1
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Kellogg CM, Pham K, Machalinski AH, Porter HL, Blankenship HE, Tooley KB, Stout MB, Rice HC, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. GeroScience 2023; 45:3019-3043. [PMID: 37393197 PMCID: PMC10643718 DOI: 10.1007/s11357-023-00859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
Collapse
Affiliation(s)
- Collyn M Kellogg
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Adeline H Machalinski
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Hunter L Porter
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Harris E Blankenship
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Sarah R Ocañas
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Hayashi Y, Otsuji J, Oshima E, Hitomi S, Ni J, Urata K, Shibuta I, Iwata K, Shinoda M. Microglia cause structural remodeling of noradrenergic axon in the trigeminal spinal subnucleus caudalis after infraorbital nerve injury in rats. Brain Behav Immun Health 2023; 30:100622. [PMID: 37101903 PMCID: PMC10123072 DOI: 10.1016/j.bbih.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
The dysfunction of descending noradrenergic (NAergic) modulation in second-order neurons has long been observed in neuropathic pain. In clinical practice, antidepressants that increase noradrenaline levels in the synaptic cleft are used as first-line agents, although adequate analgesia has not been occasionally achieved. One of the hallmarks of neuropathic pain in the orofacial regions is microglial abnormalities in the trigeminal spinal subnucleus caudalis (Vc). However, until now, the direct interaction between descending NAergic system and Vc microglia in orofacial neuropathic pain has not been explored. We found that reactive microglia ingested the dopamine-β-hydroxylase (DβH)-positive fraction, NAergic fibers, in the Vc after infraorbital nerve injury (IONI). Major histocompatibility complex class I (MHC-I) was upregulated in Vc microglia after IONI. Interferon-γ (IFNγ) was de novo induced in trigeminal ganglion (TG) neurons following IONI, especially in C-fiber neurons, which conveyed to the central terminal of TG neurons. Gene silencing of IFNγ in the TG reduced MHC-I expression in the Vc after IONI. Intracisternal administration of exosomes from IFNγ-stimulated microglia elicited mechanical allodynia and a decrease in DβH in the Vc, which did not occur when exosomal MHC-I was knocked down. Similarly, in vivo MHC-I knockdown in Vc microglia attenuated the development of mechanical allodynia and a decrease in DβH in the Vc after IONI. These results show that microglia-derived MHC-I causes a decrease in NAergic fibers, culminating in orofacial neuropathic pain.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
- Corresponding author. Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo, 101-8301, Japan.
| | - Jo Otsuji
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Eri Oshima
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
4
|
James LM, Georgopoulos AP. Risk assessment of substance use disorders based on the human leukocyte antigen (HLA). Sci Rep 2023; 13:8545. [PMID: 37237010 DOI: 10.1038/s41598-023-35305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Substance use disorders (SUDs) are common and costly conditions that are partially attributable to genetic factors. In light of immune system influences on neural and behavioral aspects of addiction, the present study evaluated the influence of genes involved in the human immune response, human leukocyte antigen (HLA), on SUDs. We used an immunogenetic epidemiological approach to evaluate associations between the population frequencies of 127 HLA alleles and the population prevalences of six SUDs (alcohol, amphetamine, cannabis, cocaine, opioid, and "other" dependence) in 14 countries of Continental Western Europe to identify immunogenetic profiles of each SUD and evaluate their associations. The findings revealed two primary groupings of SUDs based on their immunogenetic profiles: one group comprised cannabis and cocaine, whereas the other group comprised alcohol, amphetamines, opioids, and "other" dependence. Since each individual possesses 12 HLA alleles, the population HLA-SUD scores were subsequently used to estimate individual risk for each SUD. Overall, the findings highlight similarities and differences in immunogenetic profiles of SUDs that may influence the prevalence and co-occurrence of problematic SUDs and may contribute to assessment of SUD risk of an individual on the basis of their HLA genetic makeup.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
5
|
Hobson BD, Sulzer D. Neuronal Presentation of Antigen and Its Possible Role in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S137-S147. [PMID: 35253783 PMCID: PMC9440948 DOI: 10.3233/jpd-223153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Patients with Parkinson's disease (PD) and other synucleinopathies often exhibit autoimmune features, including CD4+ and some CD8+ T lymphocytes that recognize epitopes derived from alpha-synuclein. While neurons have long been considered to not present antigens, recent data indicate that they can be induced to do so, particularly in response to interferons and other forms of stress. Here, we review literature on neuronal antigen presentation and its potential role in PD. Although direct evidence for CD8+ T cell-mediated neuronal death is lacking in PD, neuronal antigen presentation appears central to the pathology of Rasmussen's encephalitis, a pediatric neurological disorder driven by cytotoxic T cell infiltration and neuroinflammation. Emerging data suggest that T cells enter the brain in PD and other synucleinopathies, where the majority of neuromelanin-containing substantia nigra and locus coeruleus neurons express MHC Class I molecules. In cell culture, CD8+ T cell recognition of antigen:MHC Class I complexes on neuronal membranes leads to cytotoxic responses and neuronal cell death. Recent animal models suggest the possibility of T cell autoreactivity to mitochondrial antigens in PD. It remains unclear if neuronal antigen presentation plays a role in PD or other neurodegenerative disorders, and efforts are underway to better elucidate the potential impact of autoimmune responses on neurodegeneration.
Collapse
Affiliation(s)
- Benjamin D. Hobson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Correspondence to: David Sultzer, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA. E-mail:
| |
Collapse
|
6
|
Meng HR, Suenaga T, Edamura M, Fukuda A, Ishida Y, Nakahara D, Murakami G. Functional MHCI deficiency induces ADHD-like symptoms with increased dopamine D1 receptor expression. Brain Behav Immun 2021; 97:22-31. [PMID: 34022373 DOI: 10.1016/j.bbi.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Inappropriate synaptic development has been proposed as a potential mechanism of neurodevelopmental disorders, including attention-deficit hyperactivity disorder (ADHD). Major histocompatibility complex class I (MHCI), an immunity-associated molecule expressed by neurons in the brain, regulates synaptic development; however, the involvement of MHCI in these disorders remains elusive. We evaluated whether functional MHCI deficiency induced by β2m-/-Tap1-/- double-knockout in mice leads to abnormalities akin to those seen in neurodevelopmental disorders. We found that functional MHCI deficiency induced locomotor hyperactivity, motor impulsivity, and attention deficits, three major symptoms of ADHD. In contrast, these mice showed normal spatial learning, behavioral flexibility, social behavior, and sensorimotor integration. In the analysis of the dopamine system, upregulation of dopamine D1 receptor (D1R) expression in the nucleus accumbens and a greater locomotor response to D1R agonist SKF 81297 were found in the functional MHCI-deficient mice. Low-dose methylphenidate, used for the treatment of ADHD patients, alleviated the three behavioral symptoms and suppressed c-Fos expression in the D1R-expressing medium spiny neurons of the mice. These findings reveal an unexpected role of MHCI in three major symptoms of ADHD and may provide a novel landmark in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Hong-Rui Meng
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiko Suenaga
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; School of Psychology, Tokyo University of Social Welfare, Tokyo 114-0004, Japan
| | - Mitsuhiro Edamura
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yasushi Ishida
- Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan
| | - Daiichiro Nakahara
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan.
| | - Gen Murakami
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
7
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
8
|
Asaoka Y, Won M, Morita T, Ishikawa E, Lee YA, Goto Y. Monoamine and genome-wide DNA methylation investigation in behavioral addiction. Sci Rep 2020; 10:11760. [PMID: 32678220 PMCID: PMC7366626 DOI: 10.1038/s41598-020-68741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Behavioral addiction (BA) is characterized by repeated, impulsive and compulsive seeking of specific behaviors, even with consequent negative outcomes. In drug addiction, alterations in biological mechanisms, such as monoamines and epigenetic processes, have been suggested, whereas whether such mechanisms are also altered in BA remains unknown. In this preliminary study with a small sample size, we investigated monoamine concentrations and genome-wide DNA methylation in blood samples from BA patients and control (CT) subjects. Higher dopamine (DA) metabolites and the ratio between DA and its metabolites were observed in the BA group than in the CT group, suggesting increased DA turnover in BA. In the methylation assay, 186 hyper- or hypomethylated CpGs were identified in the BA group compared to the CT group, of which 64 CpGs were further identified to correlate with methylation status in brain tissues with database search. Genes identified with hyper- or hypomethylation were not directly associated with DA transmission, but with cell membrane trafficking and the immune system. Some of the genes were also associated with psychiatric disorders, such as drug addiction, schizophrenia, and autism spectrum disorder. These results suggest that BA may involve alterations in epigenetic regulation of the genes associated with synaptic transmission, including that of monoamines, and neurodevelopment.
Collapse
Affiliation(s)
- Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Moojun Won
- Kyowa Hospital, Obu, Aichi, 474-0071, Japan
| | | | | | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
9
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|