1
|
Lee HN, Lee S, Hong J, Yoo H, Jeong J, Kim Y, Shin HM, Jang M, Lee C, Kim H, Seong J. Novel FRET-based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor-T Cell Function. SMALL METHODS 2025; 9:e2401016. [PMID: 39258379 PMCID: PMC11926508 DOI: 10.1002/smtd.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented. Using this biosensor, scFv variants for mesothelin-targeting CARs and identified as a novel scFv with enhanced CAR-T cell functionality despite its lower affinity than the original screened. The original CAR promoted internalization and trogocytosis, disrupting stable IS formation and impairing functionality are further observed. These findings emphasize the importance of enhancing IS quality rather than maximizing scFv affinity for superior CAR-T cell responses. Therefore, the FRET-based IS biosensor is a powerful tool for predicting CAR-T cell function, enabling the efficient engineering of next-generation CARs with enhanced antitumor potency.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Soojin Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jisu Hong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jiyun Jeong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
| | - Yong‐Woo Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
| | - Hyun Mu Shin
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Chang‐Han Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Hang‐Rae Kim
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jihye Seong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
2
|
Zhang H, Winter P, Wartmann T, Simioni L, Al-Madhi S, Perrakis A, Croner RS, Shi W, Yu Q, Kahlert UD. Unlocking Clinical Insights: Lymphocyte-Specific Protein Tyrosine Kinase Candidates as Promising Therapeutic Targets for Pancreatic Cancer Risk Stratification. Cancer Biother Radiopharm 2025; 40:1-10. [PMID: 38837745 DOI: 10.1089/cbr.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Background: Uncover the pivotal link between lymphocyte-specific protein tyrosine kinase (Lck)-related genes and clinical risk stratification in pancreatic cancer. Methods: This study identifies shared genes between differentially expressed genes (DEGs) and Lck-related genes in pancreatic cancer using a methodological framework rooted in The Cancer Genome Atlas database. Feature gene selection is accomplished and a signature model is constructed. Statistical significant clinical endpoints such as overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were defined. Results: After performing random survival forest, Lasso regression, and multivariate Cox regression model, 7 trait genes out of 272 Lck-associated DEGs are selected to create a signature model that is independent of other clinical factors and can predict OS and DSS. It appears that high-risk patients have activated the TP53 signaling pathway and the cell cycle signaling pathway. LAMA3 turned out to be the hub gene of the signature with high expression in pancreatic cancer. Patients with increased expression of LAMA3 had a short OS, DSS, and PFI in comparison. The candidate competing endogenous RNA network of LAMA3 turned out to be OPI5-AS1/hsa-miR-186-5p/LAMA3 axis. Conclusions: A characteristic signature of seven Lck-related genes, especially LAMA3, has been shown to be a key factor in clinical risk stratification for pancreatic cancer.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Paul Winter
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Thomas Wartmann
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Luca Simioni
- Institute for molecular and clinical immunology, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Sara Al-Madhi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Aris Perrakis
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Roland S Croner
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Quan Yu
- Department of Clinical Nutrition, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
5
|
Cheng X, Shen J, Xu J, Zhu J, Xu P, Wang Y, Gao M. In vivo clinical molecular imaging of T cell activity. Trends Immunol 2023; 44:1031-1045. [PMID: 37932176 DOI: 10.1016/j.it.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Tumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation. Current challenges and prospects are also discussed that aim to achieve a better strategy for real-time monitoring of T cell activity, predicting prognoses and responses to tumor immunotherapy, and assessing disease management.
Collapse
Affiliation(s)
- Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jiahao Shen
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, PR China.
| | - Jinfeng Zhu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Pei Xu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Liu L, Yoon CW, Yuan Z, Guo T, Qu Y, He P, Yu X, Zhu Z, Limsakul P, Wang Y. Cellular and molecular imaging of CAR-T cell-based immunotherapy. Adv Drug Deliv Rev 2023; 203:115135. [PMID: 37931847 PMCID: PMC11052581 DOI: 10.1016/j.addr.2023.115135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy. This review summarizes the signaling network and the cellular and molecular imaging tools and platforms that are utilized in CAR-T cell-based immune therapies, covering both in vitro and in vivo studies. Firstly, we provide an overview of the existing understanding of the activation and cytotoxic mechanisms of CAR-T cells, compared to the mechanism of T cell receptor (TCR) signaling pathways. We further describe the commonly employed tools for live cell imaging, coupled with recent research progress, with a focus on genetically encoded fluorescent proteins (FPs) and biosensors. We then discuss the utility of diverse in vivo imaging modalities, including fluorescence and bioluminescence imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and photoacoustic (PA) imaging, for noninvasive monitoring of CAR-T cell dynamics within tumor tissues, thereby providing critical insights into therapy's strengths and weaknesses. Lastly, we discuss the current challenges and future directions of CAR-T cell therapy from the imaging perspective. We foresee that a comprehensive and integrative approach to CAR-T cell imaging will enable the development of more effective treatments for solid tumors in the future.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhou Yuan
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ziyue Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Zhang S, Zhao L, Guo M, Liu P, Li S, Xie W, Tian AL, Pol JG, Chen H, Pan H, Mao M, Li Y, Zitvogel L, Jin Y, Kepp O, Kroemer G. Anticancer effects of ikarugamycin and astemizole identified in a screen for stimulators of cellular immune responses. J Immunother Cancer 2023; 11:e006785. [PMID: 37419511 PMCID: PMC10347457 DOI: 10.1136/jitc-2023-006785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Most immunotherapies approved for clinical use rely on the use of recombinant proteins and cell-based approaches, rendering their manufacturing expensive and logistics onerous. The identification of novel small molecule immunotherapeutic agents might overcome such limitations. METHOD For immunopharmacological screening campaigns, we built an artificial miniature immune system in which dendritic cells (DCs) derived from immature precursors present MHC (major histocompatibility complex) class I-restricted antigen to a T-cell hybridoma that then secretes interleukin-2 (IL-2). RESULTS The screening of three drug libraries relevant to known signaling pathways, FDA (Food and Drug Administration)-approved drugs and neuroendocrine factors yielded two major hits, astemizole and ikarugamycin. Mechanistically, ikarugamycin turned out to act on DCs to inhibit hexokinase 2, hence stimulating their antigen presenting potential. In contrast, astemizole acts as a histamine H1 receptor (H1R1) antagonist to activate T cells in a non-specific, DC-independent fashion. Astemizole induced the production of IL-2 and interferon-γ (IFN-γ) by CD4+ and CD8+ T cells both in vitro and in vivo. Both ikarugamycin and astemizole improved the anticancer activity of the immunogenic chemotherapeutic agent oxaliplatin in a T cell-dependent fashion. Of note, astemizole enhanced the CD8+/Foxp3+ ratio in the tumor immune infiltrate as well as IFN-γ production by local CD8+ T lymphocytes. In patients with cancer, high H1R1 expression correlated with low infiltration by TH1 cells, as well as with signs of T-cell exhaustion. The combination of astemizole and oxaliplatin was able to cure the majority of mice bearing orthotopic non-small cell lung cancers (NSCLC), then inducing a state of protective long-term immune memory. The NSCLC-eradicating effect of astemizole plus oxaliplatin was lost on depletion of either CD4+ or CD8+ T cells, as well as on neutralization of IFN-γ. CONCLUSIONS These findings underscore the potential utility of this screening system for the identification of immunostimulatory drugs with anticancer effects.
Collapse
Affiliation(s)
- Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Sijing Li
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Wei Xie
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ai-Ling Tian
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Jonathan G Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Hui Pan
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Misha Mao
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
- Surgical Oncology Department, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Laurence Zitvogel
- INSERM U1015, Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villjuif, France
- ClinicObiome, Gustave-Roussy, Villejuif, France
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
8
|
Duan Y, Chen J, Meng X, Liu L, Shang K, Wu X, Wang Y, Huang Z, Liu H, Huang Y, Zhou C, Gao X, Wang Y, Sun J. Balancing activation and co-stimulation of CAR tunes signaling dynamics and enhances therapeutic potency. Mol Ther 2023; 31:35-47. [PMID: 36045585 PMCID: PMC9840118 DOI: 10.1016/j.ymthe.2022.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.
Collapse
Affiliation(s)
- Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Zihan Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Houyu Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Chun Zhou
- School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Porciello N, Cipria D, Masi G, Lanz AL, Milanetti E, Grottesi A, Howie D, Cobbold SP, Schermelleh L, He HT, D'Abramo M, Destainville N, Acuto O, Nika K. Role of the membrane anchor in the regulation of Lck activity. J Biol Chem 2022; 298:102663. [PMID: 36372231 PMCID: PMC9763865 DOI: 10.1016/j.jbc.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.
Collapse
Affiliation(s)
- Nicla Porciello
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Deborah Cipria
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Giulia Masi
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna-Lisa Lanz
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Edoardo Milanetti
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | | | - Duncan Howie
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Steve P Cobbold
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Hai-Tao He
- Aix Marseille Université, CNRS, INSERM, CINL, Marseille, France
| | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, UPS, Toulouse, France.
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom; Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
10
|
Integrative and Comprehensive Pan-Cancer Analysis of Lymphocyte-Specific Protein Tyrosine Kinase in Human Tumors. Int J Mol Sci 2022; 23:ijms232213998. [PMID: 36430477 PMCID: PMC9697346 DOI: 10.3390/ijms232213998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is common in a variety of hematologic malignancies but comparatively less common in solid tumors. This study aimed to explore the potential diagnostic and prognostic value of LCK across tumors through integrative and comprehensive pan-cancer analysis, as well as experimental validation. Multiple databases were used to explore the expression, alteration, prognostic value, association with immune infiltration, and potential functional pathways of LCK in pan-cancers. The results were further validated by western blotting and qPCR of patient samples as well as tumor cell lines. High LCK expression typically represents a better prognosis. Notably, drug sensitivity prediction of LCK identified P-529 as a candidate for drug development. Gene Annotations (GO) and KEGG analyses showed significant enrichment of PD-L1 and the T-cell receptor pathway. The results from patient samples and tumor cell lines confirmed these conclusions in LIHC. In conclusion, LCK is differentially expressed in multiple tumors and normal tissues. Further analysis highlighted its association with prognostic implications, pan-cancer genetic alterations, and immune signatures. Our data provide evidence for a diagnostic marker of LCK and the possible use of LCK as a target for the treatment of tumors.
Collapse
|
11
|
Zhou J, Chen J, Huang Y, Gao X, Zhou C, Meng X, Sun J. Signaling Dynamics of TSHR-Specific CAR-T Cells Revealed by FRET-Based Biosensors. Front Cell Dev Biol 2022; 10:845319. [PMID: 35252208 PMCID: PMC8893275 DOI: 10.3389/fcell.2022.845319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 12/05/2022] Open
Abstract
Although most patients with thyroid cancers have good prognosis and long-term survival, some patients are refractory to traditional therapeutic approaches and face a high risk of mortality. CAR-T therapy provides an attractive strategy to treat these patients. Considering the limited expression in thyroid tissues, thyroid-stimulating hormone receptor (TSHR) has been considered as a promising candidate as CAR-T target. However, it is still a challenge to find the optimal CAR design for the treatment of thyroid cancers. Dynamic signaling cascade is initiated by CAR molecules during CAR-T cell activation. The development of FRET-based biosensors enables us to detect the signaling dynamics of key kinases during CAR-T cell activation with high spatiotemporal resolution. Here using the ZAP70 and ERK biosensors, we visualized the dynamics of ZAP70 and ERK activities in TSHR-specific CAR-T cells upon antigen stimulation. We first constructed several TSHR-targeting CARs for the treatment of advanced thyroid cancers. The TSHR CAR-T cells with CD28 or 4-1BB co-stimulatory signaling domains exhibited potent cytotoxicity in vitro. By FRET imaging, we observed rapid increase of ZAP70 and ERK activities in TSHR CAR-T cells upon target cell binding. Even though CD28-based CAR-T cells had similar ZAP70 activation dynamics as 4-1BB-based CAR-T cells, they displayed slightly enhanced ERK activation, which may contribute to their faster anti-tumor kinetics in vivo. These results demonstrated the efficacy of TSHR CAR-T cells to treat advanced thyroid cancers. Our study indicated the potential of applying FRET biosensors to optimize the design of CAR for effective CAR-T therapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast and Thyroid Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangqing Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chun Zhou
- School of Public Health, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Meng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
12
|
Chen M, Sun T, Zhong Y, Zhou X, Zhang J. A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity. ACS CENTRAL SCIENCE 2021; 7:2009-2020. [PMID: 34963894 PMCID: PMC8704034 DOI: 10.1021/acscentsci.1c00919] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 06/14/2023]
Abstract
The serine/threonine protein kinase Akt regulates a wide range of cellular functions via phosphorylation of various substrates distributed throughout the cell, including at the plasma membrane and endomembrane compartments. Disruption of compartmentalized Akt signaling underlies the pathology of many diseases such as cancer and diabetes. However, the specific spatial organization of Akt activity and the underlying regulatory mechanisms, particularly the mechanism controlling its activity at the lysosome, are not clearly understood. We developed a highly sensitive excitation-ratiometric Akt activity reporter (ExRai-AktAR2), enabling the capture of minute changes in Akt activity dynamics at subcellular compartments. In conjunction with super-resolution expansion microscopy, we found that growth factor stimulation leads to increased colocalization of Akt with lysosomes and accumulation of lysosomal Akt activity. We further showed that 3-phosphoinositides (3-PIs) accumulate on the lysosomal surface, in a manner dependent on dynamin-mediated endocytosis. Importantly, lysosomal 3-PIs are needed for growth-factor-induced activities of Akt and mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface, as targeted depletion of 3-PIs has detrimental effects. Thus, 3-PIs, a class of critical lipid second messengers that are typically found in the plasma membrane, unexpectedly accumulate on the lysosomal membrane in response to growth factor stimulation, to direct the multifaceted kinase Akt to organize lysosome-specific signaling.
Collapse
Affiliation(s)
- Mingyuan Chen
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Tengqian Sun
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xin Zhou
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021; 131:e148568. [PMID: 34491908 DOI: 10.1172/jci148568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Jing
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Ma
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Liu L, Limsakul P, Meng X, Huang Y, Harrison RES, Huang TS, Shi Y, Yu Y, Charupanit K, Zhong S, Lu S, Zhang J, Chien S, Sun J, Wang Y. Integration of FRET and sequencing to engineer kinase biosensors from mammalian cell libraries. Nat Commun 2021; 12:5031. [PMID: 34413312 PMCID: PMC8376904 DOI: 10.1038/s41467-021-25323-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
The limited sensitivity of Förster Resonance Energy Transfer (FRET) biosensors hinders their broader applications. Here, we develop an approach integrating high-throughput FRET sorting and next-generation sequencing (FRET-Seq) to identify sensitive biosensors with varying substrate sequences from large-scale libraries directly in mammalian cells, utilizing the design of self-activating FRET (saFRET) biosensor. The resulting biosensors of Fyn and ZAP70 kinases exhibit enhanced performance and enable the dynamic imaging of T-cell activation mediated by T cell receptor (TCR) or chimeric antigen receptor (CAR), revealing a highly organized ZAP70 subcellular activity pattern upon TCR but not CAR engagement. The ZAP70 biosensor elucidates the role of immunoreceptor tyrosine-based activation motif (ITAM) in affecting ZAP70 activation to regulate CAR functions. A saFRET biosensor-based high-throughput drug screening (saFRET-HTDS) assay further enables the identification of an FDA-approved cancer drug, Sunitinib, that can be repurposed to inhibit ZAP70 activity and autoimmune-disease-related T-cell activation.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Praopim Limsakul
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Center of Excellence for Trace Analysis and Biosensor, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Xianhui Meng
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China
| | - Yan Huang
- Department of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Reed E S Harrison
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Tse-Shun Huang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- BioLegend, San Diego, CA, USA
| | - Yiwen Shi
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Yiyan Yu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sheng Zhong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
15
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
16
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
17
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
18
|
Kim H, Ju J, Lee HN, Chun H, Seong J. Genetically Encoded Biosensors Based on Fluorescent Proteins. SENSORS (BASEL, SWITZERLAND) 2021; 21:795. [PMID: 33504068 PMCID: PMC7865379 DOI: 10.3390/s21030795] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
19
|
Li R, Ma C, Cai H, Chen W. The CAR T-Cell Mechanoimmunology at a Glance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002628. [PMID: 33344135 PMCID: PMC7740088 DOI: 10.1002/advs.202002628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/13/2020] [Indexed: 05/10/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell transfer is a novel paradigm of adoptive T-cell immunotherapy. When coming into contact with a target cancer cell, CAR T-cell forms a nonclassical immunological synapse with the cancer cell and dynamically orchestrates multiple critical forces to commit cytotoxic immune function. Such an immunologic process involves a force transmission in the CAR and a spatiotemporal remodeling of cell cytoskeleton to facilitate CAR activation and CAR T-cell cytotoxic function. Yet, the detailed understanding of such mechanotransduction at the interface between the CAR T-cell and the target cell, as well as its molecular structure and signaling, remains less defined and is just beginning to emerge. This article summarizes the basic mechanisms and principles of CAR T-cell mechanoimmunology, and various lessons that can be comparatively learned from interrogation of mechanotransduction at the immunological synapse in normal cytotoxic T-cell. The recent development and future application of novel bioengineering tools for studying CAR T-cell mechanoimmunology is also discussed. It is believed that this progress report will shed light on the CAR T-cell mechanoimmunology and encourage future researches in revealing the less explored yet important mechanosensing and mechanotransductive mechanisms involved in CAR T-cell immuno-oncology.
Collapse
Affiliation(s)
- Rui Li
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
| | - Chao Ma
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
| | - Haogang Cai
- Tech4Health instituteNYU Langone HealthNew YorkNY10016USA
- Department of RadiologyNYU Langone HealthNew YorkNY10016USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNY10016USA
| |
Collapse
|
20
|
Zhou X, Zhong Y, Molinar-Inglis O, Kunkel MT, Chen M, Sun T, Zhang J, Shyy JYJ, Trejo J, Newton AC, Zhang J. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat Commun 2020; 11:6088. [PMID: 33257668 PMCID: PMC7705703 DOI: 10.1038/s41467-020-19937-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates growth, nutrient and energy status cues to control cell growth and metabolism. While mTORC1 activation at the lysosome is well characterized, it is not clear how this complex is regulated at other subcellular locations. Here, we combine location-selective kinase inhibition, live-cell imaging and biochemical assays to probe the regulation of growth factor-induced mTORC1 activity in the nucleus. Using a nuclear targeted Akt Substrate-based Tandem Occupancy Peptide Sponge (Akt-STOPS) that we developed for specific inhibition of Akt, a critical upstream kinase, we show that growth factor-stimulated nuclear mTORC1 activity requires nuclear Akt activity. Further mechanistic dissection suggests that nuclear Akt activity mediates growth factor-induced nuclear translocation of Raptor, a regulatory scaffolding component in mTORC1, and localization of Raptor to the nucleus results in nuclear mTORC1 activity in the absence of growth factor stimulation. Taken together, these results reveal a mode of regulation of mTORC1 that is distinct from its lysosomal activation, which controls mTORC1 activity in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mingyuan Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
23
|
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Zhang J, Ling M, Trejo J, Levchenko A, Zhang J. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 2020; 9:57410. [PMID: 32452765 PMCID: PMC7289600 DOI: 10.7554/elife.57410] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
A variety of different signals induce specific responses through a common, extracellular-signal regulated kinase (ERK)-dependent cascade. It has been suggested that signaling specificity can be achieved through precise temporal regulation of ERK activity. Given the wide distrubtion of ERK susbtrates across different subcellular compartments, it is important to understand how ERK activity is temporally regulated at specific subcellular locations. To address this question, we have expanded the toolbox of Förster Resonance Energy Transfer (FRET)-based ERK biosensors by creating a series of improved biosensors targeted to various subcellular regions via sequence specific motifs to measure spatiotemporal changes in ERK activity. Using these sensors, we showed that EGF induces sustained ERK activity near the plasma membrane in sharp contrast to the transient activity observed in the cytoplasm and nucleus. Furthermore, EGF-induced plasma membrane ERK activity involves Rap1, a noncanonical activator, and controls cell morphology and EGF-induced membrane protrusion dynamics. Our work strongly supports that spatial and temporal regulation of ERK activity is integrated to control signaling specificity from a single extracellular signal to multiple cellular processes.
Collapse
Affiliation(s)
- Jeremiah Keyes
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Ambhighainath Ganesan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Olivia Molinar-Inglis
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Archer Hamidzadeh
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jinfan Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Megan Ling
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - JoAnn Trejo
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States.,Department of Bioengineering, University of California San Diego, La Jolla, United States
| |
Collapse
|
24
|
Huang Z, Ouyang M, Lu S, Wang Y, Peng Q. Optogenetic Control for Investigating Subcellular Localization of Fyn Kinase Activity in Single Live Cells. J Mol Biol 2020; 432:1901-1909. [PMID: 32198118 PMCID: PMC7225052 DOI: 10.1016/j.jmb.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Previous studies with various Src family kinase biosensors showed that the nuclear kinase activities are much suppressed compared to those in the cytosol, suggesting that these kinases are regulated differently in the nucleus and in the cytosol. In this study, using Fyn as an example, we first engineered a Fyn biosensor with a light-inducible nuclear localization signal to demonstrate that the Fyn kinase activity is significantly lower in the nucleus than in the cytosol. To understand how different equilibrium states between Fyn and the corresponding phosphatases are maintained in the cytosol and nucleus, we further engineered a Fyn kinase domain with light-inducible nuclear localization signal. The results revealed that the Fyn kinase can be actively transported into the nucleus upon light activation and upregulate the biosensor signals in the nucleus. Our results suggest that there is limited transport or diffusion of Fyn kinase between the cytosol and nucleus in the cells, which is important for the maintenance of different equilibrium states of Fyn in situ.
Collapse
Affiliation(s)
- Ziliang Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Hilzenrat G, Pandžić E, Yang Z, Nieves DJ, Goyette J, Rossy J, Ma Y, Gaus K. Conformational States Control Lck Switching between Free and Confined Diffusion Modes in T Cells. Biophys J 2020; 118:1489-1501. [PMID: 32097620 PMCID: PMC7091564 DOI: 10.1016/j.bpj.2020.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
T cell receptor phosphorylation by Lck is an essential step in T cell activation. It is known that the conformational states of Lck control enzymatic activity; however, the underlying principles of how Lck finds its substrate over the plasma membrane remain elusive. Here, single-particle tracking is paired with photoactivatable localization microscopy to observe the diffusive modes of Lck in the plasma membrane. Individual Lck molecules switched between free and confined diffusion in both resting and stimulated T cells. Lck mutants locked in the open conformation were more confined than Lck mutants in the closed conformation. Further confinement of kinase-dead versions of Lck suggests that Lck confinement was not caused by phosphorylated substrates. Our data support a model in which confined diffusion of open Lck results in high local phosphorylation rates, and inactive, closed Lck diffuses freely to enable long-range distribution over the plasma membrane.
Collapse
Affiliation(s)
- Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia; Commonwealth Scientific and Industry Research Organization (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Elvis Pandžić
- BioMedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Zhengmin Yang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Daniel J Nieves
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Jérémie Rossy
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia.
| |
Collapse
|