101/2023.10.30.564843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Benjamin Doughty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
20
|
Yáñez-Cuna FO, Koszul R. Insights in bacterial genome folding. Curr Opin Struct Biol 2023; 82:102679. [PMID: 37604045 DOI: 10.1016/j.sbi.2023.102679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Chromosomes in all domains of life are well-defined structural entities with complex hierarchical organization. The regulation of this hierarchical organization and its functional interplay with gene expression or other chromosome metabolic processes such as repair, replication, or segregation is actively investigated in a variety of species, including prokaryotes. Bacterial chromosomes are typically gene-dense with few non-coding sequences and are organized into the nucleoid, a membrane-less compartment composed of DNA, RNA, and proteins (nucleoid-associated proteins or NAPs). The continuous improvement of imaging and genomic methods has put the organization of these Mb-long molecules at reach, allowing to disambiguate some of their highly dynamic properties and intertwined structural features. Here we review and discuss some of the recent advances in the field of bacterial chromosome organization.
Collapse
Affiliation(s)
- Fares Osam Yáñez-Cuna
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
21
|
McCallum GE, Rossiter AE, Quraishi MN, Iqbal TH, Kuehne SA, van Schaik W. Noise reduction strategies in metagenomic chromosome confirmation capture to link antibiotic resistance genes to microbial hosts. Microb Genom 2023; 9:mgen001030. [PMID: 37272920 PMCID: PMC10327510 DOI: 10.1099/mgen.0.001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/11/2023] [Indexed: 06/06/2023] Open
Abstract
The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.
Collapse
Affiliation(s)
- Gregory E. McCallum
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda E. Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Tariq H. Iqbal
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sarah A. Kuehne
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
23
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
24
|
CRISPR-Cas9 mediated phage therapy as an alternative to antibiotics. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-023-00065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
AbstractInappropriate use of antibiotics is globally creating public health hazards associated with antibiotic resistance. Bacteria often acquire antibiotic resistance by altering their genes through mutation or acquisition of plasmid-encoding resistance genes. To treat drug-resistant strains of bacteria, the recently developed CRISPR-Cas9 system might be an alternative molecular tool to conventional antibiotics. It disables antibiotic-resistance genes (plasmids) or deactivates bacterial virulence factors and sensitizes drug-resistant bacteria through site-specific cleavage of crucial domains of their genome. This molecular tool uses phages as vehicles for CRISPR-cas9 delivery into bacteria. Since phages are species-specific and natural predators of bacteria, they are capable of easily injecting their DNA to target bacteria. The CRISPR system is packaged into phagemid vectors, in such a way that the bacteria containing the antibiotic-resistance plasmid sequence or that containing specific DNA sequences were made to be targeted. Upon CRISPR delivery, Cas9 is programmed to recognize target sequences through the guide RNA thereby causing double-strand cleavage of targeted bacterial DNA or loss of drug resistance plasmid, which results in cell death. Remarkably, the safety and efficacy of this newly developed biotechnology tool and the biocontrol product need to be further refined for its usage in clinical translation.
Collapse
|
25
|
Zünd M, Dunham SJB, Rothman JA, Whiteson KL. What Lies Beneath? Taking the Plunge into the Murky Waters of Phage Biology. mSystems 2023; 8:e0080722. [PMID: 36651762 PMCID: PMC9948730 DOI: 10.1128/msystems.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.
Collapse
Affiliation(s)
- Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
26
|
Du Y, Fuhrman JA, Sun F. ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data. Nat Commun 2023; 14:502. [PMID: 36720887 PMCID: PMC9889337 DOI: 10.1038/s41467-023-35945-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available at https://github.com/dyxstat/ViralCC .
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Camargo AP, Nayfach S, Chen IMA, Palaniappan K, Ratner A, Chu K, Ritter S, Reddy TBK, Mukherjee S, Schulz F, Call L, Neches R, Woyke T, Ivanova N, Eloe-Fadrosh E, Kyrpides N, Roux S. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res 2023; 51:D733-D743. [PMID: 36399502 PMCID: PMC9825611 DOI: 10.1093/nar/gkac1037] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Viruses are widely recognized as critical members of all microbiomes. Metagenomics enables large-scale exploration of the global virosphere, progressively revealing the extensive genomic diversity of viruses on Earth and highlighting the myriad of ways by which viruses impact biological processes. IMG/VR provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata. A web interface enables users to efficiently browse and search viruses based on genome features and/or sequence similarity. Here, we present the fourth version of IMG/VR, composed of >15 million virus genomes and genome fragments, a ≈6-fold increase in size compared to the previous version. These clustered into 8.7 million viral operational taxonomic units, including 231 408 with at least one high-quality representative. Viral sequences in IMG/VR are now systematically identified from genomes, metagenomes, and metatranscriptomes using a new detection approach (geNomad), and IMG standard annotation are complemented with genome quality estimation using CheckV, taxonomic classification reflecting the latest taxonomic standards, and microbial host taxonomy prediction. IMG/VR v4 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.
Collapse
Affiliation(s)
- Antonio Pedro Camargo
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen Nayfach
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - I-Min A Chen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Anna Ratner
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Chu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephan J Ritter
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Supratim Mukherjee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lee Call
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Russell Y Neches
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia N Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Dylus D, Altenhoff A, Majidian S, Sedlazeck FJ, Dessimoz C. Read2Tree: scalable and accurate phylogenetic trees from raw reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.18.488678. [PMID: 36561179 PMCID: PMC9774205 DOI: 10.1101/2022.04.18.488678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inference of phylogenetic trees is foundational to biology. However, state-of-the-art phylogenomics requires running complex pipelines, at significant computational and labour costs, with additional constraints in sequencing coverage, assembly and annotation quality. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes. In a benchmark encompassing a broad variety of datasets, our assembly-free approach was 10-100x faster than conventional approaches, and in most cases more accurate-the exception being when sequencing coverage was high and reference species very distant. To illustrate the broad applicability of the tool, we reconstructed a yeast tree of life of 435 species spanning 590 million years of evolution. Applied to Coronaviridae samples, Read2Tree accurately classified highly diverse animal samples and near-identical SARS-CoV-2 sequences on a single tree-thereby exhibiting remarkable breadth and depth. The speed, accuracy, and versatility of Read2Tree enables comparative genomics at scale.
Collapse
Affiliation(s)
- David Dylus
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- present address: F. Hoffmann-La Roche Ltd, Immunology, Infectious Disease, and Ophthalmology (I2O), Roche Pharmaceutical Research and Early Development (pRED), Basel, 4070, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adrian Altenhoff
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computer Science, ETH, 8092 Zurich, Switzerland
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computer Science, University College London, London WC1E 6BT, UK
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E, UK
| |
Collapse
|
29
|
Sanders JG, Yan W, Mjungu D, Lonsdorf EV, Hart JA, Sanz CM, Morgan DB, Peeters M, Hahn BH, Moeller AH. A low-cost genomics workflow enables isolate screening and strain-level analyses within microbiomes. Genome Biol 2022; 23:212. [PMID: 36224660 PMCID: PMC9558970 DOI: 10.1186/s13059-022-02777-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Earth's environments harbor complex consortia of microbes that affect processes ranging from host health to biogeochemical cycles. Understanding their evolution and function is limited by an inability to isolate genomes in a high-throughput manner. Here, we present a workflow for bacterial whole-genome sequencing using open-source labware and the OpenTrons robotics platform, reducing costs to approximately $10 per genome. We assess genomic diversity within 45 gut bacterial species from wild-living chimpanzees and bonobos. We quantify intraspecific genomic diversity and reveal divergence of homologous plasmids between hosts. This enables population genetic analyses of bacterial strains not currently possible with metagenomic data alone.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Weiwei Yan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, B.P. 14537, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée Au VIH Et Aux Maladies Infectieuses, Institut de Recherche Pour Le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Matthey-Doret C, Colp MJ, Escoll P, Thierry A, Moreau P, Curtis B, Sahr T, Sarrasin M, Gray MW, Lang BF, Archibald JM, Buchrieser C, Koszul R. Chromosome-scale assemblies of Acanthamoeba castellanii genomes provide insights into Legionella pneumophila infection-related chromatin reorganization. Genome Res 2022; 32:1698-1710. [PMID: 36109147 PMCID: PMC9528979 DOI: 10.1101/gr.276375.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.
Collapse
Affiliation(s)
- Cyril Matthey-Doret
- Institut Pasteur, CNRS UMR 3525, Université de Paris, Unité Régulation Spatiale des Génomes, F-75015 Paris, France
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Morgan J Colp
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Pedro Escoll
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, F-75015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université de Paris, Unité Régulation Spatiale des Génomes, F-75015 Paris, France
| | - Pierrick Moreau
- Institut Pasteur, CNRS UMR 3525, Université de Paris, Unité Régulation Spatiale des Génomes, F-75015 Paris, France
| | - Bruce Curtis
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Tobias Sahr
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, F-75015 Paris, France
| | - Matt Sarrasin
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, F-75015 Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université de Paris, Unité Régulation Spatiale des Génomes, F-75015 Paris, France
| |
Collapse
|
31
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
32
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
33
|
Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation. Microb Genom 2022; 8. [PMID: 35298370 PMCID: PMC9176287 DOI: 10.1099/mgen.0.000802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human gut microbiome has been extensively studied, yet the canine gut microbiome is still largely unknown. The availability of high-quality genomes is essential in the fields of veterinary medicine and nutrition to unravel the biological role of key microbial members in the canine gut environment. Our aim was to evaluate nanopore long-read metagenomics and Hi-C (high-throughput chromosome conformation capture) proximity ligation to provide high-quality metagenome-assembled genomes (HQ MAGs) of the canine gut environment. By combining nanopore long-read metagenomics and Hi-C proximity ligation, we retrieved 27 HQ MAGs and 7 medium-quality MAGs of a faecal sample of a healthy dog. Canine MAGs (CanMAGs) improved genome contiguity of representatives from the animal and human MAG catalogues – short-read MAGs from public datasets – for the species they represented: they were more contiguous with complete ribosomal operons and at least 18 canonical tRNAs. Both canine-specific bacterial species and gut generalists inhabit the dog’s gastrointestinal environment. Most of them belonged to Firmicutes, followed by Bacteroidota and Proteobacteria. We also assembled one Actinobacteriota and one Fusobacteriota MAG. CanMAGs harboured antimicrobial-resistance genes (ARGs) and prophages and were linked to plasmids. ARGs conferring resistance to tetracycline were most predominant within CanMAGs, followed by lincosamide and macrolide ones. At the functional level, carbohydrate transport and metabolism was the most variable within the CanMAGs, and mobilome function was abundant in some MAGs. Specifically, we assigned the mobilome functions and the associated mobile genetic elements to the bacterial host. The CanMAGs harboured 50 bacteriophages, providing novel bacterial-host information for eight viral clusters, and Hi-C proximity ligation data linked the six potential plasmids to their bacterial host. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAG discovery and assignment of extra-chromosomal elements to their bacterial host. This will provide essential information for studying the canine gut microbiome in veterinary medicine and animal nutrition.
Collapse
Affiliation(s)
- Anna Cuscó
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Daniel Pérez
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Fàbregas
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
HAM-ART: An optimised culture-free Hi-C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet 2022; 18:e1009776. [PMID: 35286304 PMCID: PMC8947609 DOI: 10.1371/journal.pgen.1009776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/24/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Shotgun metagenomics is a powerful tool to identify antimicrobial resistance (AMR) genes in microbiomes but has the limitation that extrachromosomal DNA, such as plasmids, cannot be linked with the host bacterial chromosome. Here we present a comprehensive laboratory and bioinformatics pipeline HAM-ART (Hi-C Assisted Metagenomics for Antimicrobial Resistance Tracking) optimised for the generation of metagenome-assembled genomes including both chromosomal and extrachromosomal AMR genes. We demonstrate the performance of the pipeline in a study comparing 100 pig faecal microbiomes from low- and high-antimicrobial use pig farms (organic and conventional farms). We found significant differences in the distribution of AMR genes between low- and high-antimicrobial use farms including a plasmid-borne lincosamide resistance gene exclusive to high-antimicrobial use farms in three species of Lactobacilli. The bioinformatics pipeline code is available at https://github.com/lkalmar/HAM-ART.
Collapse
|
35
|
Du Y, Sun F. HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps. Genome Biol 2022; 23:63. [PMID: 35227283 PMCID: PMC8883645 DOI: 10.1186/s13059-022-02626-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/06/2022] [Indexed: 01/20/2023] Open
Abstract
Recovering high-quality metagenome-assembled genomes (MAGs) from complex microbial ecosystems remains challenging. Recently, high-throughput chromosome conformation capture (Hi-C) has been applied to simultaneously study multiple genomes in natural microbial communities. We develop HiCBin, a novel open-source pipeline, to resolve high-quality MAGs utilizing Hi-C contact maps. HiCBin employs the HiCzin normalization method and the Leiden clustering algorithm and includes the spurious contact detection into binning pipelines for the first time. HiCBin is validated on one synthetic and two real metagenomic samples and is shown to outperform the existing Hi-C-based binning methods. HiCBin is available at https://github.com/dyxstat/HiCBin .
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
36
|
Ivanova V, Chernevskaya E, Vasiluev P, Ivanov A, Tolstoganov I, Shafranskaya D, Ulyantsev V, Korobeynikov A, Razin SV, Beloborodova N, Ulianov SV, Tyakht A. Hi-C Metagenomics in the ICU: Exploring Clinically Relevant Features of Gut Microbiome in Chronically Critically Ill Patients. Front Microbiol 2022; 12:770323. [PMID: 35185811 PMCID: PMC8851603 DOI: 10.3389/fmicb.2021.770323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Gut microbiome in critically ill patients shows profound dysbiosis. The most vulnerable is the subgroup of chronically critically ill (CCI) patients - those suffering from long-term dependence on support systems in intensive care units. It is important to investigate their microbiome as a potential reservoir of opportunistic taxa causing co-infections and a morbidity factor. We explored dynamics of microbiome composition in the CCI patients by combining "shotgun" metagenomics with chromosome conformation capture (Hi-C). Stool samples were collected at 2 time points from 2 patients with severe brain injury with different outcomes within a 1-2-week interval. The metagenome-assembled genomes (MAGs) were reconstructed based on the Hi-C data using a novel hicSPAdes method (along with the bin3c method for comparison), as well as independently of the Hi-C using MetaBAT2. The resistomes of the samples were derived using a novel assembly graph-based approach. Links of bacteria to antibiotic resistance genes, plasmids and viruses were analyzed using Hi-C-based networks. The gut community structure was enriched in opportunistic microorganisms. The binning using hicSPAdes was superior to the conventional WGS-based binning as well as to the bin3c in terms of the number, completeness and contamination of the reconstructed MAGs. Using Klebsiella pneumoniae as an example, we showed how chromosome conformation capture can aid comparative genomic analysis of clinically important pathogens. Diverse associations of resistome with antimicrobial therapy from the level of assembly graphs to gene content were discovered. Analysis of Hi-C networks suggested multiple "host-plasmid" and "host-phage" links. Hi-C metagenomics is a promising technique for investigating clinical microbiome samples. It provides a community composition profile with increased details on bacterial gene content and mobile genetic elements compared to conventional metagenomics. The ability of Hi-C binning to encompass the MAG's plasmid content facilitates metagenomic evaluation of virulence and drug resistance dynamics in clinically relevant opportunistic pathogens. These findings will help to identify the targets for developing cost-effective and rapid tests for assessing microbiome-related health risks.
Collapse
Affiliation(s)
- Valeriia Ivanova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Chernevskaya
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Petr Vasiluev
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | - Artem Ivanov
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Ivan Tolstoganov
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Saint Petersburg, Russia
| | - Daria Shafranskaya
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir Ulyantsev
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sergey V. Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Tyakht
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
37
|
Abstract
Microbial communities are key components of all ecosystems, but characterization of their complete genomic structure remains challenging. Typical analysis tends to elude the complexity of the mixes in terms of species, strains, as well as extrachromosomal DNA molecules. Recently, approaches have been developed that bins DNA contigs into individual genomes and episomes according to their 3D contact frequencies. Those contacts are quantified by chromosome conformation capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to metagenomics samples. Here, we present a simple computational pipeline that allows to recover high-quality Metagenomics Assemble Genomes (MAGs) starting from metagenomic 3C or Hi-C datasets and a metagenome assembly.
Collapse
|
38
|
Chaffringeon L, Lamy-Besnier Q, Debarbieux L, De Sordi L. The intestinal virome: lessons from animal models. Curr Opin Virol 2021; 51:141-148. [PMID: 34700287 DOI: 10.1016/j.coviro.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces in contact with the environment host specific microbiota. The intestinal tract harbours the most abundant and diverse bacterial and viral populations interacting with each other as well as with the host. Viruses of the microbiota are important components of this ecosystem, as shown by viral alterations associated with various pathologies. However, practical and ethical constraints limit functional studies of the virome in humans, making animal models invaluable experimental tools to understand its impact on intestinal physiology. In this review, we present the recent advances in the study of virome in animal models. We focus on the strategies used to characterise viral changes in disease models and approaches to modulate the microbiota using viruses. In reviewing the interplay between viruses, bacteria, and the animal host, we highlight the potential and limitations of these models in elucidating the role of the virome in determining human health and disease.
Collapse
Affiliation(s)
- Lorenzo Chaffringeon
- Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Department of Microbiology, Institut Pasteur, Paris, F-75015, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | - Quentin Lamy-Besnier
- Department of Microbiology, Institut Pasteur, Paris, F-75015, France; Université de Paris, Paris, France
| | | | - Luisa De Sordi
- Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
39
|
Hill BM, Bisht K, Atkins GR, Gomez AA, Rumbaugh KP, Wakeman CA, Brown AMV. Lysis-Hi-C as a method to study polymicrobial communities and eDNA. Mol Ecol Resour 2021; 22:1029-1042. [PMID: 34669257 PMCID: PMC9215119 DOI: 10.1111/1755-0998.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Microbes interact in natural communities in a spatially structured manner, particularly in biofilms and polymicrobial infections. While next generation sequencing approaches provide powerful insights into diversity, metabolic capacity, and mutational profiles of these communities, they generally fail to recover in situ spatial proximity between distinct genotypes in the interactome. Hi‐C is a promising method that has assisted in analysing complex microbiomes, by creating chromatin cross‐links in cells, that aid in identifying adjacent DNA, to improve de novo assembly. This study explored a modified Hi‐C approach involving an initial lysis phase prior to DNA cross‐linking, to test whether adjacent cell chromatin can be cross‐linked, anticipating that this could provide a new avenue for study of spatial‐mutational dynamics in structured microbial communities. An artificial polymicrobial mixture of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli was lysed for 1–18 h, then prepared for Hi‐C. A murine biofilm infection model was treated with sonication, mechanical lysis, or chemical lysis before Hi‐C. Bioinformatic analyses of resulting Hi‐C interspecies chromatin links showed that while microbial species differed from one another, generally lysis significantly increased links between species and increased the distance of Hi‐C links within species, while also increasing novel plasmid‐chromosome links. The success of this modified lysis‐Hi‐C protocol in creating extracellular DNA links is a promising first step toward a new lysis‐Hi‐C based method to recover genotypic microgeography in polymicrobial communities, with potential future applications in diseases with localized resistance, such as cystic fibrosis lung infections and chronic diabetic ulcers.
Collapse
Affiliation(s)
- Bravada M Hill
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Georgia Rae Atkins
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amy A Gomez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech Health Sciences Center, Lubbock, Texas, USA
| | - Catherine A Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
40
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
41
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
42
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
Affiliation(s)
| | | | - Samantha R Coy
- BioSciences Department, Rice University, Houston, TX, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
43
|
Abstract
Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.
Collapse
Affiliation(s)
- Lee Call
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| |
Collapse
|
44
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
45
|
Abstract
Bacteria acquire novel DNA through horizontal gene transfer (HGT), a process that enables an organism to rapidly adapt to changing environmental conditions, provides a competitive edge and potentially alters its relationship with its host. Although the HGT process is routinely exploited in laboratories, there is a surprising disconnect between what we know from laboratory experiments and what we know from natural environments, such as the human gut microbiome. Owing to a suite of newly available computational algorithms and experimental approaches, we have a broader understanding of the genes that are being transferred and are starting to understand the ecology of HGT in natural microbial communities. This Review focuses on these new technologies, the questions they can address and their limitations. As these methods are applied more broadly, we are beginning to recognize the full extent of HGT possible within a microbiome and the punctuated dynamics of HGT, specifically in response to external stimuli. Furthermore, we are better characterizing the complex selective pressures on mobile genetic elements and the mechanisms by which they interact with the bacterial host genome.
Collapse
Affiliation(s)
- Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
46
|
Jahn MT, Lachnit T, Markert SM, Stigloher C, Pita L, Ribes M, Dutilh BE, Hentschel U. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. THE ISME JOURNAL 2021; 15:2001-2011. [PMID: 33603147 PMCID: PMC8245591 DOI: 10.1038/s41396-021-00900-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Bacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach ('PhageFISH-CLEM') localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.
Collapse
Affiliation(s)
- M T Jahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- Department of Zoology and Department of Biochemistry, University of Oxford, Oxford, UK.
| | - T Lachnit
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | - S M Markert
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - C Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - L Pita
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - M Ribes
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - B E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - U Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
47
|
Silveira CB, Luque A, Rohwer F. The landscape of lysogeny across microbial community density, diversity and energetics. Environ Microbiol 2021; 23:4098-4111. [PMID: 34121301 DOI: 10.1111/1462-2920.15640] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33143, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| |
Collapse
|
48
|
Cockram C, Thierry A, Koszul R. Generation of gene-level resolution chromosome contact maps in bacteria and archaea. STAR Protoc 2021; 2:100512. [PMID: 34027477 PMCID: PMC8121701 DOI: 10.1016/j.xpro.2021.100512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chromosome conformation capture (Hi-C) has become a routine method for probing the 3D organization of genomes. However, when applied to bacteria and archaea, current protocols are expensive and limited in their resolution. By dissecting the different steps of published eukaryotic and prokaryotic Hi-C protocols, we have developed a cost- and time-effective approach to generate high-resolution (down to 500 bp – 1 kb) contact matrices of both bacteria and archaea genomes. For complete details on the use and execution of this protocol, please refer to Cockram et al. (2020). Optimized Hi-C protocol for archaeal and bacterial genomes Generation of genome-wide contact maps up to 1 kb resolution Detailed description of steps from cell fixation to sequencing library preparation A cost- and time-effective approach offering gene-level resolution contact maps
Collapse
Affiliation(s)
- Charlotte Cockram
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| |
Collapse
|
49
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
50
|
Khan Mirzaei M, Deng L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol 2021; 30:131-142. [PMID: 34016512 DOI: 10.1016/j.tim.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Gut bacteria play an essential role in the human body by regulating multiple functions, producing essential metabolites, protecting against pathogen invasion, and much more. Conversely, changes in their community structure are linked to several gastrointestinal (GI) and non-GI conditions. Fortunately, these bacteria are amenable to external perturbations, but we need specific tools for their safe manipulation as nonspecific changes can cause unpredicted long-term consequences. Here, we mainly discuss recent advances in cultivation-independent technologies and argue their relevance to different key steps, that is, identifying the modulation targets and developing phage-based tools to precisely modulate gut bacteria and restore a sustainable microbiome in humans. We finally suggest multiple modulating strategies for different dysbiosis-associated diseases.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany.
| |
Collapse
|