1
|
McIntosh AR, Greig HS, Warburton HJ, Tonkin JD, Febria CM. Ecosystem-size relationships of river populations and communities. Trends Ecol Evol 2024; 39:571-584. [PMID: 38388323 DOI: 10.1016/j.tree.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Knowledge of ecosystem-size influences on river populations and communities is integral to the balancing of human and environmental needs for water. The multiple dimensions of dendritic river networks complicate understanding of ecosystem-size influences, but could be resolved by the development of scaling relationships. We highlight the importance of physical constraints limiting predator body sizes, movements, and population sizes in small rivers, and where river contraction limits space or creates stressful conditions affecting community stability and food webs. Investigations of the scaling and contingency of these processes will be insightful because of the underlying generality and scale independence of such relationships. Doing so will also pinpoint damaging water-management practices and identify which aspects of river size can be most usefully manipulated in river restoration.
Collapse
Affiliation(s)
- Angus R McIntosh
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Hamish S Greig
- School of Biology and Ecology, University of Maine, Orono, ME, USA; Rocky Mountain Biological Laboratory, Gothic, CO, USA
| | - Helen J Warburton
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; New Zealand's Biological Heritage National Science Challenge, Lincoln, New Zealand
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Te Pūnaha Matatini Centre of Research Excellence, University of Canterbury, Christchurch, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, University of Canterbury, Christchurch, New Zealand
| | - Catherine M Febria
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada; Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
2
|
Li F, Guo F, Gao W, Cai Y, Zhang Y, Yang Z. Environmental DNA Biomonitoring Reveals the Interactive Effects of Dams and Nutrient Enrichment on Aquatic Multitrophic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16952-16963. [PMID: 36383447 DOI: 10.1021/acs.est.2c06919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dam construction and nutrient enrichment are two pervasive stressors in rivers worldwide, which trigger a sharp decline in biodiversity and ecosystem services. However, the interactive effects of both stressors on multitrophic taxonomic groups remain largely unclear. Here, we used the multitrophic datasets captured by the environmental DNA (eDNA) approach to reveal the interactions between dams and nutrient enrichment on aquatic communities from the aspects of taxonomic α diversity, β diversity, and food webs. First, our data showed that dams and nutrient enrichment jointly shaped a unique spatial pattern of aquatic communities across the four river systems, and the dissimilarity of community structure significantly declined (i.e., structural homogenization) under both stressors. Second, dams and nutrients together explained 40-50% of the variations in aquatic communities, and dams had a stronger impact on fish, aquatic insects, and bacteria, yet nutrients had a stronger power to drive protozoa, fungi, and eukaryotic algae. Finally, we found that additive, synergistic, and antagonistic interactions of dams and nutrient enrichment were common and coexisted in river systems and led to significantly simplified aquatic food webs, with decreases in modularity (synergistic) and robustness (additive) and an increase in coherence (synergistic). Overall, our study highlights that eDNA-based datasets can provide multitrophic perspectives for fostering the understanding of the interactive effects of multiple stressors on rivers.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
3
|
Kitchel ZJ, Conrad HM, Selden RL, Pinsky ML. The role of continental shelf bathymetry in shaping marine range shifts in the face of climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5185-5199. [PMID: 35698263 PMCID: PMC9540106 DOI: 10.1111/gcb.16276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 05/26/2023]
Abstract
As a consequence of anthropogenic climate change, marine species on continental shelves around the world are rapidly shifting deeper and poleward. However, whether these shifts deeper and poleward will allow species to access more, less, or equivalent amounts of continental shelf area and associated critical habitats remains unclear. By examining the proportion of seabed area at a range of depths for each large marine ecosystem (LME), we found that shelf area declined monotonically for 19% of LMEs examined. However, the majority exhibited a greater proportion of shelf area in mid-depths or across several depth ranges. By comparing continental shelf area across 2° latitudinal bands, we found that all coastlines exhibit multiple instances of shelf area expansion and contraction, which have the potential to promote or restrict poleward movement of marine species. Along most coastlines, overall shelf habitat increases or exhibits no significant change moving towards the poles. The exception is the Southern West Pacific, which experiences an overall loss of area with increasing latitude. Changes in continental shelf area availability across latitudes and depths are likely to affect the number of species local ecosystems can support. These geometric analyses help identify regions of conservation priority and ecological communities most likely to face attrition or expansion due to variations in available area.
Collapse
Affiliation(s)
- Zoë J. Kitchel
- Ecology and Evolution Graduate ProgramRutgers UniversityNew BrunswickNew JerseyUSA
| | - Hailey M. Conrad
- Department of Fish and Wildlife ConservationBlacksburgVirginiaUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
4
|
de Guzman I, Altieri P, Elosegi A, Pérez-Calpe AV, von Schiller D, González JM, Brauns M, Montoya JM, Larrañaga A. Water diversion and pollution interactively shape freshwater food webs through bottom-up mechanisms. GLOBAL CHANGE BIOLOGY 2022; 28:859-876. [PMID: 34862833 PMCID: PMC7614049 DOI: 10.1111/gcb.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 06/03/2023]
Abstract
Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.
Collapse
Affiliation(s)
- Ioar de Guzman
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Paula Altieri
- Instituto de Limnología Dr. Raúl A. Ringuelet, Laboratorio de Bentos, CCT La Plata-CONICET-UNLP, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo/FCNyM, Universidad Nacional de La Plata/UNLP, La Plata, Buenos Aires, Argentina
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Victoria Pérez-Calpe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Daniel von Schiller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Jose M. González
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Spain
| | - Mario Brauns
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - José M. Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, French National Center for Scientific Research, Moulis, France
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
5
|
The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems. ENERGIES 2021. [DOI: 10.3390/en14248411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The energy return on energy invested, EROI or EROEI, is the ratio of the energy produced by a system to the energy expended to build, maintain, and finally dismantle the system. It is an important parameter for evaluating the efficiency of energy-producing technologies. In this paper, we examine the concept of EROEI from the general viewpoint of dynamic dissipative systems, providing insights on a wider range of applications. In general, natural resources can be assimilated to energy stocks characterized by a potential that can be exploited by creating intermediate stocks. This transformation is typical of dissipative systems and for the first time, we report that the Lotka–Volterra model, usually confined to the study of the biology of populations, can represent a powerful tool to estimate the EROEI of dissipative systems and, in particular, those systems subjected to depletion. This assessment is important to evaluate the ongoing energy transition since it provides us with a model for the decline of the EROEI in the exploitation of fossil fuels.
Collapse
|
6
|
Holenstein K, Harvey E, Altermatt F. Patch size distribution affects species invasion dynamics in dendritic networks. OIKOS 2021. [DOI: 10.1111/oik.08679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kathrin Holenstein
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| | - Eric Harvey
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
- Dépt de Sciences Biologiques, Univ. de Montréal Montréal QC Canada
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| |
Collapse
|
7
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Greig HS, McHugh PA, Thompson RM, Warburton HJ, McIntosh AR. Habitat size influences community stability. Ecology 2021; 103:e03545. [PMID: 34614210 DOI: 10.1002/ecy.3545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
Mechanisms linked to demographic, biogeographic, and food-web processes thought to underpin community stability could be affected by habitat size, but the effects of habitat size on community stability remain relatively unknown. We investigated whether those habitat-size-dependent properties influenced community instability and vulnerability to perturbations caused by disturbance. This is particularly important given that human exploitation is contracting ecosystems, and abiotic perturbations are becoming more severe and frequent. We used a perturbation experiment in which 10 streams, spanning three orders of magnitude in habitat size, were subjected to simulated bed movement akin to a major flood disturbance event. We measured the resistance, resilience, and variability of basal resources, and population and community-level responses across the stream habitat-size gradient immediately before, and at 0.5, 5, 10, 20, and 40 d post-disturbance. Resistance to disturbance consistently increased with stream size in all response variables. In contrast, resilience was significantly higher in smaller streams for some response variables. However, this higher resilience of small ecosystems was insufficient to compensate for their lower resistance, and communities of smaller streams were thus more variable over time than those of larger streams. Compensatory dynamics of populations, especially for predators, stabilized some aspects of communities, but these mechanisms were unrelated to habitat size. Together, our results provide compelling evidence for the links between habitat size and community stability, and should motivate ecologists and managers to consider how changes in the size of habitats will alter the vulnerability of ecosystems to perturbations caused by environmental disturbance.
Collapse
Affiliation(s)
- Hamish S Greig
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, Maine, 04469, USA
| | - Peter A McHugh
- California Department of Fish and Wildlife, 3637 Westwind Blvd, Santa Rosa, California, 95403, USA
| | - Ross M Thompson
- Centre for Applied Water Science and Institute for Applied Ecology, University of Canberra, Kirinari Street, Bruce, Australian Capital Territory, 2617, Australia
| | - Helen J Warburton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Angus R McIntosh
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
9
|
Říha M, Gjelland KØ, Děd V, Eloranta AP, Rabaneda-Bueno R, Baktoft H, Vejřík L, Vejříková I, Draštík V, Šmejkal M, Holubová M, Jůza T, Rosten C, Sajdlová Z, Økland F, Peterka J. Contrasting structural complexity differentiate hunting strategy in an ambush apex predator. Sci Rep 2021; 11:17472. [PMID: 34471177 PMCID: PMC8410764 DOI: 10.1038/s41598-021-96908-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Structural complexity is known to influence prey behaviour, mortality and population structure, but the effects on predators have received less attention. We tested whether contrasting structural complexity in two newly colonised lakes (low structural complexity lake—LSC; high structural complexity—HSC) was associated with contrasting behaviour in an aquatic apex predator, Northern pike (Esox lucius; hereafter pike) present in the lakes. Behaviour of pike was studied with whole-lake acoustic telemetry tracking, supplemented by stable isotope analysis of pike prey utilization and survey fishing data on the prey fish community. Pike displayed increased activity, space use, individual growth as well as behavioural differentiation and spent more time in open waters in the LSC lake. Despite observed differences between lakes, stable isotopes analyses indicated a high dependency on littoral food sources in both lakes. We concluded that pike in the HSC lake displayed a behaviour consistent with a prevalent ambush predation behaviour, whereas the higher activity and larger space use in the LSC lake indicated a transition to more active search behaviour. It could lead to increased prey encounter and cause better growth in the LSC lake. Our study demonstrated how differences in structural complexity mediated prominent changes in the foraging behaviour of an apex predator, which in turn may have effects on the prey community.
Collapse
Affiliation(s)
- Milan Říha
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic.
| | - Karl Ø Gjelland
- Norwegian Institute for Nature Research (NINA), Tromsö, Norway
| | - Vilém Děd
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Antti P Eloranta
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Ruben Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Lukáš Vejřík
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Ivana Vejříková
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Vladislav Draštík
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Michaela Holubová
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Tomas Jůza
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Carolyn Rosten
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Zuzana Sajdlová
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Finn Økland
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Jiří Peterka
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Travers T, Lea M, Alderman R, Terauds A, Shaw J. Bottom‐up effect of eradications: The unintended consequences for top‐order predators when eradicating invasive prey. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Toby Travers
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tas Australia
| | - Mary‐Anne Lea
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tas Australia
| | - Rachael Alderman
- Department of Primary Industries, Parks, Water and Environment Hobart Tas Australia
| | - Aleks Terauds
- Australian Antarctic Division Department of Agriculture, Water and the Environment Kingston Tas Australia
| | - Justine Shaw
- Centre for Biodiversity and Conservation Science School of Biological Sciences The University of Queensland St Lucia Qld Australia
| |
Collapse
|
11
|
Seitz KM, Atlas WI, Millard‐Martin B, Reid J, Heavyside J, Hunt BPV, Moore JW. Size‐spectra analysis in the estuary: assessing fish nursery function across a habitat mosaic. Ecosphere 2020. [DOI: 10.1002/ecs2.3291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karl M. Seitz
- Earth to Oceans Research Group Simon Fraser University Burnaby British ColumbiaV5A 1S6Canada
- Hakai Institute Calvert Island British ColumbiaV0P 1H0Canada
- QQs Projects Society Bella Bella British ColumbiaV0T 1Z0Canada
| | - William I. Atlas
- Earth to Oceans Research Group Simon Fraser University Burnaby British ColumbiaV5A 1S6Canada
- Hakai Institute Calvert Island British ColumbiaV0P 1H0Canada
- QQs Projects Society Bella Bella British ColumbiaV0T 1Z0Canada
| | | | - Jared Reid
- QQs Projects Society Bella Bella British ColumbiaV0T 1Z0Canada
| | - Julian Heavyside
- Department of Zoology The University of British Columbia Vancouver British ColumbiaV6T 1Z4Canada
| | - Brian P. V. Hunt
- Hakai Institute Calvert Island British ColumbiaV0P 1H0Canada
- Institute for the Oceans and Fisheries The University of British Columbia Vancouver British ColumbiaV6T 1Z4Canada
- Department of Earth, Ocean and Atmospheric Sciences The University of British Columbia 2207 Main Mall Vancouver British ColumbiaV6T1Z4Canada
| | - Jonathan W. Moore
- Earth to Oceans Research Group Simon Fraser University Burnaby British ColumbiaV5A 1S6Canada
| |
Collapse
|
12
|
Palmer M, Ruhi A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019; 365:365/6459/eaaw2087. [DOI: 10.1126/science.aaw2087] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
River ecosystems are highly biodiverse, influence global biogeochemical cycles, and provide valued services. However, humans are increasingly degrading fluvial ecosystems by altering their streamflows. Effective river restoration requires advancing our mechanistic understanding of how flow regimes affect biota and ecosystem processes. Here, we review emerging advances in hydroecology relevant to this goal. Spatiotemporal variation in flow exerts direct and indirect control on the composition, structure, and dynamics of communities at local to regional scales. Streamflows also influence ecosystem processes, such as nutrient uptake and transformation, organic matter processing, and ecosystem metabolism. We are deepening our understanding of how biological processes, not just static patterns, affect and are affected by stream ecosystem processes. However, research on this nexus of flow-biota-ecosystem processes is at an early stage. We illustrate this frontier with evidence from highly altered regulated rivers and urban streams. We also identify research challenges that should be prioritized to advance process-based river restoration.
Collapse
|