1
|
Plastina A, Jo H, Wongpiyabovorn O. The business case for carbon farming in the USA. CARBON BALANCE AND MANAGEMENT 2024; 19:7. [PMID: 38363404 PMCID: PMC10870599 DOI: 10.1186/s13021-024-00253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
U.S. agricultural producers are increasingly able to participate in private voluntary carbon initiatives that compensate their efforts to sequester CO2, reduce GHG emissions, and provide ecosystem services through eligible conservation practices. This study examines the potential effects of alternative private payment regimes (per practice vs. per output), prices paid to farmers relative to out-of-pocket costs (low vs. high), and the availability of information on CO2 sequestration (limited vs. full), on the adoption of cover crops and no-till in the United States, the resulting CO2 sequestration, and changes in farmers' net returns. The analysis relies on a highly stylized model of heterogeneous farms calibrated with county-level agronomic data, and simulated for current estimates of GHG impacts of cover crop planting and no-till under different scenarios. Our results indicate that agricultural carbon markets can be profitable for U.S. farmers, although with substantial geographic variability, and that annual carbon sequestration could range between 17 and 75 million mtCO2e. Payments per output would incentivize higher carbon sequestration than payments per practice, but the former regime would be less favored by farmers as a unified group than the latter (due to lower aggregate net returns). However, if operators of farms with high carbon sequestration potential could decide the payment regime to be implemented, they would choose the payment per output regime (due to higher net returns per enrolled hectare). Total projected net changes in GHGs under payments per practice, based solely on county-average net GHG effects of cover crops and no-till, over-estimate actual total GHG sequestration (based on the entire distribution of net effects by county) by 2.1 and 14.2 million mtCO2e, or 18% and 21%, respectively.
Collapse
Affiliation(s)
- Alejandro Plastina
- Department of Economics, and Affiliated Faculty, Center for Agricultural and Rural Development, Iowa State University, 478E Heady Hall, 518 Farm House Ln, Ames, IA, 50011-1054, USA.
| | - Haeun Jo
- Department of Economics, Iowa State University, 280A Heady Hall, 518 Farm House Ln, Ames, IA, 50011-1054, USA
| | - Oranuch Wongpiyabovorn
- Ness School of Management and Economics, South Dakota State University, Harding Hall 205, Brookings, SD, 57007, USA
| |
Collapse
|
2
|
Almaraz M, Simmonds M, Boudinot FG, Di Vittorio AV, Bingham N, Khalsa SDS, Ostoja S, Scow K, Jones A, Holzer I, Manaigo E, Geoghegan E, Goertzen H, Silver WL. Soil carbon sequestration in global working lands as a gateway for negative emission technologies. GLOBAL CHANGE BIOLOGY 2023; 29:5988-5998. [PMID: 37476859 DOI: 10.1111/gcb.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
The ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO2 removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low-tech and cost-effective means for removing CO2 from the atmosphere while also delivering co-benefits to people and ecosystems. Our model estimates suggest that, assuming additive effects, the technical potential of combined SCS practices can provide 30%-70% of the carbon removal required by the Paris Climate Agreement if applied to 25%-50% of the available global land area, respectively. Atmospheric CO2 drawdown via SCS has the potential to last decades to centuries, although more research is needed to determine the long-term viability at scale and the durability of the carbon stored. Regardless of these research needs, we argue that SCS can at least serve as a bridging technology, reducing atmospheric CO2 in the short term while energy and transportation systems adapt to a low-C economy. Soil C sequestration in working lands holds promise as a climate change mitigation tool, but the current rate of implementation remains too slow to make significant progress toward global emissions goals by 2050. Outreach and education, methodology development for C offset registries, improved access to materials and supplies, and improved research networks are needed to accelerate the rate of SCS practice implementation. Herein, we present an argument for the immediate adoption of SCS practices in working lands and recommendations for improved implementation.
Collapse
Affiliation(s)
- Maya Almaraz
- Institute of the Environment, University of California, Davis, Davis, California, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | | | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Nina Bingham
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, USA
| | - Sat Darshan S Khalsa
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Steven Ostoja
- Institute of the Environment, University of California, Davis, Davis, California, USA
- USDA California Climate Hub, Agricultural Research Service, Davis, California, USA
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, USA
| | - Andrew Jones
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Iris Holzer
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, USA
| | - Erin Manaigo
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, USA
| | - Emily Geoghegan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Heath Goertzen
- Institute of the Environment, University of California, Davis, Davis, California, USA
| | - Whendee L Silver
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Kong L, Wu T, Xiao Y, Xu W, Zhang X, Daily GC, Ouyang Z. Natural capital investments in China undermined by reclamation for cropland. Nat Ecol Evol 2023; 7:1771-1777. [PMID: 37749401 PMCID: PMC10627817 DOI: 10.1038/s41559-023-02198-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Globally, rising food demand has caused widespread biodiversity and ecosystem services loss, prompting growing efforts in ecological protection and restoration. However, these efforts have been significantly undercut by further reclamation for cropland. Focusing on China, the world's largest grain producer, we found that at the national level from 2000 to 2015, reclamation for cropland undermined gains in wildlife habitat and the ecosystem services of water retention, sandstorm prevention, carbon sequestration and soil retention by 113.8%, 63.4%, 52.5%, 29.0% and 10.2%, respectively. To achieve global sustainability goals, conflicts between inefficient reclamation for cropland and natural capital investment need to be alleviated.
Collapse
Affiliation(s)
- Lingqiao Kong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Tong Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Natural Capital Project, Stanford University, Stanford, CA, USA
| | - Yi Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Weihua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaobiao Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Gretchen C Daily
- Natural Capital Project, Stanford University, Stanford, CA, USA
- Department of Biology and Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Agathokleous E, Frei M, Knopf OM, Muller O, Xu Y, Nguyen TH, Gaiser T, Liu X, Liu B, Saitanis CJ, Shang B, Alam MS, Feng Y, Ewert F, Feng Z. Adapting crop production to climate change and air pollution at different scales. NATURE FOOD 2023; 4:854-865. [PMID: 37845546 DOI: 10.1038/s43016-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Oliver M Knopf
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | | | | | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Athens, Greece
| | - Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China.
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| |
Collapse
|
5
|
Nissan A, Alcolombri U, Peleg N, Galili N, Jimenez-Martinez J, Molnar P, Holzner M. Global warming accelerates soil heterotrophic respiration. Nat Commun 2023; 14:3452. [PMID: 37301858 PMCID: PMC10257684 DOI: 10.1038/s41467-023-38981-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Carbon efflux from soils is the largest terrestrial carbon source to the atmosphere, yet it is still one of the most uncertain fluxes in the Earth's carbon budget. A dominant component of this flux is heterotrophic respiration, influenced by several environmental factors, most notably soil temperature and moisture. Here, we develop a mechanistic model from micro to global scale to explore how changes in soil water content and temperature affect soil heterotrophic respiration. Simulations, laboratory measurements, and field observations validate the new approach. Estimates from the model show that heterotrophic respiration has been increasing since the 1980s at a rate of about 2% per decade globally. Using future projections of surface temperature and soil moisture, the model predicts a global increase of about 40% in heterotrophic respiration by the end of the century under the worst-case emission scenario, where the Arctic region is expected to experience a more than two-fold increase, driven primarily by declining soil moisture rather than temperature increase.
Collapse
Affiliation(s)
- Alon Nissan
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland.
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Nadav Peleg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Nir Galili
- Geological Institute, Department of Earth Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Joaquin Jimenez-Martinez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Dübendorf, 8600, Switzerland
| | - Peter Molnar
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Markus Holzner
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Dübendorf, 8600, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest Snow and Landscape Research, WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
6
|
Moinet GYK, Hijbeek R, van Vuuren DP, Giller KE. Carbon for soils, not soils for carbon. GLOBAL CHANGE BIOLOGY 2023; 29:2384-2398. [PMID: 36644803 DOI: 10.1111/gcb.16570] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 05/28/2023]
Abstract
The role of soil organic carbon (SOC) sequestration as a 'win-win' solution to both climate change and food insecurity receives an increasing promotion. The opportunity may be too good to be missed! Yet the tremendous complexity of the two issues at stake calls for a detailed and nuanced examination of any potential solution, no matter how appealing. Here, we critically re-examine the benefits of global SOC sequestration strategies on both climate change mitigation and food production. While estimated contributions of SOC sequestration to climate change vary, almost none take SOC saturation into account. Here, we show that including saturation in estimations decreases any potential contribution of SOC sequestration to climate change mitigation by 53%-81% towards 2100. In addition, reviewing more than 21 meta-analyses, we found that observed yield effects of increasing SOC are inconsistent, ranging from negative to neutral to positive. We find that the promise of a win-win outcome is confirmed only when specific land management practices are applied under specific conditions. Therefore, we argue that the existing knowledge base does not justify the current trend to set global agendas focusing first and foremost on SOC sequestration. Away from climate-smart soils, we need a shift towards soil-smart agriculture, adaptative and adapted to each local context, and where multiple soil functions are quantified concurrently. Only such comprehensive assessments will allow synergies for land sustainability to be maximised and agronomic requirements for food security to be fulfilled. This implies moving away from global targets for SOC in agricultural soils. SOC sequestration may occur along this pathway and contribute to climate change mitigation and should be regarded as a co-benefit.
Collapse
Affiliation(s)
| | - Renske Hijbeek
- Plant Production Systems, Wageningen University, Wageningen, The Netherlands
| | - Detlef P van Vuuren
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Ken E Giller
- Plant Production Systems, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Ren C, Zhang X, Reis S, Wang S, Jin J, Xu J, Gu B. Climate change unequally affects nitrogen use and losses in global croplands. NATURE FOOD 2023; 4:294-304. [PMID: 37117545 DOI: 10.1038/s43016-023-00730-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/08/2023] [Indexed: 04/30/2023]
Abstract
Maintaining food production while reducing agricultural nitrogen pollution is a grand challenge under global climate change. Yet, the response of global agricultural nitrogen uses and losses to climate change on the temporal and spatial scales has not been fully characterized. Here, using historical data for 1961-2018 from over 150 countries, we show that global warming leads to small temporal but substantial spatial impacts on cropland nitrogen use and losses. Yield and nitrogen use efficiency increase in 29% and 56% of countries, respectively, whereas they reduce in the remaining countries compared with the situation without global warming in 2018. Precipitation and farm size changes would further intensify the spatial variations of nitrogen use and losses globally, but managing farm size could increase the global cropland nitrogen use efficiency to over 70% by 2100. Our results reveal the importance of reducing global inequalities of agricultural nitrogen use and losses to sustain global agriculture production and reduce agricultural pollution.
Collapse
Affiliation(s)
- Chenchen Ren
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Department of Land Management, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stefan Reis
- UK Centre for Ecology and Hydrology, Penicuik, UK
- University of Exeter Medical School, Knowledge Spa, Truro, UK
- The University of Edinburgh, School of Chemistry, Edinburgh, UK
| | - Sitong Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Jiaxin Jin
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
- Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Mayer A, Silver WL. The climate change mitigation potential of annual grasslands under future climates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2705. [PMID: 35808918 DOI: 10.1002/eap.2705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Composted manure and green waste amendments have been shown to increase net carbon (C) sequestration in rangeland soils and have been proposed as a means to help lower atmospheric CO2 concentrations. However, the effect of climate change on soil organic C (SOC) stocks and greenhouse gas emissions in rangelands is not well understood, and the viability of climate change mitigation strategies under future conditions is even less certain. We used a process-based biogeochemical model (DayCent) at a daily time step to explore the long-term effects of potential future climate changes on C and greenhouse gas dynamics in annual grassland ecosystems. We then used the model to explore how the same ecosystems might respond to climate change following compost amendments to soils and determined the long-term viability of net SOC sequestration under changing climates. We simulated net primary productivity (NPP), SOC, and greenhouse gas fluxes across seven California annual grasslands with and without compost amendments. We drove the DayCent simulations with field data and with site-specific daily climate data from two Earth system models (CanESM2 and HadGEM-ES) and two representative concentration pathways (RCP4.5 and RCP8.5) through 2100. NPP and SOC stocks in unamended and amended ecosystems were surprisingly insensitive to projected climate changes. A one-time amendment of compost to rangeland acted as a slow-release organic fertilizer and increased NPP by up to 390-814 kg C ha-1 year-1 across sites. The amendment effect on NPP was not sensitive to Earth system model or emissions scenario and endured through the end of the century. Net SOC sequestration amounted to 1.96 ± 0.02 Mg C ha-1 relative to unamended soils at the maximum amendment effect. Averaged across sites and scenarios, SOC sequestration peaked 22 ± 1 years after amendment and declined but remained positive throughout the century. Though compost stimulated nitrous oxide (N2 O) emissions, the cumulative net emissions (in CO2 equivalents) due to compost were far less than the amount of SOC sequestered. Compost amendments resulted in a net climate benefit of 69.6 ± 0.5 Tg CO2 e 20 ± 1 years after amendment if applied to similar ecosystems across the state, amounting to 39% of California's rangeland. These results suggest that the biogeochemical benefits of a single amendment of compost to rangelands in California are insensitive to climate change and could contribute to decadal-scale climate change mitigation goals alongside emissions reductions.
Collapse
Affiliation(s)
- Allegra Mayer
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Lab, Livermore, California, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Bansal S, Yin X, Schneider L, Sykes V, Jagadamma S, Lee J. Carbon footprint and net carbon gain of major long-term cropping systems under no-tillage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114505. [PMID: 35085973 DOI: 10.1016/j.jenvman.2022.114505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Due to increased contribution from agriculture sector to total greenhouse gas emissions, there is need to study the ability of no-tilled diverse cropping systems including crop sequences and bio-covers to mitigate C equivalent emissions. Thus, C-footprint was calculated for a long-term experiment at the University of Tennessee's Research and Education Center in Milan with six-crop sequences: continuous cotton (Gossypium hirsutum L.), cotton-corn (Zea mays L.), continuous corn, corn-soybean (Glycine max L.), continuous soybean, and soybean-cotton interacted with four bio-covers: poultry litter, hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), and fallow control with three replicates in a strip-plot design. During the experiment duration (2002-2017), field inputs (fertilizers, pesticides, and machinery used for planting, chemical applications, and harvesting) and outputs (crop yield, aboveground, and belowground residue) were assessed for each crop sequence/bio-cover combination to calculate total C equivalence of inputs and outputs, net C gain, C footprint per kg yield, sustainability index, and nitrous oxide emissions. For continuous corn, C-based input emissions were significantly higher by 0.28-0.62 Mg CO2 eq. ha-1 yr-1 than all other sequences, however, a greater net C gain (5.4 Mg C eq. ha-1 yr-1) was also observed due to increased crop yield, aboveground and belowground residues. Poultry litter application resulted in lower C-footprint (1.59-2.09 kg CO2 eq. kg-1 yield) than hairy vetch, wheat, and fallow under all crop sequences. Hairy vetch also lowered C-footprint per kg yield (∼2-14%) when compared with wheat under continuous systems of corn, soybean, and cotton, and cotton-corn rotation. Poultry litter application increased sustainability index (23-45) of all cropping sequences compared with other bio-covers. Hairy vetch improved sustainability index of corn including cropping sequences as compared with wheat and fallow. Inclusion of soybean and cotton with corn significantly decreased nitrous oxide emissions by 20-25%. The major factor contributing towards C-based input emissions was N fertilizer with 68% contribution to total emissions on average. It is concluded that application of poultry litter can reduce per yield C-footprint and enhance production system sustainability compared with hairy vetch, wheat, and fallow for monocultures or rotations of corn, soybean, cotton. Additionally, hairy vetch can outperform wheat in reducing the per yield C-footprint for continuous corn/soybean/cotton, and cotton-corn rotation. Especially for corn production systems, hairy vetch can enhance sustainability index compared with wheat and fallow. In order to increase per hectare net C gain, reduce per yield C-footprint and enhance sustainability index simultaneously, integration of continuous corn or corn-soybean/cotton rotation with bio-cover poultry litter or hairy vetch may perform better than the monocultures of soybean or cotton integrated with bio-cover wheat or fallow control in the Mid-south USA.
Collapse
Affiliation(s)
- S Bansal
- Dep. of Agronomy, Horticulture and Plant Science, South Dakota State Univ., Brookings, SD, 57007, United States
| | - X Yin
- Dep. of Plant Sciences, Univ. of Tennessee, Knoxville, TN, 37996, United States.
| | - L Schneider
- Dep. of Animal Science, Univ. of Tennessee, Knoxville, TN, 37996, United States
| | - V Sykes
- Dep. of Plant Sciences, Univ. of Tennessee, Knoxville, TN, 37996, United States
| | - S Jagadamma
- Dep. of Biosystems Engineering and Soil Science, Univ. of Tennessee, Knoxville, 37996, United States
| | - J Lee
- Dep. of Biosystems Engineering and Soil Science, Univ. of Tennessee, Knoxville, 37996, United States
| |
Collapse
|
10
|
Silver WL, Perez T, Mayer A, Jones AR. The role of soil in the contribution of food and feed. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200181. [PMID: 34365816 PMCID: PMC8349637 DOI: 10.1098/rstb.2020.0181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Soils play a critical role in the production of food and feed for a growing global population. Here, we review global patterns in soil characteristics, agricultural production and the fate of embedded soil nutrients. Nitrogen- and organic-rich soils supported the highest crop yields, yet the efficiency of nutrient utilization was concentrated in regions with lower crop productivity and lower rates of chemical fertilizer inputs. Globally, soil resources were concentrated in animal feed, resulting in large inefficiencies in nutrient utilization and losses from the food system. Intercontinental transport of soil-derived nutrients displaced millions of tonnes of nitrogen and phosphorus annually, much of which was ultimately concentrated in urban waste streams. Approximately 40% of the global agricultural land area was in small farms providing over 50% of the world's food and feed needs but yield gaps and economic constraints limit the ability to intensify production on these lands. To better use and protect soil resources in the global food system, policies and actions should encourage shifts to more nutrient-efficient diets, strategic intensification and technological improvement, restoration and maintenance of soil fertility and stability, and enhanced resilience in the face of global change. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- W. L. Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - T. Perez
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Centro de Ciencias Atmosféricas y Biogeoquímica, IVIC, Caracas, Venezuela
| | - A. Mayer
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - A. R. Jones
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Billings SA, Lajtha K, Malhotra A, Berhe AA, de Graaff MA, Earl S, Fraterrigo J, Georgiou K, Grandy S, Hobbie SE, Moore JAM, Nadelhoffer K, Pierson D, Rasmussen C, Silver WL, Sulman BN, Weintraub S, Wieder W. Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02290. [PMID: 33426701 DOI: 10.1002/eap.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil-related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable.
Collapse
Affiliation(s)
- S A Billings
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas, 66047, USA
| | - K Lajtha
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - A Malhotra
- Department of Earth System Science, Stanford University, Stanford, California, 94305, USA
| | - A A Berhe
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, 95344, USA
| | - M-A de Graaff
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - S Earl
- Global Institute of Sustainability, Arizona State University, Tempe, Arizona, 85281, USA
| | - J Fraterrigo
- Department of Natural Resources and Environmental Sciences, and Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, Illinois, 61820, USA
| | - K Georgiou
- Department of Earth System Science, Stanford University, Stanford, California, 94305, USA
| | - S Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - S E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455, USA
| | - J A M Moore
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, USA
| | - K Nadelhoffer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - D Pierson
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - C Rasmussen
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - W L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - B N Sulman
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, USA
| | - S Weintraub
- National Ecological Observatory Network, Batelle, Boulder, Colorado, 80309, USA
| | - W Wieder
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, 80307, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
12
|
Beerling DJ, Kantzas EP, Lomas MR, Wade P, Eufrasio RM, Renforth P, Sarkar B, Andrews MG, James RH, Pearce CR, Mercure JF, Pollitt H, Holden PB, Edwards NR, Khanna M, Koh L, Quegan S, Pidgeon NF, Janssens IA, Hansen J, Banwart SA. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020; 583:242-248. [DOI: 10.1038/s41586-020-2448-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
|
13
|
Lee T, Jung S, Hong J, Wang CH, Alessi DS, Lee SS, Park YK, Kwon EE. Using CO 2 as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6329-6343. [PMID: 32343132 DOI: 10.1021/acs.est.0c01862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As global warming and climate change become perceived as significant, the release of greenhouse gases (GHGs) stored in the earth's polar regions is considered a matter of concern. Here, we focused on exploiting GHGs to address potential global warming challenges in the north polar regions. In particular, we used CO2 as a soft oxidant to recover energy as syngas (CO and H2) and to produce biochars from pyrolysis of peat moss. CO2 expedited homogeneous reaction with volatile matters from peat moss pyrolysis, and the mechanistic CO2 role resulted in the conversion of CO2 and peat moss to CO at ≥530 °C. Steel slag waste was then used as an ex situ catalyst to increase reaction kinetics, addressing the issue of the role of CO2 being limited to ≥530 °C, with the result where substantial H2 and CO formation was achieved at a milder temperature. The porosity of biochars, a solid peat moss pyrolysis product, was modified in the presence of CO2, with a significant improvement in CO2 adsorption capacity compared to those achieved by N2 pyrolysis. Therefore, CO2 has the potential to serve as an initial feedstock in sustainable biomass-to-energy applications and biochar production, mitigating atmospheric carbon concentrations.
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinkyu Hong
- Ecosystem-Atmosphere Process Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
14
|
Effect of Cover Crop on Carbon Distribution in Size and Density Separated Soil Aggregates. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing soil organic carbon (SOC) stocks in agricultural soils can contribute to stabilizing or even lowering atmospheric greenhouse gas (GHG) concentrations. Cover crop rotation has been shown to increase SOC and provide productivity benefits for agriculture. Here we used a split field design to evaluate the short-term effect of cover crop on SOC distribution and chemistry using a combination of bulk, isotopic, and spectroscopic analyses of size-and density-separated soil aggregates. Macroaggregates (>250 µm) incorporated additional plant material with cover crop as evidenced by more negative δ13C values (−25.4‰ with cover crop compared to −25.1‰ without cover crop) and increased phenolic (plant-like) resonance in carbon NEXAFS spectra. Iron EXAFS data showed that the Fe pool was composed of 17–21% Fe oxide with the remainder a mix of primary and secondary minerals. Comparison of oxalate and dithionite extractions suggests that cover crop may also increase Fe oxide crystallinity, especially in the dense (>2.4 g cm−3) soil fraction. Cover crop δ13C values were more negative across density fractions of bulk soil, indicating the presence of less processed organic carbon. Although no significant difference was observed in bulk SOC on a mass per mass basis between cover and no cover crop fields after one season, isotopic and spectroscopic data reveal enhanced carbon movement between aggregates in cover crop soil.
Collapse
|
15
|
Vieira VHADM, Matheus DR. Environmental assessments of biological treatments of biowaste in life cycle perspective: A critical review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1183-1198. [PMID: 31623534 DOI: 10.1177/0734242x19879222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Municipal biowaste is a major environmental issue. Life-cycle assessment is a valuable tool to assess recycling options, and anaerobic digestion and composting have performed adequately. However, reviews indicate several discrepancies between studies. Thus, we critically review 25 life-cycle assessments of the composting and anaerobic digestion of municipal biowaste. Our objective is to identify decisive factors, methodological gaps and processes that affect environmental performance. We generally identified methodological gaps in expanding systems borders. In energy systems, the replaced energy source did not consider power generation or dynamic regulation. All studies adopted mixed energy sources or marginal approaches. Agroecosystems included the carbon sequestration potential and compensation for the production of synthetic fertilizers only. A limited range of scientifically proven benefits of compost use has been reported. In general, studies provided a limited account of the effects of use on land emissions, but contradictory assumptions emerged, mainly in modelling synthetic fertilizer compensation. Only three studies compensated direct emissions from the use of synthetic fertilizers, and none included indirect emissions. Further studies should include an analysis of the additional benefits of compost use, compensate for the effects of emissions from synthetic fertilizer use on land and mix attributional and consequential approaches in energy system expansion.
Collapse
Affiliation(s)
- Victor Hugo Argentino de Morais Vieira
- Centre of Engineering, Modelling and Applied Social Sciences, Environmental Science and Technology Graduate Program, Federal University of ABC, Santo André, Brazil
| | - Dácio Roberto Matheus
- Centre of Engineering, Modelling and Applied Social Sciences, Environmental Science and Technology Graduate Program, Federal University of ABC, Santo André, Brazil
| |
Collapse
|