1
|
Sahebi K, Arianejad M, Azadi S, Hosseinpour-Soleimani F, Kazemi R, Tajbakhsh A, Negahdaripour M. The interplay between gut microbiome, epigenetics, and substance use disorders: from molecular to clinical perspectives. Eur J Pharmacol 2025; 998:177630. [PMID: 40252900 DOI: 10.1016/j.ejphar.2025.177630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Substance use disorders (SUDs) involve a complex series of central and peripheral pathologies, leading to impairments in cognitive, behavioral, and physiological processes. Emerging evidence indicates a more significant role for the microbiome-gut-brain axis (MGBA) in SUDs than previously recognized. The MGBA is interconnected with various body systems by producing numerous metabolites, most importantly short-chain fatty acids (SCFAs), cytokines, and neurotransmitters. These mediators influence the human body's epigenome and transcriptome. While numerous epigenetic alterations in different brain regions have been reported in SUD models, the intricate relationship between SUDs and the MGBA suggests that the gut microbiome may partially contribute to the underlying mechanisms of SUDs. Promising results have been observed with gut microbiome-directed interventions in patients with SUDs, including prebiotics, probiotics, antibiotics, and fecal microbiota transplantation. Nonetheless, the long-term epigenetic effects of these interventions remain unexplored. Moreover, various confounding factors and study limitations have hindered the identification of molecular mechanisms and clinical applications of gut microbiome interventions in SUDs. In the present review, we will (i) provide a comprehensive discussion on how the gut microbiome influences SUDs, with an emphasis on epigenetic alterations; (ii) discuss the current evidence on the bidirectional relationship of gut microbiome and SUDs, highlighting potential targets for intervention; and (iii) review recent advances in gut microbiome-directed therapies, along with their limitations and future directions.
Collapse
Affiliation(s)
- Keivan Sahebi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Arianejad
- Department of Molecular Medicine, School of Advanced Technologies of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Radmehr Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Xu L, Zhou R, Zhong J, Huang Y, Zhu Y, Xu W. Social hierarchy modulates drug reinforcement and protein phosphorylation in the nucleus accumbens. Front Pharmacol 2025; 16:1537131. [PMID: 40290427 PMCID: PMC12022441 DOI: 10.3389/fphar.2025.1537131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Drug reinforcement, a form of behavioral plasticity in which behavioral changes happen in response to a reinforcing drug, would finally lead to drug addiction after chronical drug exposure. Drug reinforcement is affected by genetic and environmental factors. Social hierarchy has been reported to regulate drug reinforcement and drug-seeking behaviors, but the underlying molecular mechanism is almost unknown. Methods We take advantage of the tube test to assess the social hierarchy between two co-housed rats. And then, we investigated the drug reinforcement between dominant and subordinate rats via conditioned place preference (CPP). Then we adopted 4-D label-free mass spectrometry to explore the complex phosphoproteome in the nucleus accumbens (NAc) between dominant and subordinate rats. Functional enrichment, protein-protein, motif analysis and kinase prediction interaction analysis were used to investigate the mechanism between substance use disorder and social hierarchy. Specifically, we identified histone deacetylase 4 (HDAC4) which has been previously shown to play critical roles in drug addiction as a key node protein by phosbind-SDS. Finally, we forcibly altered the social hierarchy of rats through behavioral training, follow by which we accessed the HDAC4 phosphorylation levels and drug reinforcement. Results In this study, we found that methamphetamine exhibited stronger reinforcement in the subordinate rats. We identified 660 sites differing between dominant and subordinate rats via 4-D label-free mass spectrometry. Functional enrichment and protein-protein interaction analysis revealed that synaptic remodeling related pathways and substance use disorder related pathway are significantly characterized by social hierarchy. Motif analysis and kinase prediction showed that CaMKIIδ and its downstream proteins maybe the central hub. Phosbind-SDS revealed that higher HDAC4 phosphorylation levels in dominants. After the social hierarchy of rats were forcibly altered by behavioral training, the differences in HDAC4 phosphorylation levels induced by social hierarchy were eliminated, correspondingly the drug reinforcement is also reversed between the two group rats. Discussion In conclusion, our research proves that protein phosphorylation in the NAc may be a vital link between social hierarchy and drug reinforcement.
Collapse
Affiliation(s)
- Liang Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruiyi Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiafeng Zhong
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingjie Zhu
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Xu
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Allen MI, Nader MA. Animal models of cocaine use: importance of social context and co-use. Trends Pharmacol Sci 2025; 46:220-230. [PMID: 39875301 PMCID: PMC11890930 DOI: 10.1016/j.tips.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Cocaine-use disorders (CUDs) continue to be a major public health problem that requires effective treatments. Despite decades of preclinical research, there are no FDA-approved pharmacotherapies for cocaine use. While there are numerous potential reasons why no efficacious treatments have been identified or approved for cocaine use, we discuss two possible reasons in this review: the low number of studies incorporating social variables and the overlooking of the clinical reality of polysubstance use. These variables impact drug use across the substance-use cycle, including vulnerability, maintenance, and treatment. Recent preclinical and clinical data suggest that cocaine users who engage in polysubstance use should be viewed as a distinct and more prevalent population who require unique behavioral and pharmacological approaches to reduce cocaine use. Therefore, to understand the neurobiology and eventual treatments for CUDs, both variables should be included in animal models.
Collapse
Affiliation(s)
- Mia I Allen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
4
|
Wood DJ, Tsvetkov E, Comte-Walters S, Welsh CL, Bloyd M, Wood TG, Akiki RM, Anderson EM, Penrod RD, Madan LK, Ball LE, Taniguchi M, Cowan CW. Epigenetic Control of an Auxiliary Subunit of Voltage-Gated Sodium Channels Regulates the Strength of Drug-Cue Associations and Relapse-Like Cocaine Seeking. Biol Psychiatry 2025:S0006-3223(25)00075-7. [PMID: 39923817 DOI: 10.1016/j.biopsych.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Repeated use of addictive drugs produces long-lasting and prepotent drug-cue associations that increase vulnerability for relapse in individuals with a substance use disorder. Epigenetic factors, such as HDAC5 (histone deacetylase 5), play a key role in regulating the formation of drug-cue associations, but the underlying mechanisms remain unclear. METHODS We used a combination of molecular biology, cultured cells, tandem mass spectrometry, deacetylase activity measurements, co-immunoprecipitation, and molecular dynamics simulations to assess HDAC5 structure-activity relationships. In male and female Long Evans rats, we used viral-mediated expression of HDAC5 mutants in the nucleus accumbens (NAc) to test effects on cocaine intravenous self-administration and cue-reinstated cocaine seeking. We also used in silico analysis of single-nucleus RNA sequencing data, quantitative reverse transcriptase-polymerase chain reaction, viral-mediated expression of Scn4b short hairpin RNA, patch-clamp electrophysiology, and rat cocaine or sucrose SA to assess Scn4b's effects on NAc intrinsic excitability and cued reward seeking. RESULTS We discovered that 2 conserved cysteines located near HDAC5's catalytic domain were required for its intrinsic deacetylase activity and that HDAC5's deacetylase activity was required in NAc medium spiny neurons (MSNs) to limit relapse-like cue-reinstated cocaine seeking. Moreover, we found that HDAC5 limited cocaine-seeking, but not sucrose-seeking, behavior by reducing NAc MSN intrinsic excitability through the deacetylase-dependent repression of Scn4b, which codes for an auxiliary subunit of voltage-gated sodium channels. CONCLUSIONS Our findings suggest that HDAC5's control of NAc Scn4b expression governs the formation of cocaine-cue, but not sucrose-cue, associations through modulation of NAc MSN intrinsic excitability and drug-induced NAc plasticity mechanisms.
Collapse
Affiliation(s)
- Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Susana Comte-Walters
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Colin L Welsh
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Michelle Bloyd
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Timothy G Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Ethan M Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Lalima K Madan
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren E Ball
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
5
|
Xu S, Huang CH, Eyermann C, Georgakis GV, Turkman N. Design and radiosynthesis of class-IIa HDAC inhibitor with high molar activity via repositioning the 18F-radiolabel. Sci Rep 2024; 14:15100. [PMID: 38956204 PMCID: PMC11219833 DOI: 10.1038/s41598-024-65668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.
Collapse
Affiliation(s)
- Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher Eyermann
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA.
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Long ZJ, Wang JD, Qiu SX, Zhang Y, Wu SJ, Lei XX, Huang ZW, Chen JJ, Yang YL, Zhang XZ, Liu Q. Dietary γ-mangostin triggers immunogenic cell death and activates cGAS signaling in acute myeloid leukemia. Pharmacol Res 2023; 197:106973. [PMID: 37898441 DOI: 10.1016/j.phrs.2023.106973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Immunogenic cell death (ICD), one of cell-death types through release of damage-associated molecular patterns from dying tumor cells, activates tumor-specific immune response and elicits anti-tumor immunity by traditional radiotherapy and chemotherapy. However, whether natural products could induce ICD in leukemia is not elucidated. Here, we report dietary γ-mangostin eradicates murine primary leukemic cells and prolongs the survival of leukemic mice. As well, it restrains primary leukemic cells and CD34+ leukemic progenitor cells from leukemia patients. Strikingly, γ-mangostin attenuates leukemic cells by inducing ICD as characterized by expression of HSP90B1, ANXA1 and IL1B. Additionally, γ-mangostin accelerates cytoplasmic chromatin fragments generation, promoting DNA damage response, and enhances cGAS activation, leading to up-regulation of chemokines. Meanwhile, it induces HDAC4 degradation and acetylated histone H3 accumulation, which promotes chemokines transcription. Ultimately, CD8+ T cell is activated and recruited by γ-mangostin-induced chemokines in the microenvironment. Our study identifies γ-mangostin triggers ICD and activates cGAS signaling through DNA damage response and epigenetic modification. Therefore, dietary γ-mangostin would act as a potential agent to provoke anti-tumor immunity in the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Sheng-Xiang Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, China
| | - Yi Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Jia-Jie Chen
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Yong-Liang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China.
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| |
Collapse
|
7
|
Requena-Ocaña N, Flores-López M, García-Marchena N, Pavón-Morón FJ, Pedraza C, Wallace A, Castilla-Ortega E, Rodríguez de Fonseca F, Serrano A, Araos P. Plasma Lysophosphatidic Acid Concentrations in Sex Differences and Psychiatric Comorbidity in Patients with Cocaine Use Disorder. Int J Mol Sci 2023; 24:15586. [PMID: 37958570 PMCID: PMC10649657 DOI: 10.3390/ijms242115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
We have recently reported sex differences in the plasma concentrations of lysophosphatidic acid (LPA) and alterations in LPA species in patients with alcohol and cocaine use disorders. Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in anxiogenic responses and drug addiction. To further explore the potential role of the LPA signaling system in sex differences and psychiatric comorbidity in cocaine use disorder (CUD), we conducted a cross-sectional study with 88 patients diagnosed with CUD in outpatient treatment and 60 healthy controls. Plasma concentrations of total LPA and LPA species (16:0, 18:0, 18:1, 18:2 and 20:4) were quantified and correlated with cortisol and tryptophan metabolites [tryptophan (TRP), serotonin (5-HT), kynurenine (KYN), quinolinic acid (QUIN) and kynurenic acid (KYNA)]. We found sexual dimorphism for the total LPA and most LPA species in the control and CUD groups. The total LPA and LPA species were not altered in CUD patients compared to the controls. There was a significant correlation between 18:2 LPA and age at CUD diagnosis (years) in the total sample, but total LPA, 16:0 LPA and 18:2 LPA correlated with age at onset of CUD in male patients. Women with CUD had more comorbid anxiety and eating disorders, whereas men had more cannabis use disorders. Total LPA, 18:0 LPA and 20:4 LPA were significantly decreased in CUD patients with anxiety disorders. Both 20:4 LPA and total LPA were significantly higher in women without anxiety disorders compared to men with and without anxiety disorders. Total LPA and 16:0 LPA were significantly decreased in CUD patients with childhood ADHD. Both 18:1 LPA and 20:4 LPA were significantly augmented in CUD patients with personality disorders. KYNA significantly correlated with total LPA, 16:0 LPA and 18:2 LPA species, while TRP correlated with the 18:1 LPA species. Our results demonstrate that LPA signaling is affected by sex and psychiatric comorbidity in CUD patients, playing an essential role in mediating their anxiety symptoms.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nuria García-Marchena
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Agustín Wallace
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| |
Collapse
|
8
|
Wang L, Liu L, Han C, Jiang H, Ma K, Guo S, Xia Y, Wan F, Huang J, Xiong N, Wang T. Histone Deacetylase 4 Inhibition Reduces Rotenone-Induced Alpha-Synuclein Accumulation via Autophagy in SH-SY5Y Cells. Brain Sci 2023; 13:brainsci13040670. [PMID: 37190635 DOI: 10.3390/brainsci13040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Parkinson's disease (PD) is the most common movement disorder. Imbalanced protein homeostasis and α-syn aggregation are involved in PD pathogenesis. Autophagy is related to the occurrence and development of PD and can be regulated by histone deacetylases (HDACs). Various inhibitors of HDACs exert neuroprotective effects within in vitro and in vivo models of PD. HDAC4, a class Ⅱ HDAC, colocalizes with α-synuclein and ubiquitin in Lewy bodies and also accumulates in the nuclei of dopaminergic neurons in PD models. (2) Methods: In the present study, the gene expression profile of HDACs from two previously reported datasets in the GEO database was analyzed, and the RNA levels of HDAC4 in brain tissues were compared between PD patients and healthy controls. In vitro, SH-SY5Y cells transfected with HDAC4 shRNA or pretreated with mc1568 were treated with 1 μM of rotenone for 24 h. Then, the levels of α-syn, LC3, and p62 were detected using Western blot analysis and immunofluorescent staining, and cell viabilities were detected using Cell Counting Kit-8 (CCK-8). (3) Results: HDAC4 was highly expressed in PD substantia nigra and locus coeruleus. Mc1568, an inhibitor of HDAC4, decreased α-synuclein levels in rotenone-treated SH-SY5Y cells in a concentration-dependent manner and activated autophagy, which was impaired by rotenone. The knockdown of HDAC4 reversed rotenone-induced α-syn accumulation in SH-SY5Y cells and protected the neurons by enhancing autophagy. (4) Conclusions: HDAC4 is a potential therapeutic target for PD. The inhibition of HDAC4 by mc1568 or a gene block can reduce α-syn levels by regulating the autophagy process in PD. Mc1568 is a promising therapeutic agent for PD and other disorders related to α-syn accumulation.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Anderson EM, Tsvetkov E, Galante A, DeVries D, McCue LM, Wood D, Barry S, Berto S, Lavin A, Taniguchi M, Cowan CW. Epigenetic function during heroin self-administration controls future relapse-associated behavior in a cell type-specific manner. Proc Natl Acad Sci U S A 2023; 120:e2210953120. [PMID: 36745812 PMCID: PMC9963300 DOI: 10.1073/pnas.2210953120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Allison Galante
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Derek DeVries
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Lauren M. McCue
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Daniel Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Sarah Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| |
Collapse
|
10
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications. Front Mol Biosci 2023; 10:1116660. [PMID: 36762207 PMCID: PMC9902726 DOI: 10.3389/fmolb.2023.1116660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Controlling access to genomic information and maintaining its stability are key aspects of cell life. Histone acetylation is a reversible epigenetic modification that allows access to DNA and the assembly of protein complexes that regulate mainly transcription but also other activities. Enzymes known as histone deacetylases (HDACs) are involved in the removal of the acetyl-group or in some cases of small hydrophobic moieties from histones but also from the non-histone substrate. The main achievement of HDACs on histones is to repress transcription and promote the formation of more compact chromatin. There are 18 different HDACs encoded in the human genome. Here we will discuss HDAC4, a member of the class IIa family, and its possible contribution to cancer development.
Collapse
Affiliation(s)
- Emma Cuttini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Camilla Goi
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Ester Pellarin
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Riccardo Vida
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy,Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy,*Correspondence: Claudio Brancolini,
| |
Collapse
|
12
|
Chen Y, Wang G, Zhang W, Han Y, Zhang L, Xu H, Meng S, Lu L, Xue Y, Shi J. An orbitofrontal cortex-anterior insular cortex circuit gates compulsive cocaine use. SCIENCE ADVANCES 2022; 8:eabq5745. [PMID: 36563158 PMCID: PMC9788779 DOI: 10.1126/sciadv.abq5745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/23/2022] [Indexed: 06/01/2023]
Abstract
Compulsive drug use, a cardinal symptom of drug addiction, is characterized by persistent substance use despite adverse consequences. However, little is known about the neural circuit mechanisms behind this behavior. Using a footshock-punished cocaine self-administration procedure, we found individual variability of rats in the process of drug addiction, and rats with compulsive cocaine use presented increased neural activity of the anterior insular cortex (aIC) compared with noncompulsive rats. Chemogenetic manipulating activity of aIC neurons, especially aIC glutamatergic neurons, bidirectionally regulated compulsive cocaine intake. Furthermore, the aIC received inputs from the orbitofrontal cortex (OFC), and the OFC-aIC circuit was enhanced in rats with compulsive cocaine use. Suppression of the OFC-aIC circuit switched rats from punishment resistance to sensitivity, while potentiation of this circuit increased compulsive cocaine use. In conclusion, our results found that aIC glutamatergic neurons and the OFC-aIC circuit gated the shift from controlled to compulsive cocaine use, which could serve as potential therapeutic targets for drug addiction.
Collapse
Affiliation(s)
- Yang Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guibin Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hubo Xu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Perrine SA, Alsharif WF, Harutyunyan A, Kamal S, Viola NT, Gelovani JG. Low- and high-cocaine intake affects the spatial and temporal dynamics of class IIa HDAC expression-activity in the nucleus accumbens and hippocampus of male rats as measured by [18F]TFAHA PET/CT neuroimaging. ADDICTION NEUROSCIENCE 2022; 4:100046. [PMID: 36540409 PMCID: PMC9762729 DOI: 10.1016/j.addicn.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.
Collapse
Affiliation(s)
- Shane A. Perrine
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
- Research Services, John D. Dingell VAMC, Detroit, MI, USA
| | | | - Arman Harutyunyan
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
| | - Swatabdi Kamal
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Nerissa T. Viola
- Oncology, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Juri G. Gelovani
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
14
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
15
|
Anderson EM, Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front Mol Neurosci 2022; 15:828055. [PMID: 35813068 PMCID: PMC9260254 DOI: 10.3389/fnmol.2022.828055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Substance use induces long-lasting behavioral changes and drug craving. Increasing evidence suggests that epigenetic gene regulation contributes to the development and expression of these long-lasting behavioral alterations. Here we systematically review extensive evidence from rodent models of drug-induced changes in epigenetic regulation and epigenetic regulator proteins. We focus on histone acetylation and histone methylation in a brain region important for drug-related behaviors: the nucleus accumbens. We also discuss how experimentally altering these epigenetic regulators via systemically administered compounds or nucleus accumbens-specific manipulations demonstrate the importance of these proteins in the behavioral effects of drugs and suggest potential therapeutic value to treat people with substance use disorder. Finally, we discuss limitations and future directions for the field of epigenetic studies in the behavioral effects of addictive drugs and suggest how to use these insights to develop efficacious treatments.
Collapse
|
16
|
Sex Differences in Psychostimulant Abuse: Implications for Estrogen Receptors and Histone Deacetylases. Genes (Basel) 2022; 13:genes13050892. [PMID: 35627277 PMCID: PMC9140379 DOI: 10.3390/genes13050892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Substance abuse is a chronic pathological disorder that negatively affects many health and neurological processes. A growing body of literature has revealed gender differences in substance use. Compared to men, women display distinct drug-use phenotypes accompanied by recovery and rehabilitation disparities. These observations have led to the notion that sex-dependent susceptibilities exist along the progression to addiction. Within this scope, neuroadaptations following psychostimulant exposure are thought to be distinct for each sex. This review summarizes clinical findings and animal research reporting sex differences in the subjective and behavioral responses to cocaine, methamphetamine, and nicotine. This discussion is followed by an examination of epigenetic and molecular alterations implicated in the addiction process. Special consideration is given to histone deacetylases and estrogen receptor-mediated gene expression.
Collapse
|
17
|
Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, O'Keeffe GW. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson's disease. Brain Behav Immun 2022; 102:151-160. [PMID: 35217173 DOI: 10.1016/j.bbi.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by nigrostriatal dopaminergic (DA) neurodegeneration. There is a critical need for neuroprotective therapies, particularly those that do not require direct intracranial administration. Small molecule inhibitors of histone deacetylases (HDIs) are neuroprotective in in vitro and in vivo models of PD, however it is unknown whether Class IIa-specific HDIs are neuroprotective when administered peripherally. Here we show that 6-hydroxydopamine (6-OHDA) treatment induces protein kinase C (PKC)-dependent nuclear accumulation of the Class IIa histone deacetylase (HDAC)5 in SH-SY5Y cells and cultured DA neurons in vitro. Treatment of these cultures with the Class IIa-specific HDI, MC1568, partially protected against 6-OHDA-induced cell death. In the intrastriatal 6-OHDA lesion in vivo rat model of PD, MC1568 treatment (0.5 mg/kg i.p.) for 7 days reduced forelimb akinesia and partially protected DA neurons in the substantia nigra and their striatal terminals from 6-OHDA-induced neurodegeneration. MC1568 treatment prevented 6-OHDA-induced increases in microglial activation in the striatum and substantia nigra. Furthermore, MC1568 treatment decreased 6-OHDA-induced increases in nuclear HDAC5 in nigral DA neurons. These data suggest that peripheral administration of Class IIa-specific HDIs may be a potential therapy for neuroprotective in PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Tara Foley
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
18
|
Chen Y, Wang X, Xiao M, Kang N, Zeng W, Zhang J. Prenatal morphine exposure increases gamma oscillation and theta coherence in the rat reward system. Neurotoxicology 2022; 90:246-255. [DOI: 10.1016/j.neuro.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
19
|
Schleimer JP, Smith N, Zaninovic V, Keyes KM, Castillo-Carniglia A, Rivera-Aguirre A, Cerdá M. Trends in the sequence of initiation of alcohol, tobacco, and marijuana use among adolescents in Argentina and Chile from 2001 to 2017. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2022; 100:103494. [PMID: 34666217 DOI: 10.1016/j.drugpo.2021.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Variation in drug policies, norms, and substance use over time and across countries may affect the normative sequences of adolescent substance use initiation. We estimated relative and absolute time-varying associations between prior alcohol and tobacco use and adolescent marijuana initiation in Argentina and Chile. Relative measures quantify the magnitude of the associations, whereas absolute measures quantify excess risk. METHODS We analyzed repeated, cross-sectional survey data from the National Surveys on Drug Use Among Secondary School Students in Argentina (2001-2014) and Chile (2001-2017). Participants included 8th, 10th, and 12th grade students (N = 680,156). Linear regression models described trends over time in the average age of first use of alcohol, tobacco, and marijuana. Logistic regression models were used to estimate time-varying risk ratios and risk differences of the associations between prior alcohol and tobacco use and current-year marijuana initiation. RESULTS Average age of marijuana initiation increased and then decreased in Argentina and declined in Chile. In both countries, the relative associations between prior tobacco use and marijuana initiation weakened amid declining rates of tobacco use; e.g., in Argentina, the risk ratio was 19.9 (95% CI: 9.0-30.8) in 2001 and 11.6 (95% CI: 9.0-13.2) in 2014. The relative association between prior alcohol use and marijuana initiation weakened Chile, but not in Argentina. On the contrary, risk differences (RD) increased substantially across both relationships and countries, e.g., in Argentina, the RD for tobacco was 3% (95% CI: 0.02-0.03) in 2001 and 12% (95% CI: 0.11-0.13) in 2014. CONCLUSION Diverging trends in risk ratios and risk differences highlight the utility of examining multiple measures of association. Variation in the strength of the associations over time and place suggests the influence of environmental factors. Increasing risk differences indicate alcohol and tobacco use may be important targets for interventions to reduce adolescent marijuana use.
Collapse
Affiliation(s)
- Julia P Schleimer
- Violence Prevention Research Program, Department of Emergency Medicine, University of California, Davis School of Medicine, 2315 Stockton Blvd., Sacramento, CA 95817, USA.
| | - Nathan Smith
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - ViniNatalie Zaninovic
- Silver School of Social Work, New York University, 1 Washington Square N, New York, NY 10003, USA
| | - Katherine M Keyes
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St. NY, NY 10032, New York, NY, USA
| | - Alvaro Castillo-Carniglia
- Society and Health Research Center, Universidad Mayor, Badajoz 130, Las Condes, Santiago, Chile; School of Public Health, Universidad Mayor, Jose Toribio Medina #38, Santiago, Chile; Department of Population Health, New York University Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA
| | - Ariadne Rivera-Aguirre
- Department of Population Health, New York University Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA
| | - Magdalena Cerdá
- Department of Population Health, New York University Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA
| |
Collapse
|
20
|
Requena-Ocaña N, Flores-Lopez M, Martín AS, García-Marchena N, Pedraz M, Ruiz JJ, Serrano A, Suarez J, Pavón FJ, de Fonseca FR, Araos P. Influence of gender and education on cocaine users in an outpatient cohort in Spain. Sci Rep 2021; 11:20928. [PMID: 34686732 PMCID: PMC8536710 DOI: 10.1038/s41598-021-00472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Gender significantly influences sociodemographic, medical, psychiatric and addiction variables in cocaine outpatients. Educational level may be a protective factor showing less severe addictive disorders, longer abstinence periods, and better cognitive performance. The aim was to estimate gender-based differences and the influence of educational level on the clinical variables associated with cocaine use disorder (CUD). A total of 300 cocaine-consuming patients undergoing treatments were recruited and assessed using the Psychiatric Research Interview for Substance and Mental Diseases according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Women developed CUD later but exhibited more consumption of anxiolytics, prevalence of anxiety disorders, eating disorders, and major depressive disorders. Alcohol and cannabis use disorders were more frequent in men. A predictive model was created and identified three psychiatric variables with good prognosis for distinguishing between women and men. Principal component analysis helped to describe the different profile types of men and women who had sought treatment. Low educational levels seemed to be a risk factor for the onset, development, and duration of CUD in both genders. Women and men exhibited different clinical characteristics that should be taken into account when designing therapeutic policies. The educational level plays a protective/risk role in the onset, development and progression of CUD, thus prolonging the years of compulsory education and implementing cognitive rehabilitation programmes could be useful.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Campus de Somosaguas, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Flores-Lopez
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Alicia San Martín
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Campus de Somosaguas, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Nuria García-Marchena
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Institut D, Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Unidad de Adicciones-Servicio de Medicina Interna, Campus Can Ruti, Carrer del Canyet s/n, 08916, Badalona, Spain
| | - María Pedraz
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Juan Jesús Ruiz
- Centro Provincial de Drogodependencias (CPD) de Málaga, Diputación de Málaga, C/Ana Solo de Zaldívar, no 3, 29010, Málaga, Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Juan Suarez
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Department of Anatomy, Legal Medicine and History of Science, School of Medicine, University of Malaga, Boulevard Louis Pasteur 32, 29071, Málaga, Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, Planta 5ª-Sección Central, Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
| | - Pedro Araos
- Laboratorio de Medicina Regenerativa (LMR), Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain. .,Departamento de Psicobiología y Metdología de las CC del Comportamiento, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| |
Collapse
|
21
|
Cho H, Son WC, Lee YS, Youn EJ, Kang CD, Park YS, Bae J. Differential Effects of Histone Deacetylases on the Expression of NKG2D Ligands and NK Cell-Mediated Anticancer Immunity in Lung Cancer Cells. Molecules 2021; 26:molecules26133952. [PMID: 34203519 PMCID: PMC8271929 DOI: 10.3390/molecules26133952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Histone acetylation is an epigenetic mechanism that regulates the expression of various genes, such as natural killer group 2, member D (NKG2D) ligands. These NKG2D ligands are the key molecules that activate immune cells expressing the NKG2D receptor. It has been observed that cancer cells overexpress histone deacetylases (HDACs) and show reduced acetylation of nuclear histones. Furthermore, HDAC inhibitors are known to upregulate the expression of NKG2D ligands. Humans have 18 known HDAC enzymes that are divided into four classes. At present, it is not clear which types of HDAC are involved in the expression of NKG2D ligands. We hypothesized that specific types of HDAC genes might be responsible for altering the expression of NKG2D ligands. In this study, we monitored the expression of NKG2D ligands and major histocompatibility complex (MHC) class I molecules in lung cancer cells which were treated with six selective HDAC inhibitors and specific small interfering RNAs (siRNAs). We observed that treatment with FK228, which is a selective HDAC1/2 inhibitor, also known as Romidepsin, induced NKG2D ligand expression at the transcriptional and proteomic levels in two different lung cancer cell lines. It also caused an increase in the susceptibility of NCI-H23 cells to NK cells. Silencing HDAC1 or HDAC2 using specific siRNAs increased NKG2D ligand expression. In conclusion, it appears that HDAC1 and HDAC2 might be the key molecules regulating the expression of NKG2D ligands. These results imply that specifically inhibiting HDAC1 and HDAC2 could induce the expression of NKG2D ligands and improve the NK cell-mediated anti-cancer immunity.
Collapse
Affiliation(s)
- Haeryung Cho
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 50612, Korea; (H.C.); (Y.-S.L.); (E.J.Y.); (C.-D.K.)
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Gijang, Busan 46033, Korea;
| | - Young-Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 50612, Korea; (H.C.); (Y.-S.L.); (E.J.Y.); (C.-D.K.)
| | - Eun Jung Youn
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 50612, Korea; (H.C.); (Y.-S.L.); (E.J.Y.); (C.-D.K.)
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 50612, Korea; (H.C.); (Y.-S.L.); (E.J.Y.); (C.-D.K.)
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Gijang, Busan 46033, Korea;
- Correspondence: (Y.-S.P.); (J.B.); Tel.: +82-51-720-5114(Y.-S.P.); +82-51-510-8085 (J.B.); Fax: +82-51-510-8086 (J.B.)
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 50612, Korea; (H.C.); (Y.-S.L.); (E.J.Y.); (C.-D.K.)
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Korea
- Correspondence: (Y.-S.P.); (J.B.); Tel.: +82-51-720-5114(Y.-S.P.); +82-51-510-8085 (J.B.); Fax: +82-51-510-8086 (J.B.)
| |
Collapse
|
22
|
Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. Sci Rep 2021; 11:10668. [PMID: 34021207 PMCID: PMC8139947 DOI: 10.1038/s41598-021-90069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Small molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.
Collapse
|
23
|
Xu S, Koo JW, Kang UG. Comparison of the sensitizing effects of cocaine and ethanol on histone deacetylase isoforms in the rat brain. Neuroreport 2021; 32:423-430. [PMID: 33788811 DOI: 10.1097/wnr.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization, an animal model of drug addiction, persists for a prolonged period after repeated exposure to drugs of abuse. The persistence of an addiction behavioral phenotype suggests long-lasting changes in gene regulation at the epigenetic level. We measured the expression of histone deacetylases (HDACs) isoforms in the prefrontal cortex and dorsal striatum following the development of sensitization to cocaine (15 mg/kg, administered five times) and ethanol (0.5 g/kg, administered 15 times) to investigate the epigenetic changes that mediate sensitization. Animals sensitized to ethanol exhibited augmented locomotor activity in response to the cocaine challenge. Similarly, those sensitized to cocaine exhibited increased locomotor activity in response to an ethanol challenge. These findings indicate cross-sensitization between ethanol and cocaine and suggest that a common molecular mechanism underlying the cross-sensitization. In animals sensitized to cocaine or ethanol, mRNA levels of class II HDACs (HDAC4 and HDAC5) were decreased in the prefrontal cortex and dorsal striatum, whereas acute treatments with either drug had no effect on the expression of class II HDACs. By contrast, class I HDACs (HDAC1 and HDAC2) responded to the acute cocaine challenge, whereas sensitization itself did not have a consistent effect on class I HDAC levels. These findings support the hypothesis of a common epigenetic mechanism underlying persistent behavioral sensitization induced by different drugs, which may be mediated by the altered expression of class II HDACs.
Collapse
Affiliation(s)
- Shijie Xu
- Medical Research Center, Hainan Cancer Hospital, Haikou, Hainan, China
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Biomedical Research Institute, Seoul National University Hospital, Seoul
| | - Ja Wook Koo
- Emotion, Cognitive & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu
| | - Ung Gu Kang
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
25
|
Ponzoni L, Teh MT, Torres-Perez JV, Brennan CH, Braida D, Sala M. Increased Response to 3,4-Methylenedioxymethamphetamine (MDMA) Reward and Altered Gene Expression in Zebrafish During Short- and Long-Term Nicotine Withdrawal. Mol Neurobiol 2020; 58:1650-1663. [PMID: 33236326 DOI: 10.1007/s12035-020-02225-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
An interactive effect between nicotine and 3,4-methylenedioxymethamphetamine (MDMA) has been reported but the mechanism underlying such interaction is not completely understood. This study used zebrafish to explore gene expression changes associated with altered sensitivity to the rewarding effects of MDMA following 2-week exposure to nicotine and 2-60 days of nicotine withdrawal. Reward responses to MDMA were assessed using a conditioned place preference (CPP) paradigm and gene expression was evaluated using quantitative real-time PCR of mRNA from whole brain samples from drug-treated and control adult zebrafish. Zebrafish pre-exposed for 2 weeks to nicotine showed increased conditioned place preference in response to low-dose, 0.1 mg/kg, MDMA compared to un-exposed fish at 2, 7, 30 and 60 days withdrawal. Pre-exposure to nicotine for 2 weeks induced a significant increase of c-Fos and vasopressin receptor expression but a decrease of D3 dopaminergic and oxytocin receptor expression at 2 days of withdrawal. C-Fos mRNA increased also at 7, 30, 60 days of withdrawal. Nicotine pre-exposed zebrafish submitted to MDMA-induced CPP showed an increase in expression of p35 at day 2, α4 at day 30, vasopressin at day 7 and D3 dopaminergic receptor at day 7, 30 and 60. These gene alterations could account for the altered sensitivity to the rewarding effects of MDMA in nicotine pre-exposed fish, suggesting that zebrafish have an altered ability to modulate behaviour as a function of reward during nicotine withdrawal.
Collapse
Affiliation(s)
- Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Neuroscience Institute, CNR, Via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
26
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. Proc Natl Acad Sci U S A 2020; 117:9991-10002. [PMID: 32312805 PMCID: PMC7211986 DOI: 10.1073/pnas.1920866117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system has a modulatory role in brain reward and cognitive processes. It has been hypothesized that repeated interference with endocannabinoid signaling (e.g., through abuse of cannabis or synthetic cannabinoids) can remodel the adolescent brain and make it respond differently to more addictive substances, such as cocaine. In the present study, we demonstrate that a history of synthetic cannabinoid exposure in adolescent animals results in distinct molecular and epigenetic changes following initial exposure to cocaine. These changes were pronounced in the prefrontal cortex and associated with an enhanced response to cocaine’s stimulatory effects. The prefrontal cortex is a brain region that still undergoes maturation in adolescence and its dysfunction contributes to the development of addictions. The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain’s initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2. Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC–NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.
Collapse
|
28
|
Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, Adriani W. Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating. Neuroscience 2020; 433:108-120. [PMID: 32171819 DOI: 10.1016/j.neuroscience.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). We assessed phenotypes of male DAT-heterozygous rats as a function of their parents: we compared "maternal" origin (MAT-HET, obtained by breeding KO-male rats with WT-female dams) to "mixed" origin (MIX-HET, obtained by classical breeding, both heterozygous parents) of the allele. MAT-HET subjects had significantly longer rhythms of daily locomotor activity than MIX-HET and WT-control subjects. Furthermore, acute methylphenidate (MPH: 0, 1, 2 mg/kg) revealed elevated threshold for locomotor stimulation in MAT-HETs, with no response to the lower dose. Finally, by Porsolt-Test, MAT-HETs showed enhanced escape-seeking (diving) with more transitions towards behavioral despair (floating). When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.
Collapse
Affiliation(s)
- Cristiana Carbone
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Brancato
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Annalisa Adinolfi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
29
|
Davis KC, Saito K, Rodeghiero SR, Toth BA, Lutter M, Cui H. Behavioral Alterations in Mice Carrying Homozygous HDAC4 A778T Missense Mutation Associated With Eating Disorder. Front Neurosci 2020; 14:139. [PMID: 32153359 PMCID: PMC7046559 DOI: 10.3389/fnins.2020.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Eating disorders (EDs) are serious mental illnesses thought to arise from the complex gene-environment interactions. DNA methylation patterns in histone deacetylase 4 (HDAC4) locus have been associated with EDs and we have previously identified a missense mutation in the HDAC4 gene (HDAC4A786T) that increases the risk of developing an ED. In order to evaluate the biological consequences of this variant and establish a useful mouse model of EDs, here we performed behavioral characterization of mice homozygous for Hdac4A778T (corresponding to human HDAC4A786T) that were further backcrossed onto C57BL/6 background. When fed high-fat diet, male, but not female, homozygous mice showed a trend toward decreased weight gain compared to their wild-type littermates. Behaviorally, male, but not female, homozygous mice spent less time in eating and exhibited reduced motivation to work for palatable food and light phase-specific decrease in locomotor activity. Additionally, homozygous Hdac4A778T female, but not male, mice display social subordination when subjected to a tube dominance test. Collectively, these results reveal a complex sex- and circadian-dependent role of ED-associated Hdac4A778T mutation in affecting mouse behaviors. Homozygous Hdac4A778T mice could therefore be a useful animal model to gain insight into the neurobiological basis of EDs.
Collapse
Affiliation(s)
- Kevin C Davis
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Lutter
- Eating Recovery Center of San Antonio, San Antonio, TX, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
30
|
González B, Bernardi A, Torres OV, Jayanthi S, Gomez N, Sosa MH, García‐Rill E, Urbano FJ, Cadet J, Bisagno V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict Biol 2020; 25:e12737. [PMID: 30811820 DOI: 10.1111/adb.12737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Oscar V. Torres
- Department of Behavioral SciencesSan Diego Mesa College San Diego CA USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Natalia Gomez
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Máximo H. Sosa
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Edgar García‐Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental SciencesUniversity of Arkansas for Medical Sciences Little Rock AR USA
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y NeurocienciasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Jean‐Lud Cadet
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Verónica Bisagno
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
31
|
Sild M, Booij L. Histone deacetylase 4 (HDAC4): a new player in anorexia nervosa? Mol Psychiatry 2019; 24:1425-1434. [PMID: 30742020 DOI: 10.1038/s41380-019-0366-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Anorexia nervosa (AN) and other eating disorders continue to constitute significant challenges for individual and public health. AN is thought to develop as a result of complex interactions between environmental triggers, psychological risk factors, sociocultural influences, and genetic vulnerability. Recent research developments have highlighted a novel potentially relevant component in the AN etiology-activity of the histone deacetylase 4 (HDAC4) gene that has emerged in several recent studies related to AN. HDAC4 is a member of the ubiquitously important family of epigenetic modifier enzymes called histone deacetylases and has been implicated in processes related to the formation and function of the central nervous system (CNS), bone, muscle, and metabolism. In a family affected by eating disorders, a missense mutation in HDAC4 (A786T) was found to segregate with the illness. The relevance of this mutation in eating-related behaviors was further confirmed with mouse models. Despite the fact that HDAC4 has not been identified as a significant signal in genome-wide association studies in AN, several studies have found significant or near-significant methylation differences in HDAC4 locus in peripheral tissues of actively ill AN patients in comparison with different control groups. Limitations of these studies include a lack of understanding of to what extent the changes in methylation are predictive of AN as such changes might also occur as a consequence of the disease. It remains to be determined how methylation in peripheral tissues correlates with that in the CNS and how different methylation patterns affect HDAC4 expression. The present review discusses the findings and potential roles of HDAC4 in AN. Its emerging roles in learning and neuroplasticity may be specific and relevant for the etiology of AN and potentially lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Mari Sild
- Department of Psychology, Concordia University, Montreal, QC, Canada.,CHU Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, QC, Canada. .,CHU Sainte-Justine Hospital Research Center, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
32
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
33
|
Herre M, Korb E. The chromatin landscape of neuronal plasticity. Curr Opin Neurobiol 2019; 59:79-86. [PMID: 31174107 DOI: 10.1016/j.conb.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/27/2023]
Abstract
Examining the links between neuronal activity, transcriptional output, and synaptic function offers unique insights into how neurons adapt to changing environments and form memories. Epigenetic markers, such as DNA methylation and histone modifications, have been implicated in the formation of not only cellular memories such as cell fate, but also memories of experience at the organismal level. Here, we review recent advances in chromatin regulation that contribute to synaptic plasticity and drive adaptive behaviors through dynamic and precise regulation of transcription output in neurons. We discuss chromatin-associated proteins, histone variant proteins, the contribution of cis-regulatory elements and their interaction with histone modifications, and how these mechanisms are integrated into distinct behavior and environmental response paradigms.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
34
|
Molecular imaging HDACs class IIa expression-activity and pharmacologic inhibition in intracerebral glioma models in rats using PET/CT/(MRI) with [ 18F]TFAHA. Sci Rep 2019; 9:3595. [PMID: 30837601 PMCID: PMC6401080 DOI: 10.1038/s41598-019-40054-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
HDAC class IIa enzymes (HDAC4, 5, 7, 9) are important for glioma progression, invasion, responses to TMZ and radiotherapy, and prognosis. In this study, we demonstrated the efficacy of PET/CT/(MRI) with [18F]TFAHA for non-invasive and quantitative imaging of HDAC class IIa expression-activity in intracerebral 9L and U87-MG gliomas in rats. Increased accumulation of [18F]TFAHA in 9L and U87-MG tumors was observed at 20 min post radiotracer administration with SUV of 1.45 ± 0.05 and 1.08 ± 0.05, respectively, and tumor-to-cortex SUV ratios of 1.74 ± 0.07 and 1.44 ± 0.03, respectively. [18F]TFAHA accumulation was also observed in normal brain structures known to overexpress HDACs class IIa: hippocampus, n.accumbens, PAG, and cerebellum. These results were confirmed by immunohistochemical staining of brain tissue sections revealing the upregulation of HDACs 4, 5, and 9, and HIF-1α, hypoacetylation of H2AK5ac, H2BK5ac, H3K9ac, H4K8ac, and downregulation of KLF4. Significant reduction in [18F]TFAHA accumulation in 9L tumors was observed after administration of HDACs class IIa specific inhibitor MC1568, but not the SIRT1 specific inhibitor EX-527. Thus, PET/CT/(MRI) with [18F]TFAHA can facilitate studies to elucidate the roles of HDAC class IIa enzymes in gliomagenesis and progression and to optimize therapeutic doses of novel HDACs class IIa inhibitors in gliomas.
Collapse
|
35
|
Keyes KM, Rutherford C, Miech R. Historical trends in the grade of onset and sequence of cigarette, alcohol, and marijuana use among adolescents from 1976-2016: Implications for "Gateway" patterns in adolescence. Drug Alcohol Depend 2019; 194:51-58. [PMID: 30399500 PMCID: PMC6390293 DOI: 10.1016/j.drugalcdep.2018.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION In the past decade, marijuana use prevalence among adolescents has remained relatively steady while cigarette and alcohol prevalence has declined. We examined historical trends in: average grade of onset of marijuana, alcohol, and cigarette use by 12th grade; proportion who try alcohol/cigarettes before first marijuana use, among those who use by 12th grade; and conditional probability of marijuana use by 12th grade after trying alcohol/cigarettes. METHODS Data were drawn from 40 yearly, cross-sectional surveys of 12th grade US adolescents. A subset of students (N = 246,050) were asked when they first used each substance. We reconstructed cohorts of substance use from grade-of-onset to determine sequence of drug use, as well as probability of marijuana use in the same or later grade. RESULTS Average grade of first alcohol and cigarette use by 12th grade increased across time; e.g., first cigarette increased from grade 7.9 in 1986 to 9.0 by 2016 (β=0.04, SE = 0.001, p < 0.01). The proportion of 12th grade adolescents who smoke cigarettes before marijuana fell below 50% in 2006. Each one-year increase was associated with 1.11 times increased odds of first cigarette in a grade after first marijuana (95% C.I. 1.11-1.12). Among those who initiate alcohol/cigarettes prior to marijuana by 12th grade, the probability of subsequent marijuana use is increasing. CONCLUSION Marijuana is increasingly the first substance in the sequence of adolescent drug use. Reducing adolescent smoking has been a remarkable achievement of the past 20 years; those who continue to smoke are at higher risk for progression to marijuana use.
Collapse
Affiliation(s)
- Katherine M. Keyes
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA,Center for Research on Society and Health, Universidad Mayor, Santiago, Chile
| | - Caroline Rutherford
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Richard Miech
- Institute for Social Research, University of Michigan, Ann Arbor, MI
| |
Collapse
|
36
|
Wiss DA, Avena N, Rada P. Sugar Addiction: From Evolution to Revolution. Front Psychiatry 2018; 9:545. [PMID: 30464748 PMCID: PMC6234835 DOI: 10.3389/fpsyt.2018.00545] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
The obesity epidemic has been widely publicized in the media worldwide. Investigators at all levels have been looking for factors that have contributed to the development of this epidemic. Two major theories have been proposed: (1) sedentary lifestyle and (2) variety and ease of inexpensive palatable foods. In the present review, we analyze how nutrients like sugar that are often used to make foods more appealing could also lead to habituation and even in some cases addiction thereby uniquely contributing to the obesity epidemic. We review the evolutionary aspects of feeding and how they have shaped the human brain to function in "survival mode" signaling to "eat as much as you can while you can." This leads to our present understanding of how the dopaminergic system is involved in reward and its functions in hedonistic rewards, like eating of highly palatable foods, and drug addiction. We also review how other neurotransmitters, like acetylcholine, interact in the satiation processes to counteract the dopamine system. Lastly, we analyze the important question of whether there is sufficient empirical evidence of sugar addiction, discussed within the broader context of food addiction.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Avena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pedro Rada
- School of Medicine, University of Los Andes, Mérida, Venezuela
| |
Collapse
|
37
|
Adolescent cannabinoid exposure induces irritability-like behavior and cocaine cross-sensitization without affecting the escalation of cocaine self-administration in adulthood. Sci Rep 2018; 8:13893. [PMID: 30224774 PMCID: PMC6141462 DOI: 10.1038/s41598-018-31921-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 11/26/2022] Open
Abstract
Cannabis use is typically initiated during adolescence and is a significant risk factor for the development of cocaine use in adulthood. However, no preclinical studies have examined the effects of adolescent cannabinoid exposure on cocaine dependence in adulthood using the escalation model of cocaine self-administration and the assessment of negative emotional states. In the present study, we found that exposure to the cannabinoid receptor agonist WIN55,212-2 (WIN) in adolescence produced irritability-like behavior and psychomotor cross-sensitization to cocaine in adolescence. In adulthood, rats were allowed to self-administer cocaine. The acquisition of cocaine self-administration was lower in rats with adolescent WIN exposure compared with controls. However, both WIN-exposed and control rats escalated their cocaine intake at the same rate, had similar responding under a progressive-ratio schedule of reinforcement, and had similar psychomotor responses to cocaine. Interestingly, the increase in irritability-like behavior that was previously observed in adolescence after WIN exposure persisted into adulthood. Whether the persisting increase in irritability-like behavior after WIN exposure has translational relevance remains to be studied. In summary, these results suggest that psychoactive cannabinoid exposure during adolescence is unlikely to have a major effect on the escalation of cocaine intake or the development of compulsive-like responding per se in adulthood in a rat model of cocaine self-administration. However, whether the persisting irritability-like behavior may predispose an individual to mood-related impairments in adulthood or predict such impairments warrants further investigation.
Collapse
|
38
|
Griffin EA, Melas PA, Kandel DB, Kandel ER. The Class II Histone Deacetylase Hypothesis of Addiction. Biol Psychiatry 2018; 84:165-166. [PMID: 29941145 DOI: 10.1016/j.biopsych.2018.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Edmund A Griffin
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Philippe A Melas
- Department of Neuroscience, Columbia University, New York, New York; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Denise B Kandel
- Department of Psychiatry, Columbia University, New York, New York; Mailman School of Public Health, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Eric R Kandel
- Department of Psychiatry, Columbia University, New York, New York; Department of Neuroscience, Columbia University, New York, New York; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Kavli Institute for Brain Science, Columbia University, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
39
|
Card KG, Armstrong HL, Carter A, Cui Z, Wang C, Zhu J, Lachowsky NJ, Moore DM, Hogg RS, Roth EA. Assessing the longitudinal stability of latent classes of substance use among gay, bisexual, and other men who have sex with men. Drug Alcohol Depend 2018; 188:348-355. [PMID: 29859447 PMCID: PMC7583659 DOI: 10.1016/j.drugalcdep.2018.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Association between substance use and HIV-risk among gay and bisexual men (GBM) is well documented. However, their substance use patterns are diverse, and it is unknown whether self-reported use patterns are stable over time. METHODS Sexually-active GBM, aged >16 years, were recruited in Metro Vancouver using respondent-driven sampling and followed across 5 study visits at six-month intervals (n = 449). To identify distinct patterns of substance use and their longitudinal stability, Latent Transition Analysis (LTA) was conducted for drugs reported by at least 30 participants. Intraclass correlation coefficients (ICC) quantified the stability of class assignments. RESULTS Six classes characterizing 'limited drug use' (i.e., low use of all drugs, except alcohol), 'conventional drug use' (i.e., use of alcohol, marijuana, and tobacco), 'club drug use' (i.e., use of alcohol, cocaine, and psychedelics), 'sex drug use' (i.e., use of alcohol, crystal meth, GHB, poppers, and erectile dysfunction drugs), 'street drug use' (i.e., use of alcohol and street opioids) and 'assorted drug use' (i.e., use of most drugs) were identified. Across five visits (2.5 years), 26.3% (n = 118/449) of GBM transitioned between classes. The prevalence of limited use trended upwards (Baseline:24.5%, Visit 5:28.3%, p < 0.0001) and assorted use trended downwards (13.4%-9.6%, p = 0.001). All classes had strong longitudinal stability (ICC > 0.97). CONCLUSION The stability of latent substance use patterns highlight the utility of these measures in identifying patterns of substance use among people who use drugs - potentially allowing for better assessment of these groups and interventions related to their health.
Collapse
Affiliation(s)
- Kiffer G. Card
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,Faculty of Health Science, Simon Fraser University, 11300 Blusson Hall, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Heather L. Armstrong
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,Faculty of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Allison Carter
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada; Faculty of Health Science, Simon Fraser University, 11300 Blusson Hall, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Zishan Cui
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada.
| | - Clara Wang
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada
| | - Julia Zhu
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada.
| | - Nathan J. Lachowsky
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,School of Public Health and Social Policy, University of Victoria, B202 HSD Building, Victoria, British Columbia, V8P 5C2, Canada
| | - David M. Moore
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,Faculty of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert S. Hogg
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,Faculty of Health Science, Simon Fraser University, 11300 Blusson Hall, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Eric A. Roth
- B.C. Centre for Excellence in HIV/AIDS, 608-1081 Burrard St, Vancouver, British Columbia, V6Z 1Y6, Canada,Department of Anthropology, University of Victoria, B228 Cornett Building, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
40
|
Melas PA, Qvist JS, Deidda M, Upreti C, Wei YB, Sanna F, Fratta W, Scherma M, Fadda P, Kandel DB, Kandel ER. Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
Nonmedical prescription opioids and pathways of drug involvement in the US: Generational differences. Drug Alcohol Depend 2018; 182:103-111. [PMID: 29220668 PMCID: PMC5870126 DOI: 10.1016/j.drugalcdep.2017.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study sought to specify (1) the position of nonmedical prescription opioids (NMPO) in drug initiation sequences among Millennials (1979-96), Generation X (1964-79), and Baby Boomers (1949-64) and (2) gender and racial/ethnic differences in sequences among Millennials. METHODS Data are from the 2013-2014 National Surveys on Drug Use and Health (n = 73,026). We identified statistically significant drug initiation sequences involving alcohol/cigarettes, marijuana, NMPO, cocaine, and heroin using a novel method distinguishing significant sequences from patterns expected only due to correlations induced by common liability among drugs. RESULTS Alcohol/cigarettes followed by marijuana was the most common sequence. NMPO or cocaine use after marijuana, and heroin use after NMPO or cocaine, differed by generation. Among successively younger generations, NMPO after marijuana and heroin after NMPO increased. Millennials were more likely to initiate NMPO than cocaine after marijuana; Generation X and Baby Boomers were less likely (odds ratios = 1.4;0.3;0.2). Millennials were more likely than Generation X and Baby Boomers to use heroin after NMPO (hazards ratios = 7.1;3.4;2.5). In each generation, heroin users were far more likely to start heroin after both NMPO and cocaine than either alone. Sequences were similar by gender. Fewer paths were significant among African-Americans. CONCLUSIONS NMPOs play a more prominent role in drug initiation sequences among Millennials than prior generations. Among Millennials, NMPO use is more likely than cocaine to follow marijuana use. In all generations, transition to heroin from NMPO significantly occurs only when both NMPO and cocaine have been used. Delineation of drug sequences suggests optimal points in development for prevention and treatment efforts.
Collapse
|
42
|
LaBar KS. Advances in neuroscience. SCIENCE ADVANCES 2017; 3:eaar2953. [PMID: 29152575 PMCID: PMC5683036 DOI: 10.1126/sciadv.aar2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Kevin S LaBar
- Deputy Editor, Center for Cognitive Neuroscience, Box 90999, Duke University, Durham, NC 27708-0999, USA
| |
Collapse
|