1
|
Peterson BD, Janssen SE, Poulin BA, Ogorek JM, White AM, McDaniel EA, Marick RA, Armstrong GJ, Scheel ND, Tate MT, Krabbenhoft DP, McMahon KD. Sulfate Reduction Drives Elevated Methylmercury Formation in the Water Column of a Eutrophic Freshwater Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6799-6811. [PMID: 40152258 PMCID: PMC11984097 DOI: 10.1021/acs.est.4c12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Mercury (Hg) contamination of aquatic food webs is controlled in part by the formation and accumulation of toxic and bioaccumulative methylmercury (MeHg). MeHg production is mediated by metabolically diverse microorganisms carrying the hgcAB gene pair, while the demethylation reaction is mediated by several biotic and abiotic processes. However, the relative importance of these two processes on MeHg accumulation and the environmental factors that influence them are poorly characterized, especially in eutrophic environments. In this study, both Hg methylation and MeHg demethylation in a eutrophic freshwater lake were linked to ambient MeHg concentrations and hgcA abundance and expression. High methylation rate potentials indicated in situ MeHg formation was a key source of MeHg to the water column, driven by high hgcA abundance and transcription. Molybdate treatment decreased methylation rate potentials, highlighting the importance of sulfate reduction in driving MeHg formation. Sulfate-reducing bacteria accounted for over 50% of the hgcA gene transcription, despite representing less than 10% of the hgcA-carrying microbial community. An arsR-like transcriptional regulator preceded many hgcA sequences; these were transcriptionally active and linked to lower hgcA expression. Overall, this study elucidates the microbial and biogeochemical processes that influence the in situ formation of MeHg in understudied eutrophic freshwater environments.
Collapse
Affiliation(s)
- Benjamin D. Peterson
- School
of Freshwater Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53204, United States
- Environmental
Chemistry and Technology Program, Department of Civil and Environmental
Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department
of Environmental Toxicology, University
of California—Davis, Davis, California 95616, United States
| | - Sarah E. Janssen
- Upper
Midwest Water Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California—Davis, Davis, California 95616, United States
| | - Jacob M. Ogorek
- Upper
Midwest Water Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Amber M. White
- Environmental
Chemistry and Technology Program, Department of Civil and Environmental
Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Elizabeth A. McDaniel
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Robert A. Marick
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Grace J. Armstrong
- Environmental
Chemistry and Technology Program, Department of Civil and Environmental
Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Upper
Midwest Water Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Nicholas D. Scheel
- Freshwater
and Marine Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael T. Tate
- Upper
Midwest Water Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - David P. Krabbenhoft
- Upper
Midwest Water Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Katherine D. McMahon
- Environmental
Chemistry and Technology Program, Department of Civil and Environmental
Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Xiong B, Cheng H, Deng Y, Imanaka T, Igarashi Y, Ma M, Du H, Wang D. Role of Methanosarcina in mercuric mercury transportation and methylation in sulfate-driven anaerobic oxidation of methane with municipal wastewater sludge. ENVIRONMENTAL RESEARCH 2025; 267:120689. [PMID: 39716678 DOI: 10.1016/j.envres.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing. Results showed that methylmercury (MeHg) concentrations and MeHg/total Hg ratios increased significantly, implying mercuric Hg [Hg(II)] methylation predominated MeHg demethylation. Desulfovibrio, Desulfobulbus and Methanosarcina dominated and thus likely played important roles in Hg(II) methylation, while Methanosarcina dominated and functioned in methane metabolism. In the presence of sulfate, differentially-expressed genes (DEGs) related to Hg transporting ATPase increased significantly, indicating Methanosarcina absorbed a large amount of Hg(II) and likely further methylated it to MeHg. No Hg response DEGs were found in the absence of sulfate, further confirming sulfate played an essential role in Hg cycle. Overall, these results suggest that controlling sulfate levels and Methanosarcina abundances in municipal wastewater could potentially mitigate MeHg risks to humans.
Collapse
Affiliation(s)
- Bingcai Xiong
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Guo Y, Deng W, Mo Q, Yu Y, Zhang Z, Wei M, Tang R, Lu S, Su Y. Glutathione reductase plays a role in the metabolism of methylmercury degradation in Rhodotorula mucilaginosa. Microbiol Spectr 2025; 13:e0239524. [PMID: 39817752 PMCID: PMC11792481 DOI: 10.1128/spectrum.02395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025] Open
Abstract
Mercury pollution is a kind of heavy metal pollution with great harm and strong toxicity which exists worldwide. Some microorganisms can convert highly toxic methylmercury into inorganic mercury compounds with significantly reduced toxicity. This is an effective means of methylmercury pollution remediation. As a safe microorganism with great potential in the remediation of heavy metal pollution, Rhodotorula mucilaginosa has not been studied in the remediation of methylmercury. Here, a R. mucilaginosa strain Rm4 with high methylmercury resistance was obtained by wild-strain screening. Its minimal inhibitory concentration and minimum lethal concentration reached 3 and 6 mg/L, respectively. At the same time, Rm4 can also degrade methylmercury. Unlike the traditional microbial methylmercury degradation pathways, R. mucilaginosa's genome does not encode the organomercury lyase gene MerB. However, transcriptomic analysis revealed that the glutathione reductase of R. mucilaginosa responds to the methylmercury degradation process. Structural domain analysis and molecular docking experiments suggest that the glutathione reductase of R. mucilaginosa has the potential to directly or indirectly participate in methylmercury degradation metabolism. Metabolic indicator tests of engineered strains overexpressing the glutathione reductase encoding gene also support this notion. IMPORTANCE The remediation of methylmercury pollution is crucial for environmental health. The ability of Rhodotorula mucilaginosa to resist and degrade methylmercury offers a new avenue for bioremediation efforts. Understanding the metabolic pathways involved, particularly the role of glutathione reductase, enhances our knowledge of how Rhodotorula mucilaginosa responds to methylmercury and opens up new possibilities for future research in bioremediation strategies.
Collapse
Affiliation(s)
- Yi Guo
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wenlong Deng
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Qigui Mo
- Medicine Research Institute and Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhenwang Zhang
- Medicine Research Institute and Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Mingjie Wei
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Ruiling Tang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Surui Lu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
4
|
Liu J, Li Y, Zhang A, Zhong H, Jiang H, Tsui MTK, Li M, Pan K. Impact of geochemistry and microbes on the methylmercury production in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135627. [PMID: 39217948 DOI: 10.1016/j.jhazmat.2024.135627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Unraveling the geochemical and microbial controls on methylmercury (MeHg) dynamics in mangrove sediments is important, as MeHg can potentially pose risks to marine biota and people that rely on these ecosystems. While the important role of sulfate-reducing bacteria in MeHg formation has been examined in this ecologically important habitat, the contribution of non-Hg methylating communities on MeHg production remains particularly unclear. Here, we collected sediment samples from 13 mangrove forests in south China and examined the geochemical parameters and microbial communities related to the Hg methylation. MeHg concentrations were significantly correlated to the OM-related parameters such as organic carbon content, total nitrogen, and dissolved organic carbon concentrations, suggesting the importance of OM in the MeHg production. Sulfate-reducing bacteria were the major Hg-methylators in mangrove sediments. Desulfobacteraceae and Desulfobulbaceae dominated the Hg-methylating microbes. Classification random forest analysis detected strong co-occurrence between Hg methylators and putative non-Hg methylators, thus suggesting that both types of microorganisms contribute to the MeHg dynamics in the sediments. Our study provides an overview of MeHg contamination in south China and advances our understanding of Hg methylation in mangrove ecosystems.
Collapse
Affiliation(s)
- Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Aijia Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210046, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Reyes RM, Rosenzweig AC. Methanobactins: Structures, Biosynthesis, and Microbial Diversity. Annu Rev Microbiol 2024; 78:383-401. [PMID: 39121541 PMCID: PMC11619078 DOI: 10.1146/annurev-micro-041522-092911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Methanobactins (Mbns) are ribosomally synthesized and posttranslationally modified peptide natural products released by methanotrophic bacteria under conditions of copper scarcity. Mbns bind Cu(I) with high affinity via nitrogen-containing heterocycles and thioamide groups installed on a precursor peptide, MbnA, by a core biosynthetic enzyme complex, MbnBC. Additional stabilizing modifications are enacted by other, less universal biosynthetic enzymes. Copper-loaded Mbn is imported into the cell by TonB-dependent transporters called MbnTs, and copper is mobilized by an unknown mechanism. The machinery to biosynthesize and transport Mbn is encoded in operons that are also found in the genomes of nonmethanotrophic bacteria. In this review, we provide an update on the state of the Mbn field, highlighting recent discoveries regarding Mbn structure, biosynthesis, and handling as well as the emerging roles of Mbns in the environment and their potential use as therapeutics.
Collapse
Affiliation(s)
- Reyvin M Reyes
- Department of Molecular Biosciences and Department of Chemistry, Northwestern University, Evanston, Illinois, USA;
| | - Amy C Rosenzweig
- Department of Molecular Biosciences and Department of Chemistry, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
6
|
Hauptmann AL, Johansen J, Stæger FF, Nielsen DS, Mulvad G, Hanghøj K, Rasmussen S, Hansen T, Albrechtsen A. Gut heavy metal and antibiotic resistome of humans living in the high Arctic. Front Microbiol 2024; 15:1493803. [PMID: 39539714 PMCID: PMC11557323 DOI: 10.3389/fmicb.2024.1493803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Contaminants, such as heavy metals (HMs), accumulate in the Arctic environment and the food web. The diet of the Indigenous Peoples of North Greenland includes locally sourced foods that are central to their nutritional, cultural, and societal health but these foods also contain high concentrations of heavy metals. While bacteria play an essential role in the metabolism of xenobiotics, there are limited studies on the impact of heavy metals on the human gut microbiome, and it is so far unknown if and how Arctic environmental contaminants impact the gut microbes of humans living in and off the Arctic environment. Using a multiomics approach including amplicon, metagenome, and metatranscriptome sequencing, we identified and assembled a near-complete (NC) genome of a mercury-resistant bacterial strain from the human gut microbiome, which expressed genes known to reduce mercury toxicity. At the overall ecological level studied through α- and β-diversity, there was no significant effect of heavy metals on the gut microbiota. Through the assembly of a high number of NC metagenome-assembled genomes (MAGs) of human gut microbes, we observed an almost complete overlap between heavy metal-resistant strains and antibiotic-resistant strains in which resistance genes were all located on the same genetic elements.
Collapse
Affiliation(s)
- Aviaja Lyberth Hauptmann
- SILA Department, Institute of Health and Nature, Ilisimatusarfik – The University of Greenland, Nuuk, Greenland
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frederik Filip Stæger
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Gert Mulvad
- SILA Department, Institute of Health and Nature, Ilisimatusarfik – The University of Greenland, Nuuk, Greenland
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
8
|
Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, Wang R, Liu Z, Zhang Q, Bai S, Fu M, Zhang Y. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. TOXICS 2024; 12:715. [PMID: 39453135 PMCID: PMC11511217 DOI: 10.3390/toxics12100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Collapse
Affiliation(s)
- Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Runjie Gan
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning 530025, China
| | - Bensen Xian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Tong Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Guoping Wu
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Shixin Huang
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin 541100, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
9
|
Li Y, Zhang H, Guan Y, Cheng G, Li Z, Li Z, Cao M, Yin Y, Hu L, Shi J, Chen B. Functional genes and microorganisms controlling in situ methylmercury production and degradation in marine sediments: A case study in the Eastern China Coastal Seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134965. [PMID: 38905972 DOI: 10.1016/j.jhazmat.2024.134965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Dominant microorganisms and functional genes, including hgcA, hgcB, merA, and merB, have been identified to be responsible for mercury (Hg) methylation or methylmercury (MeHg) demethylation. However, their in situ correlation with MeHg levels and the processes of Hg methylation and MeHg demethylation in coastal areas remains poorly understood. In this study, four functional genes related to Hg methylation and MeHg demethylation (hgcA, hgcB, merA, and merB) were all detected in the sediments of the Eastern China Coastal Seas (ECCSs) (representative coastal seas highly affected by human activities) using metagenomic approaches. HgcA was identified to be the key gene controlling the in situ net production of MeHg in the ECCSs. Based on metagenomic analysis and incubation experiments, sulfate-reducing bacteria were identified as the dominant microorganisms controlling Hg methylation in the ECCSs. In addition, hgcA gene was positively correlated with the MeHg content and Hg methylation rates, highlighting the potential roles of Hg methylation genes and microorganisms influenced by sediment physicochemical properties in MeHg cycling in the ECCSs. These findings highlighted the necessity of conducting similar studies in other natural systems for elucidating the molecular mechanisms underlying MeHg production in aquatic environments.
Collapse
Affiliation(s)
- Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huimin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yingjun Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guoyi Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhuang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
10
|
Dong H, Wang Y, Zhi T, Guo H, Guo Y, Liu L, Yin Y, Shi J, He B, Hu L, Jiang G. Construction of protein-protein interaction network in sulfate-reducing bacteria: Unveiling of global response to Hg. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124048. [PMID: 38714230 DOI: 10.1016/j.envpol.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.
Collapse
Affiliation(s)
- Hongzhe Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Centre for Education and Research, Beijing, 100049, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tingting Zhi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Centre for Education and Research, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
11
|
Xie F, Yuan Q, Meng Y, Luan F. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals. WATER RESEARCH 2024; 256:121645. [PMID: 38653093 DOI: 10.1016/j.watres.2024.121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Mercury contamination is a global concern, and the degradation and detoxification of methylmercury have gained significant attention due to its neurotoxicity and biomagnification within the food chain. However, the currently known pathways of abiotic demethylation are limited to light-induced photodegradation process and little is known about light-independent abiotic demethylation of methylmercury. In this study, we reported a novel abiotic pathway for the degradation of methylmercury through the oxidation of both mineral structural iron(II) and surface-adsorbed iron(II) in the absence of light. Our findings reveal that methylmercury can be oxidatively degraded by reactive oxygen species, specifically hydroxyl and superoxide radicals, which are generated from the oxidation of iron(II) minerals under dark conditions. Surprisingly, Hg(0) trapping experiments demonstrated that inorganic Hg(II) resulting from the oxidative degradation of methylmercury was rapidly reduced to gaseous Hg(0) by iron(II) minerals. The demethylation of methylmercury, coupled with the generation of Hg(0), suggests a potential natural attenuation process for methylmercury. Our results highlight the underappreciated roles of iron(II) minerals in the abiotic degradation of methylmercury and the release of gaseous Hg(0) into the atmosphere.
Collapse
Affiliation(s)
- Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Chen KH, Feng J, Bodelier PLE, Yang Z, Huang Q, Delgado-Baquerizo M, Cai P, Tan W, Liu YR. Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields. Nat Commun 2024; 15:3471. [PMID: 38658559 PMCID: PMC11043409 DOI: 10.1038/s41467-024-47827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.
Collapse
Affiliation(s)
- Kang-Hua Chen
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, The Netherlands
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, 41012, Spain
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Kim J, Soerensen AL, Jeong H, Jeong S, Kim E, Lee YM, Jin YK, Rhee TS, Hong JK, Han S. Cross-shelf processes of terrigenous organic matter drive mercury speciation on the east siberian shelf in the Arctic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123270. [PMID: 38163627 DOI: 10.1016/j.envpol.2023.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The cross-shelf distributions of total mercury (THg), methylmercury (MeHg) and organic and inorganic matter, as well as the presence of the hgcA gene were investigated on the East Siberian Shelf (ESS) to understand the processes underlying the speciation of sedimentary Hg. Samples were collected from 12 stations grouped into four zones based on water depth: inner shelf (5 stations), mid-shelf (3 stations), outer shelf (2 stations), and slope (2 stations). The THg concentration in the surface sediment increased from the inner shelf (0.25 ± 0.023 nmol g-1) toward the slope (0.52 nmol g-1), and, when normalized to total organic carbon content, the THg showed a positive correlation with the clay-to-sand ratio (r2 = 0.48, p = 0.012) and degree of chemical weathering (r2 = 0.79, p = 0.0001). The highest MeHg concentrations (3.0 ± 1.8 pmol g-1), as well as peaks in the S/C ratio (0.012 ± 0.002) of sediment-leached organic matter, were found on the mid-shelf, suggesting that the activities of sulfate reducers control the net Hg(II) methylation rates in the sediment. This was supported by results from a principal component analysis (PCA) performed with Hg species concentrations and sediment-leached organic matter compositions. The site-specific variation in MeHg showed the highest similarity with that of CHONS compounds in the PCA, where Deltaproteobacteria were projected to be putative Hg(II) methylators in the gene analysis. In summary, the hydrodynamic sorting of lithogenic particles appears to govern the cross-shelf distribution of THg, and in situ methylation is considered a major source of MeHg in the ESS sediment.
Collapse
Affiliation(s)
- Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Hakwon Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seorin Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunsuk Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yung Mi Lee
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Young Keun Jin
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Liu Q, Liu S, Zhou XQ, Liu YR. Assessing microbial degradation potential of methylmercury in different types of paddy soil through short-term incubation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122603. [PMID: 37748640 DOI: 10.1016/j.envpol.2023.122603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The neurotoxic methylmercury (MeHg) in paddy soils can accumulate in rice grains. Microbial demethylation is an important pathway of MeHg degradation in soil, but the effect of soil type on microbial degradation of MeHg remains unclear. Therefore, we investigated MeHg degradation in eight typical paddy soils and analyzed the associations between soil physiochemical properties and microbial degradation efficiencies of MeHg. Results showed that MeHg was significantly degraded in unsterilized paddy soils, and the microbial degradation efficiency ranged from 10.8% to 64.6% after a 30-day incubation. The high microbial degradation efficiency of MeHg was observed in the soils with high levels of clay content, whereas relatively low degradation efficiency was found in the red paddy soils. We identified that Paenibacillaceae was the most important microbial predictor of MeHg degradation and was positively correlated with the degradation efficiency in the soils. The abundances of these microbial taxa associated with MeHg degradation were positively correlated with clay content. In addition, Eh, pH, and SOC could influence microbial degradation of MeHg by regulating certain microbial communities. Our results indicate that soil type is crucial in driving MeHg degradation, which has important implications for the mitigation of MeHg pollution in various croplands.
Collapse
Affiliation(s)
- Qin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Siyuan Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xin-Quan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Zhang R, Aris-Brosou S, Storck V, Liu J, Abdelhafiz MA, Feng X, Meng B, Poulain AJ. Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation. ISME COMMUNICATIONS 2023; 3:74. [PMID: 37454192 PMCID: PMC10349881 DOI: 10.1038/s43705-023-00277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21-513 mg kg-1 dry wt. soil; MeHg: 1.21-6.82 ng g-1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Veronika Storck
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | | |
Collapse
|
17
|
Zhang L, Kang-Yun CS, Lu X, Chang J, Liang X, Pierce EM, Semrau JD, Gu B. Adsorption and intracellular uptake of mercuric mercury and methylmercury by methanotrophs and methylating bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121790. [PMID: 37187279 DOI: 10.1016/j.envpol.2023.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The cell surface adsorption and intracellular uptake of mercuric Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. Strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs generally took up 60-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 only adsorbed 20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biosystems Engineering and Soil Science, University of Tennesee, Knoxville, TN 37996, USA
| |
Collapse
|
18
|
Sonke JE, Angot H, Zhang Y, Poulain A, Björn E, Schartup A. Global change effects on biogeochemical mercury cycling. AMBIO 2023; 52:853-876. [PMID: 36988895 PMCID: PMC10073400 DOI: 10.1007/s13280-023-01855-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
Collapse
Affiliation(s)
- Jeroen E. Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, Université Paul Sabatier Toulouse 3, 14 ave Edouard Belin, 31400 Toulouse, France
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 1025 rue de la piscine, 38000 Grenoble, France
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023 Jiangsu China
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Erik Björn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Amina Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
19
|
Stewart A, Dershwitz P, Stewart C, Sawaya MR, Yeates TO, Semrau JD, Zischka H, DiSpirito AA, Bobik TA. Crystal structure of MbnF: an NADPH-dependent flavin monooxygenase from Methylocystis strain SB2. Acta Crystallogr F Struct Biol Commun 2023; 79:111-118. [PMID: 37158309 PMCID: PMC10167746 DOI: 10.1107/s2053230x23003035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Methanobactins (MBs) are ribosomally produced and post-translationally modified peptides (RiPPs) that are used by methanotrophs for copper acquisition. The signature post-translational modification of MBs is the formation of two heterocyclic groups, either an oxazolone, pyrazinedione or imidazolone group, with an associated thioamide from an X-Cys dipeptide. The precursor peptide (MbnA) for MB formation is found in a gene cluster of MB-associated genes. The exact biosynthetic pathway of MB formation is not yet fully understood, and there are still uncharacterized proteins in some MB gene clusters, particularly those that produce pyrazinedione or imidazolone rings. One such protein is MbnF, which is proposed to be a flavin monooxygenase (FMO) based on homology. To help to elucidate its possible function, MbnF from Methylocystis sp. strain SB2 was recombinantly produced in Escherichia coli and its X-ray crystal structure was resolved to 2.6 Å resolution. Based on its structural features, MbnF appears to be a type A FMO, most of which catalyze hydroxylation reactions. Preliminary functional characterization shows that MbnF preferentially oxidizes NADPH over NADH, supporting NAD(P)H-mediated flavin reduction, which is the initial step in the reaction cycle of several type A FMO enzymes. It is also shown that MbnF binds the precursor peptide for MB, with subsequent loss of the leader peptide sequence as well as the last three C-terminal amino acids, suggesting that MbnF might be needed for this process to occur. Finally, molecular-dynamics simulations revealed a channel in MbnF that is capable of accommodating the core MbnA fragment minus the three C-terminal amino acids.
Collapse
Affiliation(s)
- Andrew Stewart
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Charles Stewart
- Macromolecular X-ray Crystallography Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011-3260, USA
| | - Michael R. Sawaya
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Todd O. Yeates
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Jeremy D. Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- School of Medicine, Institute of Toxicology and Environmental Hygiene, Technical University Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Alan A. DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| |
Collapse
|
20
|
Zhang S, Li B, Chen Y, Zhu M, Pedersen JA, Gu B, Wang Z, Li H, Liu J, Zhou XQ, Hao YY, Jiang H, Liu F, Liu YR, Yin H. Methylmercury Degradation by Trivalent Manganese. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5988-5998. [PMID: 36995950 DOI: 10.1021/acs.est.3c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 μg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou 450046, P.R. China
| | - Baohui Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071, United States
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P.R. China
| | - Xin-Quan Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yun-Yun Hao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yu-Rong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
21
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
22
|
Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. mSystems 2023; 8:e0073622. [PMID: 36507660 PMCID: PMC9948709 DOI: 10.1128/msystems.00736-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.
Collapse
|
23
|
Hu H, Gao Y, Yu H, Xiao H, Chen S, Tan W, Tang J, Xi B. Mechanisms and biological effects of organic amendments on mercury speciation in soil-rice systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114516. [PMID: 36628877 DOI: 10.1016/j.ecoenv.2023.114516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Hualing Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Shuhe Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
24
|
Monte CN, Rodrigues APC, Galvão PMA, Pontes GC, Malm O, Wasserman JC, Machado W. Mercury methylation upon coastal sediment resuspension: a worst-case approach under dark conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:805. [PMID: 36123414 DOI: 10.1007/s10661-022-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury behavior upon resuspension of sediments from two impacted areas of Guanabara Bay was evaluated to assess worst-case methylmercury (MeHg) responses, under dark experimental conditions to prevent demethylation by photolysis. Study areas include the Rio de Janeiro Harbor (RJH) and the chlor-alkali plant-affected Meriti River (MR) estuary. Total mercury (THg) and MeHg concentrations were determined along 24-h experiments of sediment resuspension in the bay water in dark conditions. Fine-grained Meriti River (MR) estuary sediments had 8 times higher MeHg initial concentrations than sandy Rio de Janeiro Harbor (RJH) sediments (3.4 ± 0.29 vs. 0.41 ± 0.1 ng g-1, respectively). Though THg contents were uncorrelated with resuspension time, statistically significant correlations of MeHg (rs = 0.78) and %MeHg in relation to THg (rs = 0.86) with resuspension time were observed for RJH sediments, indicating net methylation only for this study site. These positive correlation trends correspond to a 2.8 times MeHg concentration increase (ΔMeHg = 0.75 ng g-1) and 4.4 times increase in %MeHg (Δ%MeHg = 1.0%), after 24 h of resuspension. This suggests that assessments of factors affecting the MeHg spatial-temporal variability and associated toxicity risks can be limited in some sites if concentration changes due to sediment resuspension-redeposition processes are not considered. Therefore, the inclusion of MeHg evaluation before and after sediment resuspension events is recommendable for the improvement of dredging licensing and monitoring activities.
Collapse
Affiliation(s)
- Christiane N Monte
- Geochemistry Program, Universidade Federal Fluminense, Niterói, RJ, Brazil.
- Geology Department, Universidade Federal Do Oeste Do Pará, Santarém, PA, Brazil.
| | - Ana Paula C Rodrigues
- Geochemistry Program, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Marine Biology Department, Universidade Federal Do Rio de Janeiro, Ilha Do Fundão, RJ, Brazil
| | - Petrus M A Galvão
- Biophysics Institute, Universidade Federal Do Rio de Janeiro, Ilha Do Fundão, RJ, Brazil
| | - Gabriela C Pontes
- Geochemistry Program, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Olaf Malm
- Biophysics Institute, Universidade Federal Do Rio de Janeiro, Ilha Do Fundão, RJ, Brazil
| | - Júlio C Wasserman
- Geochemistry Program, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Geosciences Institute, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wilson Machado
- Geochemistry Program, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
25
|
Gao Z, Zheng W, Li Y, Liu Y, Wu M, Li S, Li P, Liu G, Fu X, Wang S, Wang F, Cai Y, Feng X, Gu B, Zhong H, Yin Y. Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. J Environ Sci (China) 2022; 119:152-165. [PMID: 35934460 DOI: 10.1016/j.jes.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300192, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxiao Wang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
26
|
Luo H, Cheng Q, He D, Zeng G, Sun J, Li J, Pan X. Binding of methylmercury to humic acids (HA): Influence of solar radiation and sulfide addition reaction of HA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154356. [PMID: 35259369 DOI: 10.1016/j.scitotenv.2022.154356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin that bioaccumulates in organisms and it forms strong complexes with reduced sulfur-containing ligands in dissolved organic matter (DOM). In the present study, the influences of solar radiation and sulfide addition reaction of humic acids (HA) on MeHg binding to HA were investigated using synchronous fluorescence and FT-IR two-dimensional correlation spectroscopic (2DCOS) analysis. Results showed that the complexation of fluorescent fractions of HA and sulfur-reacted HA (S-HA) with MeHg was not significantly affected by photoreaction treatments and the affinity of fluorescent fractions followed the order of protein-like fractions > humic-like fractions > fulvic-like fractions for both HA and S-HA. FT-IR 2DCOS analysis showed that the affinity of various binding sites in DOM for MeHg changed under different photoreaction treatments. Under dark treatment, small molecular compounds with low humification degree such as aromatic amino acids may be the site with the strongest binding ability to MeHg in HA, whereas aliphatic amino acids and sulfur-containing groups from sulfide addition reactions play a role in complexing of S-HA and MeHg. Under BS treatment (irradiation of DOM before MeHg binding), aliphatic compounds in HA preferentially bind to MeHg and aliphatic amino acids are the components with the strongest complexing ability; but for S-HA binding to MeHg, unsaturated functional groups and aromatic groups are more sensitive (alkenes > alkanes, phenols > alcohols). Under AS treatment (irradiation of DOM after MeHg binding), unsaturated bonds and aromatic compounds in HA preferentially bind to MeHg and aromatic amino acids show the strongest complexing ability; but for S-HA binding to MeHg, aliphatic groups show the strongest complexing ability (alkanes, alkenes > aromatics). These findings help us to better understand the complexation mechanisms between MeHg and DOM.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianqian Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganning Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Li Y, Li D, Song B, Li Y. The potential of mercury methylation and demethylation by 15 species of marine microalgae. WATER RESEARCH 2022; 215:118266. [PMID: 35290869 DOI: 10.1016/j.watres.2022.118266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and its compounds are a kind of worldwide concerned persistent toxic pollutants. As the major primary producer in the ocean, microalgae are expected to play an important role in the cycling and accumulation of Hg in marine ecosystems by either uptake Hg species from seawater or involving in the transformations of Hg species. However, there is still lack of clear knowledge on whether microalgae can induce the methylation and demethylation of Hg in aquatic environments. In this study, Hg isotope dilution and isotope addition techniques were utilized to determine the methylation and demethylation potential of Hg at concentrations comparable to that in natural environments by 15 common marine microalgae (8 species of Diatoms, 4 species of Dinoflagellates, 2 species of Chlorophyta and 1 species of Chrysophyte). Methylation of inorganic Hg was found to be negligible in the culture of all tested marine microalgae, while 6 species could significantly induce the demethylation of methylmercury (MeHg). The rates of microalgae mediated MeHg demethylation were at the same order of magnitude as that of photodemethylation, indicating that marine microalgae may play an important role in the degradation of MeHg in marine environments. Further studies suggest that the demethylation of MeHg by the microalgae may be mainly caused by their extracellular secretions (via photo-induce demethylation) and associated bacteria, rather than the direct demethylation of MeHg by microalgae cells. In addition, it was found that thiol groups may be the major component in microalgal extracellular secretions that lead to the photo-demethylation of MeHg.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Beibei Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
29
|
Li Y, Lu C, Zhu N, Chao J, Hu W, Zhang Z, Wang Y, Liang L, Chen J, Xu D, Gao Y, Zhao J. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128447. [PMID: 35158248 DOI: 10.1016/j.jhazmat.2022.128447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-fertilizer is commonly applied in croplands and in immobilizing Hg in contaminated soil. However, there is still great uncertainty and controversy concerning Hg transportability and transformation when supplying sulfur in paddies with complex conditions. Herein, we explored the effect of adding sulfate in paddy soil at different rice growth stages on soil Hg release and MeHg accumulation in rice and uncovered the correlation between sulfur induced MeHg production and the dynamically changed soil Eh, dissolved Fe, and dissolved organic carbon (DOC). In specific, sulfate addition at early stages (flooding period) triggered the decrease of Eh and increase of DOC and dissolved Fe, which in turn promoted Hg release and favored MeHg generation (increased by 235.19-555.07% vs control). Interestingly, adding sulfate at late stages (drainage condition), as compared with that at early stages, alleviated Hg release and MeHg production accompanied by the increase of Eh and decrease of dissolved Fe and DOC. The microcosmic experiment further confirmed the reduction of sulfate to sulfide promoted the change of Eh, thereby stimulating HgS dissolution in soil extract. The results give clues on the rational application of sulfur-fertilizer and through the water-sulfur fertilizer management considering the correspondingly changed soil conditions to diminish Hg bioavailability and MeHg production in paddies and paddy-like environments.
Collapse
Affiliation(s)
- Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chang Lu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiang Chao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenjun Hu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhiyuan Zhang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lichun Liang
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Jinkan Chen
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Diandou Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
31
|
Zhang L, Philben M, Taş N, Johs A, Yang Z, Wullschleger SD, Graham DE, Pierce EM, Gu B. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118878. [PMID: 35085651 DOI: 10.1016/j.envpol.2022.118878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Michael Philben
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Neslihan Taş
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
32
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
33
|
Organomercurial lyase (MerB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (MerA). Appl Environ Microbiol 2022; 88:e0001022. [PMID: 35138926 DOI: 10.1128/aem.00010-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mer operon encodes enzymes that transform and detoxify methylmercury (MeHg) and/or inorganic mercury (Hg(II)). Organomercurial lyase (MerB) and mercuric reductase (MerA) can act sequentially to demethylate MeHg to Hg(II) and reduce Hg(II) to volatile elemental mercury (Hg0) that can escape from the cell, conferring resistance to MeHg and Hg(II). Most identified mer operons encode either MerA and MerB in tandem or MerA alone, however, microbial genomes were recently identified that encode only MerB. Yet, the effects of potentially producing intracellular Hg(II) via demethylation of MeHg by MerB, independent of a mechanism to further detoxify or sequester the metal is not well understood. Here, we investigate MeHg biotransformation in Escherichia coli strains engineered to express MerA and MerB, together or separately, and characterize cell viability and Hg detoxification kinetics when these strains are grown in the presence of MeHg. Strains expressing only MerB are capable of demethylating MeHg to Hg(II). Compared to strains that express both MerA and MerB, strains expressing only MerB exhibit a lower minimum inhibitory concentration with MeHg exposure, which parallels a redistribution of Hg from the cell-associated fraction to the culture medium, consistent with cell lysis occurring. The data support a model whereby intracellular production of Hg(II), in the absence of reduction or other forms of demobilization, results in a greater cytotoxicity compared to the parent MeHg compound. Collectively, these results suggest that in the context of MeHg detoxification, MerB must be accompanied by an additional mechanism(s) to reduce, sequester, or re-distribute generated Hg(II). Importance: Mercury is a globally distributed pollutant that poses a risk to wildlife and human health. The toxicity of mercury is influenced largely by microbially mediated biotransformation between its organic (methylmercury) and inorganic (Hg(II) and Hg0) forms. Here we show in a relevant cellular context that the organomercurial lyase (MerB) enzyme is capable of MeHg demethylation without subsequent mercuric reductase (MerA)-mediated reduction of Hg(II). Demethylation of MeHg without subsequent Hg(II) reduction results in a greater cytotoxicity and increased cell lysis. Microbes carrying MerB alone have recently been identified but have yet to be characterized. Our results demonstrate that mer operons encoding MerB but not MerA put the cell at a disadvantage in the context of MeHg exposure, unless subsequent mechanisms of reduction or Hg(II) sequestration exist. These findings may help uncover the existence of alternative mechanisms of Hg(II) detoxification in addition to revealing the drivers of mer operon evolution.
Collapse
|
34
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
35
|
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CPJ, Griffiths NA, Elias DA, Nater EA, Toner BM. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1433-1444. [PMID: 34979084 DOI: 10.1021/acs.est.1c04662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We examined the composition and spatial correlation of sulfur and mercury pools in peatland soil profiles by measuring sulfur speciation by 1s X-ray absorption near-edge structure spectrocopy and mercury concentrations by cold vapor atomic fluorescence spectroscopy. Also investigated were the methylation/demethylation rate constants and the presence of hgcAB genes with depth. Methylmercury (MeHg) concentration and organic disulfide were spatially correlated and had a significant positive correlation (p < 0.05). This finding is consistent with these species being products of dissimilatory sulfate reduction. Conversely, a significant negative correlation between organic monosulfides and MeHg was observed, which is consistent with a reduction in Hg(II) bioavailability via complexation reactions. Finally, a significant positive correlation between ester sulfate and instantaneous methylation rate constants was observed, which is consistent with ester sulfate being a substrate for mercury methylation via dissimilatory sulfate reduction. Our findings point to the importance of organic sulfur species in mercury methylation processes, as substrates and products, as well as potential inhibitors of Hg(II) bioavailability. For a peatland system with sub-μmol L-1 porewater concentrations of sulfate and hydrogen sulfide, our findings indicate that the solid-phase sulfur pools, which have a much larger sulfur concentration range, may be accessible to microbial activity or exchanging with the porewater.
Collapse
Affiliation(s)
- Caroline E Pierce
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Olha S Furman
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Sarah L Nicholas
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jill Coleman Wasik
- Plant and Earth Science Department, University of Wisconsin River Falls, River Falls, Wisconsin 54022, United States
| | - Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ann M Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephen D Sebestyen
- USDA Forest Service, Northern Research Station, Grand Rapids, Minnesota 55744, United States
| | - Randall K Kolka
- USDA Forest Service, Northern Research Station, Grand Rapids, Minnesota 55744, United States
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Scarborough, Ontario M1C 1A4, Canada
| | - Natalie A Griffiths
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Edward A Nater
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Brandy M Toner
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
36
|
Evidence for methanobactin "Theft" and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. THE ISME JOURNAL 2022; 16:211-220. [PMID: 34290379 PMCID: PMC8692452 DOI: 10.1038/s41396-021-01062-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide-methanobactin-while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs "steal" methanobactin and such "theft" enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.
Collapse
|
37
|
To methanotrophy and beyond! New insight into functional and ecological roles for copper chelators. THE ISME JOURNAL 2022; 16:3-4. [PMID: 34593998 PMCID: PMC8692329 DOI: 10.1038/s41396-021-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
|
38
|
MbnC is not required for the formation of the N-terminal oxazolone in the methanobactin from Methylosinus trichosporium OB3b. Appl Environ Microbiol 2021; 88:e0184121. [PMID: 34731053 PMCID: PMC8788703 DOI: 10.1128/aem.01841-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanobactins (MBs) are ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by methanotrophs for copper uptake. The post-translational modification that define MBs is the formation of two heterocyclic groups with associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB from Methylosinus trichosporium OB3b (MB-OB3b) are oxazolone groups. The precursor gene for MB-OB3b, mbnA, which is part of a gene cluster that contains both annotated and unannotated genes. One of those unannotated genes, mbnC, is found in all MB operons, and in conjunction with mbnB, is reported to be involved in the formation of both heterocyclic groups in all MBs. To determine the function of mbnC, a deletion mutation was constructed in M. trichosporium OB3b, and the MB produced from the ΔmbnC mutant was purified and structurally characterized by UV-visible absorption spectroscopy, mass spectrometry and solution NMR spectroscopy. MB-OB3b from ΔmbnC was missing the C-terminal Met and also found to contain a Pro and a Cys in place of the pyrrolidiny-oxazolone-thioamide group. These results demonstrate MbnC is required for the formation of the C-terminal pyrrolidinyl-oxazolone-thioamide group from the Pro-Cys dipeptide, but not for the formation of the N-terminal 3-methylbutanol-oxazolone-thioamide group from the N-terminal dipeptide Leu-Cys. IMPORTANCE A number of environmental and medical applications have been proposed for MBs, including bioremediation of toxic metals, nanoparticle formation, as well as for the treatment of copper- and iron-related diseases. However, before MBs can be modified and optimized for any specific application, the biosynthetic pathway for MB production must be defined. The discovery that mbnC is involved in the formation of the C-terminal oxazolone group with associated thioamide but not for the formation of the N-terminal oxazolone group with associated thioamide in M. trichosporium OB3b suggests the enzymes responsible for post-translational modification(s) of the two oxazolone groups are not identical.
Collapse
|
39
|
Eckert P, Johs A, Semrau JD, DiSpirito AA, Richardson J, Sarangi R, Herndon E, Gu B, Pierce EM. Spectroscopic and computational investigations of organometallic complexation of group 12 transition metals by methanobactins from Methylocystis sp. SB2. J Inorg Biochem 2021; 223:111496. [PMID: 34271330 PMCID: PMC10569158 DOI: 10.1016/j.jinorgbio.2021.111496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Methanotrophic bacteria catalyze the aerobic oxidation of methane to methanol using Cu-containing enzymes, thereby exerting a modulating influence on the global methane cycle. To facilitate the acquisition of Cu ions, some methanotrophic bacteria secrete small modified peptides known as "methanobactins," which strongly bind Cu and function as an extracellular Cu recruitment relay, analogous to siderophores and Fe. In addition to Cu, methanobactins form complexes with other late transition metals, including the Group 12 transition metals Zn, Cd, and Hg, although the interplay among solution-phase configurations, metal interactions, and the spectroscopic signatures of methanobactin-metal complexes remains ambiguous. In this study, the complexation of Zn, Cd, and Hg by methanobactin from Methylocystis sp. strain SB2 was studied using a combination of absorbance, fluorescence, extended x-ray absorption fine structure (EXAFS) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. We report changes in sample absorbance and fluorescence spectral dynamics, which occur on a wide range of experimental timescales and characterize a clear stoichiometric complexation dependence. Mercury L3-edge EXAFS and TD-DFT calculations suggest a linear model for HgS coordination, and TD-DFT suggests a tetrahedral model for Zn2+ and Cd2+. We observed an enhancement in the fluorescence of methanobactin upon interaction with transition metals and propose a mechanism of complexation-hindered isomerization drawing inspiration from the wild-type Green Fluorescent Protein active site. Collectively, our results represent the first combined computational and experimental spectroscopy study of methanobactins and shed new light on molecular interactions and dynamics that characterize complexes of methanobactins with Group 12 transition metals.
Collapse
Affiliation(s)
- Peter Eckert
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy D Semrau
- Civil & Environmental Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jocelyn Richardson
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Ritimukta Sarangi
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
40
|
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021; 26:4751. [PMID: 34443339 PMCID: PMC8401168 DOI: 10.3390/molecules26164751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of environmental pollution by microorganisms and their enzymes is an innovative and socially acceptable alternative to traditional remediation approaches. Microbial biodegradation is often characterized with high efficiency as this process is catalyzed via degrading enzymes. Various naturally isolated microorganisms were demonstrated to have considerable ability to mitigate many environmental pollutants without external intervention. However, only a small fraction of these strains are studied in detail to reveal the mechanisms at the enzyme level, which strictly limited the enhancement of the degradation efficiency. Accordingly, this review will comprehensively summarize the function of various degrading enzymes with an emphasis on catalytic mechanisms. We also inspect the expanded applications of these pollutant-degrading enzymes in industrial processes. An in-depth understanding of the catalytic mechanism of enzymes will be beneficial for exploring and exploiting more degrading enzyme resources and thus ameliorate concerns associated with the ineffective biodegradation of recalcitrant and xenobiotic contaminants with the help of gene-editing technology and synthetic biology.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Shilei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| |
Collapse
|
41
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
42
|
Eckley CS, Luxton TP, Knightes CD, Shah V. Methylmercury Production and Degradation under Light and Dark Conditions in the Water Column of the Hells Canyon Reservoirs, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1829-1839. [PMID: 33729607 PMCID: PMC8745031 DOI: 10.1002/etc.5041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Methylmercury (MeHg) is a highly toxic form of mercury that can bioaccumulate in fish tissue. Methylmercury is produced by anaerobic bacteria, many of which are also capable of MeHg degradation. In addition, demethylation in surface waters can occur via abiotic sunlight-mediated processes. The goal of the present study was to understand the relative importance of microbial Hg methylation/demethylation and abiotic photodemethylation that govern the mass of MeHg within an aquatic system. The study location was the Hells Canyon complex of 3 reservoirs on the Idaho-Oregon border, USA, that has fish consumption advisories as a result of elevated MeHg concentrations. Our study utilized stable isotope addition experiments to trace MeHg formation and degradation within the water column of the reservoirs to understand the relative importance of these processes on the mass of MeHg using the Water Quality Analysis Simulation Program. The results showed that rates of MeHg production and degradation within the water column were relatively low (<0.07 d-1 ) but sufficient to account for most of the MeHg observed with the system. Most MeHg production within the water column appeared to occur in the spring when much of the water column was in the processes of becoming anoxic. In the surface waters, rates of photodemethylation were relatively large (up to -0.25 d-1 ) but quickly decreased at depths >0.5 m below the surface. These results can be used to identify the relative importance of MeHg processes that can help guide reservoir management decisions. Environ Toxicol Chem 2021;40:1829-1839. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Chris S. Eckley
- US Environmental Protection Agency, Region-10, Seattle, Washington
| | - Todd P. Luxton
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio
| | - Christopher D. Knightes
- Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Vishal Shah
- College of the Sciences and Mathematics, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
43
|
Abstract
Methanobactins (MBs) are small (<1,300-Da) posttranslationally modified copper-binding peptides and represent the extracellular component of a copper acquisition system in some methanotrophs. Interestingly, MBs can bind a range of metal ions, with some being reduced after binding, e.g., Cu2+ reduced to Cu+. Other metal ions, however, are bound but not reduced, e.g., K+. The source of electrons for selective metal ion reduction has been speculated to be water but never empirically shown. Here, using H218O, we show that when MBs from Methylocystis sp. strain SB2 (MB-SB2) and Methylosinus trichosporium OB3b (MB-OB3) were incubated in the presence of either Au3+, Cu2, or Ag+, 18,18O2 and free protons were released. No 18,18O2 production was observed in the presence of either MB-SB2 or MB-OB3b alone, gold alone, copper alone, or silver alone or when K+ or Mo2+ was incubated with MB-SB2. In contrast to MB-OB3b, MB-SB2 binds Fe3+ with an N2S2 coordination and will also reduce Fe3+ to Fe2+. Iron reduction was also found to be coupled to the oxidation of 2H2O and the generation of O2. MB-SB2 will also couple Hg2+, Ni2+, and Co2+ reduction to the oxidation of 2H2O and the generation of O2, but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O2 generated during metal ion reduction by MB could be coupled to methane oxidation, 13CH4 oxidation by Methylosinus trichosporium OB3b was monitored under anoxic conditions. The results demonstrate that O2 generation from metal ion reduction by MB-OB3b can support methane oxidation. IMPORTANCE The discovery that MB will couple the oxidation of H2O to metal ion reduction and the release of O2 suggests that methanotrophs expressing MB may be able to maintain their activity under hypoxic/anoxic conditions through the “self-generation” of dioxygen required for the initial oxidation of methane to methanol. Such an ability may be an important factor in enabling methanotrophs to not only colonize the oxic-anoxic interface where methane concentrations are highest but also tolerate significant temporal fluctuations of this interface. Given that genomic surveys often show evidence of aerobic methanotrophs within anoxic zones, the ability to express MB (and thereby generate dioxygen) may be an important parameter in facilitating their ability to remove methane, a potent greenhouse gas, before it enters the atmosphere.
Collapse
|
44
|
Isaure MP, Albertelli M, Kieffer I, Tucoulou R, Petrel M, Gontier E, Tessier E, Monperrus M, Goñi-Urriza M. Relationship Between Hg Speciation and Hg Methylation/Demethylation Processes in the Sulfate-Reducing Bacterium Pseudodesulfovibrio hydrargyri: Evidences From HERFD-XANES and Nano-XRF. Front Microbiol 2020; 11:584715. [PMID: 33154741 PMCID: PMC7591507 DOI: 10.3389/fmicb.2020.584715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 01/09/2023] Open
Abstract
Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 μM on the production and degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 μM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated βHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 μM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated βHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 μM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.
Collapse
Affiliation(s)
- Marie-Pierre Isaure
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Marine Albertelli
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Isabelle Kieffer
- FAME-UHD, BM16 Beamline, European Synchrotron Radiation Facility (ESRF), BP220, Grenoble, France.,CNRS, IRD, Irstea, Météo France, OSUG, FAME, Université Grenoble Alpes, Grenoble, France
| | - Rémi Tucoulou
- ID16B Beamline, European Synchrotron Radiation Facility (ESRF), BP220, Grenoble, France
| | - Melina Petrel
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Université de Bordeaux, Pôle d'imagerie Électronique, Bordeaux, France
| | - Etienne Gontier
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Université de Bordeaux, Pôle d'imagerie Électronique, Bordeaux, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Anglet, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| |
Collapse
|
45
|
Jung GY, Rhee SK, Han YS, Kim SJ. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms 2020; 8:microorganisms8111719. [PMID: 33147874 PMCID: PMC7716213 DOI: 10.3390/microorganisms8111719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8, is a novel species in the genus Methylocystis. Strain B8 grew in a temperature range of 15 °C to 37 °C (optimum 30–35 °C) and a pH range of 6.5 to 10 (optimum 8.5–9). Methane, methanol, and acetate were used as carbon sources. Hydrogen was produced under oxygen-limited conditions. The assembled genome comprised of 3.39 Mbp and 59.9 mol% G + C content. The genome contained two types of particulate methane monooxygenases (pMMO) for low-affinity methane oxidation (pMMO1) and high-affinity methane oxidation (pMMO2). It was revealed that strain B8 might survive atmospheric methane concentration. Furthermore, the genome had various genes for hydrogenase, nitrogen fixation, polyhydroxybutyrate synthesis, and heavy metal resistance. This metabolic versatility of strain B8 might enable its survival in wetland environments.
Collapse
Affiliation(s)
- Gi-Yong Jung
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Young-Soo Han
- Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3311; Fax: +82-42-868-3414
| |
Collapse
|
46
|
Avdeeva LV, Gvozdev RI. Oxidation of L-Ascorbic Acid in the Presence of the Copper-Binding Compound from Methanotrophic Bacteria Methylococcus capsulatus (M). Biomimetics (Basel) 2020; 5:biomimetics5040048. [PMID: 33049942 PMCID: PMC7709488 DOI: 10.3390/biomimetics5040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
The oxidation of ascorbic acid by air oxygen and hydrogen peroxide in the presence of the copper-binding compound (cbc) from bacteria Methylococcus capsulatus (M) was studied. The rate constant of ascorbic acid oxidation by air oxygen in the presence of the copper complex with cbc from M. capsulatus (M) was shown to be 1.5 times higher than that of the noncatalytic reaction. The rate constant of ascorbic acid oxidation by hydrogen peroxide in the presence of the copper complex with cbc from M. capsulatus (M) decreased by almost one-third compared to the reaction in the absence of the copper complex with cbc. It was assumed that cbc can be involved in a multilevel system of antioxidant protection and can protect a bacterial cell from oxidation stress. Thus, the cbc is mimetic ascorbate oxidase in the oxidation of ascorbic acid by molecular oxygen.
Collapse
|
47
|
Tang Z, Fan F, Deng S, Wang D. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110950. [PMID: 32800226 DOI: 10.1016/j.ecoenv.2020.110950] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to methylmercury (MeHg) through rice consumption is raising health concerns. It has long been recognized that MeHg found in rice grain predominately originated from paddy soil. Anaerobic conditions in paddy fields promote Hg methylation, potentially leading to high MeHg concentrations in rice grain. Understanding the transformation and migration of Hg in the rice paddy system, as well as the effects of farming activities, are keys to assessing risks and developing potential mitigation strategies. Therefore, this review examines the current state of knowledge on: 1) sources of Hg in paddy fields; 2) how MeHg and inorganic Hg (IHg) are transformed (including abiotic and biotic processes); 3) how IHg and MeHg enter and translocate in rice plants; and 4) how regular farming activities (including the application of fertilizer, cultivation methods, choice of cultivar), affect Hg cycling in the paddy field system. Current issues and controversies on Hg transformation and migration in the paddy field system are also discussed.
Collapse
Affiliation(s)
- Zhenya Tang
- Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
| | - Fangling Fan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China.
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
48
|
Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett 2020; 367:5804726. [PMID: 32166327 DOI: 10.1093/femsle/fnaa045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic methane-oxidizing bacteria of the Alphaproteobacteria have been found to express a novel ribosomally synthesized post-translationally modified polypeptide (RiPP) termed methanobactin (MB). The primary function of MB in these microbes appears to be for copper uptake, but MB has been shown to have multiple capabilities, including oxidase, superoxide dismutase and hydrogen peroxide reductase activities, the ability to detoxify mercury species, as well as acting as an antimicrobial agent. Herein, we describe the diversity of known MBs as well as the genetics underlying MB biosynthesis. We further propose based on bioinformatics analyses that some methanotrophs may produce novel forms of MB that have yet to be characterized. We also discuss recent findings documenting that MBs play an important role in controlling copper availability to the broader microbial community, and as a result can strongly affect the activity of microbes that require copper for important enzymatic transformations, e.g. conversion of nitrous oxide to dinitrogen. Finally, we describe procedures for the detection/purification of MB, as well as potential medical and industrial applications of this intriguing RiPP.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | | | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| |
Collapse
|
49
|
Zhou XQ, Hao YY, Gu B, Feng J, Liu YR, Huang Q. Microbial Communities Associated with Methylmercury Degradation in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7952-7960. [PMID: 32437137 DOI: 10.1021/acs.est.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioaccumulation of the neurotoxin methylmercury (MeHg) in rice has raised worldwide concerns because of its risks to human health. Certain microorganisms are able to degrade MeHg in pure cultures, but the roles and diversities of the microbial communities in MeHg degradation in rice paddy soils are unknown. Using a series of microcosms, we investigated MeHg degradation in paddy soils from Hunan, Guizhou, and Hubei provinces, representing three major rice production regions in China, and further characterized one of the soils from the Hunan Province for microbial communities associated with MeHg degradation. Microbial demethylation was observed in all three soils, demonstrated by significantly more MeHg degraded in the unsterilized soils than in the sterilized controls. More demethylation occurred in water-saturated soils than in unsaturated soils, but the addition of molybdate and bromoethanesulfonic acid as the respective inhibitors of sulfate reducing bacteria and methanogens showed insignificant effects on MeHg degradation. However, the addition of Cu enhanced MeHg degradation and the enrichment of Xanthomonadaceae in the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses of the Hunan soil consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing MeHg degradation in the paddy soil, and they were confirmed by combined analyses of the co-occurrence network, random forest modeling, and linear discriminant analysis of the effect size. Our results shed additional light onto the roles of microbial communities in MeHg degradation in paddy soils and its subsequent bioaccumulation in rice grains.
Collapse
Affiliation(s)
- Xin-Quan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun-Yun Hao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| |
Collapse
|
50
|
Azaroff A, Goñi Urriza M, Gassie C, Monperrus M, Guyoneaud R. Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114333. [PMID: 32443198 DOI: 10.1016/j.envpol.2020.114333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms' (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
Collapse
Affiliation(s)
- Alyssa Azaroff
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Marisol Goñi Urriza
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France
| | - Claire Gassie
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France
| | - Mathilde Monperrus
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Rémy Guyoneaud
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France.
| |
Collapse
|