1
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
2
|
Wang XY, Chai X, Shan LH, Xu XH, Xu L, Hou TJ, Sun HY, Li D. A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model. Acta Pharmacol Sin 2024; 45:1978-1991. [PMID: 38750073 PMCID: PMC11335958 DOI: 10.1038/s41401-024-01284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 08/22/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy among men worldwide. The aberrant activation of androgen receptor (AR) signaling has been recognized as a crucial oncogenic driver for PCa and AR antagonists are widely used in PCa therapy. To develop novel AR antagonist, a machine-learning MIEC-SVM model was established for the virtual screening and 51 candidates were selected and submitted for bioactivity evaluation. To our surprise, a new-scaffold AR antagonist C2 with comparable bioactivity with Enz was identified at the initial round of screening. C2 showed pronounced inhibition on the transcriptional function (IC50 = 0.63 μM) and nuclear translocation of AR and significant antiproliferative and antimetastatic activity on PCa cell line of LNCaP. In addition, C2 exhibited a stronger ability to block the cell cycle of LNCaP than Enz at lower dose and superior AR specificity. Our study highlights the success of MIEC-SVM in discovering AR antagonists, and compound C2 presents a promising new scaffold for the development of AR-targeted therapeutics.
Collapse
Affiliation(s)
- Xin-Yue Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Chai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Hu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiao-Hong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ting-Jun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Yong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
| |
Collapse
|
3
|
Travis CR, Dumais RG, Treacy JW, Kean KM, Houk KN, Waters ML. Contribution of Electrostatic CH 3-π Interactions to Recognition of Histone Asymmetric Dimethylarginine by the SPIN1 Triple Tudor Domain. J Am Chem Soc 2024; 146:20678-20684. [PMID: 39023428 PMCID: PMC11407275 DOI: 10.1021/jacs.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Methylation of arginine (Arg) residues on histones creates a new binding epitope, enabling recognition by aromatic cage binding pockets in Tudor domains; these protein-protein interactions (PPIs) govern gene expression. Despite their biological importance, the molecular details of methylated Arg recognition are poorly understood. While the desolvation, hydrogen bonding, and guanidinium stacking of methylated Arg have been explored in model systems and proposed to contribute to binding, direct interactions between the methyl groups and the aromatic residues in the binding pocket have not previously been investigated. Herein, we mechanistically study the CH3-π interactions between the SPIN1 triple Tudor domain and histone asymmetric dimethylarginine. We find that these CH3-π interactions are electrostatically tunable, exhibiting cation-π character, albeit attenuated relative to cation-π interactions with quaternary ammonium ions, offering key insight into how methylation of Arg alters its binding epitope to enable new PPIs.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan G Dumais
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kelsey M Kean
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Travis CR, Kean KM, Albanese KI, Henriksen HC, Treacy JW, Chao EY, Houk KN, Waters ML. Trimethyllysine Reader Proteins Exhibit Widespread Charge-Agnostic Binding via Different Mechanisms to Cationic and Neutral Ligands. J Am Chem Soc 2024; 146:3086-3093. [PMID: 38266163 PMCID: PMC11140585 DOI: 10.1021/jacs.3c10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In the last 40 years, cation-π interactions have become part of the lexicon of noncovalent forces that drive protein binding. Indeed, tetraalkylammoniums are universally bound by aromatic cages in proteins, suggesting that cation-π interactions are a privileged mechanism for binding these ligands. A prominent example is the recognition of histone trimethyllysine (Kme3) by the conserved aromatic cage of reader proteins, dictating gene expression. However, two proteins have recently been suggested as possible exceptions to the conventional understanding of tetraalkylammonium recognition. To broadly interrogate the role of cation-π interactions in protein binding interactions, we report the first large-scale comparative evaluation of reader proteins for a neutral Kme3 isostere, experimental and computational mechanistic studies, and structural analysis. We find unexpected widespread binding of readers to a neutral isostere with the first examples of readers that bind the neutral isostere more tightly than Kme3. We find that no single factor dictates the charge selectivity, demonstrating the challenge of predicting such interactions. Further, readers that bind both cationic and neutral ligands differ in mechanism: binding Kme3 via cation-π interactions and the neutral isostere through the hydrophobic effect in the same aromatic cage. This discovery explains apparently contradictory results in previous studies, challenges traditional understanding of molecular recognition of tetraalkylammoniums by aromatic cages in myriad protein-ligand interactions, and establishes a new framework for selective inhibitor design by exploiting differences in charge dependence.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelsey M. Kean
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanne C. Henriksen
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Elaine Y. Chao
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Parkinson J, Hard R, Ainsworth R, Wang W. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Proteins 2023; 91:32-46. [PMID: 35927178 PMCID: PMC9771871 DOI: 10.1002/prot.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Richard Ainsworth
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
6
|
Haynes KA, Priode JH. Rapid Single-Pot Assembly of Modular Chromatin Proteins for Epigenetic Engineering. Methods Mol Biol 2023; 2599:191-214. [PMID: 36427151 DOI: 10.1007/978-1-0716-2847-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromatin is the nucleoprotein complex that organizes genomic DNA in the nuclei of eukaryotic cells. Chromatin-modifying enzymes and chromatin-binding regulators generate chromatin states that affect DNA compaction, repair, gene expression, and ultimately cell phenotype. Many natural chromatin mediators contain subdomains that can be isolated and recombined to build synthetic regulators and probes. Engineered chromatin proteins make up a growing collection of new tools for cell engineering and can help deepen our understanding of the mechanism by which chromatin features, such as modifications of histones and DNA, contribute to the epigenetic states that govern DNA-templated processes. To support efficient exploration of the large combinatorial design space of synthetic chromatin proteins, we have developed a Golden Gate assembly method for one-step construction of protein-encoding recombinant DNA. A set of standard 2-amino acid linkers allows facile assembly of any combination of up to four protein modules, obviating the need to design different compatible overhangs to ligate different modules. Beginning with the identification of protein modules of interest, a synthetic chromatin protein can be built and expressed in vitro or in cells in under 2 weeks.
Collapse
Affiliation(s)
- Karmella A Haynes
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| | - J Harrison Priode
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Muzzopappa F, Hummert J, Anfossi M, Tashev SA, Herten DP, Erdel F. Detecting and quantifying liquid-liquid phase separation in living cells by model-free calibrated half-bleaching. Nat Commun 2022; 13:7787. [PMID: 36526633 PMCID: PMC9758202 DOI: 10.1038/s41467-022-35430-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cells contain numerous substructures that have been proposed to form via liquid-liquid phase separation (LLPS). It is currently debated how to reliably distinguish LLPS from other mechanisms. Here, we benchmark different methods using well-controlled model systems in vitro and in living cells. We find that 1,6-hexanediol treatment and classical FRAP fail to distinguish LLPS from the alternative scenario of molecules binding to spatially clustered binding sites without phase-separating. In contrast, the preferential internal mixing seen in half-bleach experiments robustly distinguishes both mechanisms. We introduce a workflow termed model-free calibrated half-FRAP (MOCHA-FRAP) to probe the barrier at the condensate interface that is responsible for preferential internal mixing. We use it to study components of heterochromatin foci, nucleoli, stress granules and nuage granules, and show that the strength of the interfacial barrier increases in this order. We anticipate that MOCHA-FRAP will help uncover the mechanistic basis of biomolecular condensates in living cells.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France
| | - Johan Hummert
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Michela Anfossi
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France
| | - Stanimir Asenov Tashev
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Fabian Erdel
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Veggiani G, Villaseñor R, Martyn GD, Tang JQ, Krone MW, Gu J, Chen C, Waters ML, Pearce KH, Baubec T, Sidhu SS. High-affinity chromodomains engineered for improved detection of histone methylation and enhanced CRISPR-based gene repression. Nat Commun 2022; 13:6975. [PMID: 36379931 PMCID: PMC9666628 DOI: 10.1038/s41467-022-34269-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone methylation is an important post-translational modification that plays a crucial role in regulating cellular functions, and its dysregulation is implicated in cancer and developmental defects. Therefore, systematic characterization of histone methylation is necessary to elucidate complex biological processes, identify biomarkers, and ultimately, enable drug discovery. Studying histone methylation relies on the use of antibodies, but these suffer from lot-to-lot variation, are costly, and cannot be used in live cells. Chromatin-modification reader domains are potential affinity reagents for methylated histones, but their application is limited by their modest affinities. We used phage display to identify key residues that greatly enhance the affinities of Cbx chromodomains for methylated histone marks and develop a general strategy for enhancing the affinity of chromodomains of the human Cbx protein family. Our strategy allows us to develop powerful probes for genome-wide binding analysis and live-cell imaging. Furthermore, we use optimized chromodomains to develop extremely potent CRISPR-based repressors for tailored gene silencing. Our results highlight the power of engineered chromodomains for analyzing protein interaction networks involving chromatin and represent a modular platform for efficient gene silencing.
Collapse
Affiliation(s)
- G Veggiani
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - R Villaseñor
- Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - G D Martyn
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - J Q Tang
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - M W Krone
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - J Gu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - C Chen
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - M L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - K H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - T Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
- Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584, Utrecht, The Netherlands
| | - S S Sidhu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
9
|
Wang Q, Wang Z, Tian S, Wang L, Tang R, Yu Y, Ge J, Hou T, Hao H, Sun H. Determination of Molecule Category of Ligands Targeting the Ligand-Binding Pocket of Nuclear Receptors with Structural Elucidation and Machine Learning. J Chem Inf Model 2022; 62:3993-4007. [PMID: 36040137 DOI: 10.1021/acs.jcim.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of transcriptional activation/repression of the nuclear receptors (NRs) involves two main conformations of the NR protein, namely, the active (agonistic) and inactive (antagonistic) conformations. Binding of agonists or antagonists to the ligand-binding pocket (LBP) of NRs can regulate the downstream signaling pathways with different physiological effects. However, it is still hard to determine the molecular type of a LBP-bound ligand because both the agonists and antagonists bind to the same position of the protein. Therefore, it is necessary to develop precise and efficient methods to facilitate the discrimination of agonists and antagonists targeting the LBP of NRs. Here, combining structural and energetic analyses with machine-learning (ML) algorithms, we constructed a series of structure-based ML models to determine the molecular category of the LBP-bound ligands. We show that the proposed models work robustly and with high accuracy (ACC > 0.9) for determining the category of molecules derived from docking-based and crystallized poses. Furthermore, the models are also capable of determining the molecular category of ligands with dual opposite functions on different NRs (i.e., working as an agonist in one NR target, whereas functioning as an antagonist in another) with reasonable accuracy. The proposed method is expected to facilitate the determination of the molecular properties of ligands targeting the LBP of NRs with structural interpretation.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Sheng Tian
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Yang Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Jingxuan Ge
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
10
|
Ma C, Jiang C, Zhao D, Li S, Li R, Li L. Development in Detection Methods for the Expression of Surface-Displayed Proteins. Front Microbiol 2022; 13:899578. [PMID: 35558116 PMCID: PMC9085562 DOI: 10.3389/fmicb.2022.899578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Directed evolution is a widely-used engineering strategy for improving the stabilities or biochemical functions of proteins by repeated rounds of mutation and selection. A protein of interest is selected as the template and expressed on a molecular display platform such as a bacteriophage for engineering. Initially, the surface-displayed protein template needs to be checked against the desired target via ELISA to examine whether the functions of the displayed template remain intact. The ELISA signal is subject to the protein-target binding affinity. A low-affinity results in a weak ELISA signal which makes it difficult to determine whether the weak signal is because of low affinity or because of poor expression of the protein. Using a methyllysine-binding chromodomain protein Cbx1 that weakly binds to the histone H3K9me3 peptide, we developed and compared three different approaches to increase the signal-to-background ratio of ELISA measurements. We observed that the specific peptide-binding signal was enhanced by increasing the Cbx1 phage concentration on the ELISA plate. The introduction of previously known gain-of-function mutations to the Cbx1 protein significantly increased the ELISA signals. Moreover, we demonstrated that the H3K9me3-specific binding signal was enhanced by fusing Cbx1 with a high-affinity phosphotyrosine-binding protein and by coating the ELISA plate with a mixture of H3K9me3 and phosphotyrosine peptides. This approach also worked with binding to a lower affinity momomethyllysine peptide H3K9me1. These approaches may help improve ELISA experiments when dealing with low-affinity ligand-protein interactions.
Collapse
Affiliation(s)
- Chenglong Ma
- College of Life Sciences, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chunyang Jiang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Dongping Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shuhao Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lei Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
12
|
Arora S, Sappa S, Hinkelman K, Islam K. Engineering a methyllysine reader with photoactive amino acid in mammalian cells. Chem Commun (Camb) 2020; 56:12210-12213. [PMID: 32926023 DOI: 10.1039/d0cc03814h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Methyllysine sites in proteins are recognized by an array of reader domains that mediate protein-protein interactions for controlling cellular processes. Herein, we engineer a chromodomain, an essential methyllysine reader, to carry 4-azido-l-phenylalanine (AzF) via amber suppressor mutagenesis and demonstrate its potential to bind and crosslink methylated proteins in human cells. We further develop a first-of-its kind chromodomain variant bearing two AzF units with enhanced crosslinking potential suitable for profiling the transient methyllysine interactome.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
13
|
Parkinson J, Hard R, Ainsworth RI, Li N, Wang W. Engineering a Histone Reader Protein by Combining Directed Evolution, Sequencing, and Neural Network Based Ordinal Regression. J Chem Inf Model 2020; 60:3992-4004. [PMID: 32786513 DOI: 10.1021/acs.jcim.0c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Directed evolution is a powerful approach for engineering proteins with enhanced affinity or specificity for a ligand of interest but typically requires many rounds of screening/library mutagenesis to obtain mutants with desired properties. Furthermore, mutant libraries generally only cover a small fraction of the available sequence space. Here, for the first time, we use ordinal regression to model protein sequence data generated through successive rounds of sorting and amplification of a protein-ligand system. We show that the ordinal regression model trained on only two sorts successfully predicts chromodomain CBX1 mutants that would have stronger binding affinity with the H3K9me3 peptide. Furthermore, we can extract the predictive features using contextual regression, a method to interpret nonlinear models, which successfully guides identification of strong binders not even present in the original library. We have demonstrated the power of this approach by experimentally confirming that we were able to achieve the same improvement in binding affinity previously achieved through a more laborious directed evolution process. This study presents an approach that reduces the number of rounds of selection required to isolate strong binders and facilitates the identification of strong binders not present in the original library.
Collapse
|
14
|
Albanese KI, Krone MW, Petell CJ, Parker MM, Strahl BD, Brustad EM, Waters ML. Engineered Reader Proteins for Enhanced Detection of Methylated Lysine on Histones. ACS Chem Biol 2020; 15:103-111. [PMID: 31634430 PMCID: PMC7365037 DOI: 10.1021/acschembio.9b00651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone post-translational modifications (PTMs) are crucial for many cellular processes including mitosis, transcription, and DNA repair. The cellular readout of histone PTMs is dependent on both the chemical modification and histone site, and the array of histone PTMs on chromatin is dynamic throughout the eukaryotic life cycle. Accordingly, methods that report on the presence of PTMs are essential tools for resolving open questions about epigenetic processes and for developing therapeutic diagnostics. Reader domains that recognize histone PTMs have shown potential as advantageous substitutes for anti-PTM antibodies, and engineering efforts aimed at enhancing reader domain affinities would advance their efficacy as antibody alternatives. Here we describe engineered chromodomains from Drosophila melanogaster and humans that bind more tightly to H3K9 methylation (H3K9me) marks and result in the tightest reported reader-H3K9me interaction to date. Point mutations near the binding interface of the HP1 chromodomain were screened in a combinatorial fashion, and a triple mutant was found that binds 20-fold tighter than the native scaffold without any loss in PTM-site selectivity. The beneficial mutations were then translated to a human homologue, CBX1, resulting in an even tighter interaction with H3K9me3. Furthermore, we show that these engineered readers (eReaders) increase detection of H3K9me marks in several biochemical assays and outperform a commercial anti-H3K9me antibody in detecting H3K9me-containing nucleosomes in vitro, demonstrating the utility of eReaders to complement antibodies in epigenetics research.
Collapse
Affiliation(s)
- Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie W. Krone
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher J. Petell
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Madison M. Parker
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Eric M. Brustad
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev 2019; 119:9478-9508. [DOI: 10.1021/acs.chemrev.9b00055] [Citation(s) in RCA: 578] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ercheng Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU−ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200122, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|