1
|
O’Connell CJ, Robson MJ. Apples to oranges: environmentally derived, dynamic regulation of serotonin neuron subpopulations in adulthood? Neural Regen Res 2025; 20:2596-2597. [PMID: 39503429 PMCID: PMC11801279 DOI: 10.4103/nrr.nrr-d-24-00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
| | - Matthew J. Robson
- James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Shan X, Murphy MC, Sui Y, Zheng K, Hojo E, Manduca A, Ehman RL, Huston J, Yin Z. MR elastography-based detection of impaired skull-brain mechanical decoupling performance in response to repetitive head impacts. Eur Radiol 2025; 35:3613-3624. [PMID: 39653791 PMCID: PMC12081198 DOI: 10.1007/s00330-024-11265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/29/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To evaluate MR elastography (MRE)-assessed biomarkers for detecting changes in skull-brain mechanical decoupling performance induced by repetitive head impacts (RHIs). METHODS This prospective single-center study enrolled 80 asymptomatic participants (2017-2023) divided into three groups: no exposure (RHI(-)), low-impact (low RHI(+)), and high-impact (high RHI(+)). Four MRE-based parameters were evaluated to analyze the skull-brain decoupling performance: brain-to-skull rotational transmission ratio (Rtr), cortical shear strain (normalized OSS (octahedral shear strain)), cortical volumetric strain (normalized ONS (octahedral normal strain)), and the OSS-to-ONS ratio. Confounding factors (age/skull-brain distance, sex) were controlled with a linear regression model. One-way ANOVA with Tukey's post-hoc test was used for group comparisons. RESULTS The high RHI(+) showed a significantly increased adjusted Rtr compared to the RHI(-) and low RHI(+) (p < 0.001). Higher adjusted OSS-to-ONS ratios were found in the high RHI(+) in the frontal (q < 0.05), parietal (q < 0.001), and occipital (q < 0.05) lobes compared to the RHI(-), and in all regions compared to the low RHI(+) (q < 0.05). The high RHI(+) exhibited lower adjusted normalized ONS and OSS in the temporal lobe (q < 0.05) compared to the low RHI(+). These findings suggest that recent and prolonged RHI exposures may impair the skull-brain decoupling performance, affecting the capacity of the interface to isolate the brain by dampening skull-to-brain motion transmission and modulating brain surface deformation. CONCLUSION This study reveals evidence of impaired decoupling function at the skull-brain interface resulting from RHI exposure and demonstrates MRE-based biomarkers for early detection of this impairment. KEY POINTS Question The skull-brain interface is crucial for brain protection under impact, but its early mechanical responses to repetitive head impacts (RHIs) remain largely unknown. Findings Mechanical changes (more rotation and a shift in shear relative to volumetric strain) across the skull-brain interface were observed in participants under high RHI exposure. Clinical relevance Our study developed MR elastography (MRE)-based measurements to detect changes in the skull-brain interface caused by RHI, suggesting that MRE holds promise for noninvasively quantifying cumulative injury and potential future clinical interventions for individuals with high RHI exposure.
Collapse
Affiliation(s)
- Xiang Shan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Yi Sui
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Keni Zheng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Emi Hojo
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ziying Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Main KL, Vakhtin AA, Zhuo J, Marion D, Adamson MM, Ashford JW, Gullapalli R, Furst AJ. An iterative ROC procedure identifies white matter tracts diagnostic for traumatic brain injury: an exploratory analysis in U.S. Veterans. Brain Inj 2025:1-19. [PMID: 40257224 DOI: 10.1080/02699052.2025.2492746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE Understanding the pathophysiology of traumatic brain injury (TBI) is crucial for effectively managing care. Diffusion tensor imaging (DTI) is an MRI technology that evaluates TBI pathology in brain white matter. However, DTI analysis generates numerous measures. Choosing between them remains an obstacle to clinical translation. In this study, we leveraged an iterative receiver operating characteristic (ROC) analysis to examine white matter tracts in a group of 380 Veterans, consisting of TBI (n = 243) and non-TBI patients (n = 137). METHOD For each participant, we obtained a whole brain tractography and extracted DTI measures from 50 tracts. The ROC analyzed these variables and produced decision trees of tracts diagnostic for TBI. We expanded our findings by applying jackknife resampling. This procedure removed potential outliers and yielded tracts not observed in the initial ROCs. Finally, we used logistic regression to confirm the tracts predicted TBI status. RESULTS Our results indicate ROC can identify tracts diagnostic for TBI. We also found that groups of tracts are more predictive than any single one. CONCLUSIONS These analyses show that ROC is a useful tool for exploring large, multivariate datasets and may inform the design of clinical algorithms.
Collapse
Affiliation(s)
- Keith L Main
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | - Andrei A Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Traumatic Brain Injury Division, Albuquerque, New Mexico, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Donald Marion
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | - Maheen M Adamson
- Women's Operational Military Exposure Network, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Services, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - J Wesson Ashford
- War Related Illness and Injury Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ansgar J Furst
- War Related Illness and Injury Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Polytrauma System of Care, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2025; 42:640-667. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
6
|
Clough M, Bartholomew J, White O, Fielding J. Investigating the Utility of the BrainEye Smartphone Eye Tracking Application and Platform in Concussion Management. SPORTS MEDICINE - OPEN 2025; 11:24. [PMID: 40067518 PMCID: PMC11896906 DOI: 10.1186/s40798-025-00819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Concussion is a common consequence of engaging in collision sports, with the often mild, transient nature of symptoms posing a considerable diagnostic and management challenge. This challenge is vastly magnified for athletes competing at grassroots/non-professional levels, who lack field side access to medical expertise in the assessment of a player's capacity to continue playing or need for further medical attention. The aim of this pilot study was to evaluate the utility of the BrainEye application and hardware (BrainEye platform) as a concussion screening tool, specifically determining (1) its sensitivity and specificity with respect to identifying an individual with a clinically diagnosed concussion, (2) the stability of the platform through test completion/failure rates, and (3) its usability through operator feedback and uptake/integration into concussion management protocols. RESULTS Using the BrainEye platform, 348 male professional Australian Rules footballers from 10 Australian Football League (AFL) clubs completed 4 simple ocular protocols (pupillary light reflex, PLR; smooth pursuit eye movements, SMP; near-point convergence, NPC; horizontal gaze nystagmus, HGN) at baseline, prior to the onset of the 2022 AFL season, and following the clinical diagnosis of concussion throughout the season during a game/training/practice (n = 11 players immediately following a concussive event, and on 14 occasions 2-7 days following a concussive event). Although club participation and protocol adherence rates were suboptimal, with clubs citing COVID-19 restrictions and cumbersome hardware set-up as primary reasons for non-participation/missing data, a BrainEye score that derived from an algorithm combining smooth pursuit and pupillary light reflex measures, achieved 100% sensitivity relative to clinical judgement, in identifying all instances of clinically diagnosed concussion, and 85% specificity. CONCLUSIONS Collectively, the results of this study suggest that by removing the requirement for add-on hardware and providing a smartphone-only option with direct feedback on performance to the user, the BrainEye application may provide a useful screening tool for sport-related concussion.
Collapse
Affiliation(s)
- Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| | - Jade Bartholomew
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
7
|
Huang W, Yan J, Zheng Y, Wang J, Hu W, Zhang J. Microstructural Alterations of Gray and White Matter in Active Young Boxers with Sports-Related Concussions. J Neurotrauma 2025; 42:33-45. [PMID: 39535046 DOI: 10.1089/neu.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The existing research on the microstructural alterations associated with sport-related concussions (SRCs) has primarily focused on deep white matter (DWM) fibers, while the impact of SRCs on the superficial white matter (SWM) and gray matter (GM) remains unknown. This study aimed to characterize the altered metrics obtained from neurite orientation dispersion and density imaging (NODDI) in boxers with SRCs, and thereby determine whether distinct regional patterns of microstructural alterations can offer valuable insights for accurate diagnosis and prognosis. Concussed boxers (n = 56) and healthy controls (HCs) with typically developing (n = 72) underwent comprehensive neuropsychological assessment and magnetic resonance imaging (MRI) examinations. The tract-based spatial statistics approach was used to investigate alterations in the DWM and SWM, while the gray matter-based spatial statistics approach was used to examine changes in the GM. The median time from the last SRC to MRI in the SRC group was 33.5 days (interquartile range, 45.25). In comparison with HCs, the SRC group exhibited lower fractional anisotropy (FA), neurite density index (NDI), and isotropic volume fraction (ISOVF), as well as higher mean diffusivity, axial diffusivity (AD), and radial diffusivity in both the DWM and SWM. Moreover, the SRC group exhibited lower FA, NDI, orientation dispersion index, and ISOVF in the GM, as well as higher AD. The altered microstructure of both gray and white matter was found to be associated with deficits in working memory and vocabulary memory among boxers. In addition to characterizing the DWM impairment, NODDI further elucidated the effects of SRCs on the microstructure of GM and SWM, offering a reliable imaging biomarker for SRC diagnosis and shedding light on the pathophysiological changes underlying SRCs.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jiahao Yan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
8
|
Oldham JR, DeFalco A, Willwerth S, Nagle S, Whittaker F, Mannix R, Meehan WP, Bradford DE. Research Letter: Concussion-Related General Startle Suppression in Adolescent Athletes. J Head Trauma Rehabil 2025; 40:E96-E101. [PMID: 38916433 DOI: 10.1097/htr.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES We investigated the acoustic startle reflex in recently concussed adolescent athletes compared to healthy controls and those with concussion history (>1 year prior) but no current symptoms. We hypothesized that individuals with recent concussion would have a suppressed startle response compared to healthy controls. METHODS We conducted a cross-sectional study on 49 adolescent athletes with a recent concussion (n = 20; age: 14.6 ± 1.6 years; 60% female), a concussion history > 1 year prior (n = 16; age: 14.8 ± 2.0 years; 44% female), and healthy controls (n = 13; age: 13.3 ± 2.8 years; 54% female). We measured the eyeblink of the general startle reflex via electromyography activity of the orbicularis oculi muscle using electrodes placed under the right eye. Measurement sessions included twelve 103 decibel acoustic startle probes ~50 milliseconds in duration delivered ~15-25 seconds apart. The primary dependent variable was mean startle magnitude (µV), and group was the primary independent variable. We used a one-way analysis of variance followed by a Tukey post hoc test to compare mean startle magnitude between groups. RESULTS Mean startle magnitude significantly differed (F = 5.49, P = .007) among the groups. Mean startle magnitude was significantly suppressed for the concussion ( P = .01) and concussion history groups ( P = .02) compared to healthy controls. There was no significant difference between the recent concussion and concussion history groups ( P = 1.00). CONCLUSION Our results provide novel evidence for startle suppression in adolescent athletes following concussion. The concussion history group had an attenuated startle response beyond resolution of their recovery, suggesting there may be lingering physiological dysfunction.
Collapse
Affiliation(s)
- Jessie R Oldham
- Author Affiliations: Department of Physical Medicine and Rehabilitation (Dr Oldham), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Psychology (Ms DeFalco), Colorado State University, Fort Collins, Colorado; The Warren Alpert Medical School of Brown University (Ms Willwerth), Providence, Rhode Island; Division of Sports Medicine (Ms Nagle), The Micheli Center for Sports Injury Prevention (Dr Meehan), Waltham, Massachusetts; Division of Sports Medicine (Dr Meehan and Ms Nagle), Division of Emergency Medicine (Dr Mannix), Boston Children's Hospital, Boston, Massachusetts; Oregon State University (Ms Whittaker), Corvallis, Oregon; and School of Psychological Science (Dr Bradford), Oregon State University, Corvallis, Oregon; and Departments of Pediatrics and Orthopedics (Dr Meehan), Departments of Pediatrics and Emergency Medicine (Dr Mannix), Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Leinonen J, Mikkola R, Peltonen K, Hokkanen L, Laitala T. Functional Vision Questionnaire Detects Near Triad Impairments in Adolescent Athletes With Concussion History. J Neuroophthalmol 2024:00041327-990000000-00744. [PMID: 39671521 DOI: 10.1097/wno.0000000000002275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
BACKGROUND Concussions are mild traumatic brain injuries that often cause vision problems. They have significant impacts on everyday life, cognitive capacity, and sports performance, and may affect injury prevalence in fast contact sports such as ice hockey. A functional vision questionnaire specifically designed for sports was used here to study the correlation between vision problems and concussion history. METHODS In this national cross-sectional concussion study, 860 Finnish elite-level male adolescent ice hockey players (aged 13-21 years) answered a functional vision questionnaire and performed a computerized neurocognitive test, ImPACT. Totally 265 athletes reported a history of at least 1 concussion. All data were statistically compared with age-matched athletes with no concussion history (n = 595). For further analysis, athletes were divided into subgroups by age and number of previous concussions. RESULTS Previously concussed athletes reported more general and eye-specific symptoms than their healthy controls. Increases in eye fatigue, frontal headaches, and blinking were statistically significant. Also statistically more problems with depth perception and evaluating distances, concentration problems, blurred vision, and losing the object in sight were observed among athletes with concussion history. CONCLUSIONS Concussion history reflects an increase in the prevalence of vision deficits, as determined by multiple disturbances in the near triad. The significant number of vision problems in the concussion history groups strongly suggests that functional vision should routinely be evaluated in athletes. The vision problems observed in the athletes with concussion history may indicate an increased injury risk that should be addressed.
Collapse
Affiliation(s)
- Jouko Leinonen
- THAT (Tissue Healing In Trauma) group (JL, RM, TL), Institute of Biomedicine, University of Turku, Turku, Finland; and Department of Psychology and Logopedics (KP, LH), University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
10
|
Aldrich G, Evans JE, Davis R, Jurin L, Oberlin S, Niedospial D, Nkiliza A, Mullan M, Kenney K, Werner JK, Edwards K, Gill JM, Lindsey HM, Dennis EL, Walker WC, Wilde E, Crawford F, Abdullah L. APOE4 and age affect the brain entorhinal cortex structure and blood arachidonic acid and docosahexaenoic acid levels after mild TBI. Sci Rep 2024; 14:29150. [PMID: 39587176 PMCID: PMC11589616 DOI: 10.1038/s41598-024-80153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A reduction in the thickness and volume of the brain entorhinal cortex (EC), together with changes in blood arachidonic acid (AA) and docosahexaenoic acid (DHA), are associated with Alzheimer's disease (AD) among apolipoprotein E ε4 carriers. Magnetic Resonance Imaging (n = 631) and plasma lipidomics (n = 181) were performed using the LIMBIC/CENC cohort to examine the influence of ε4 on AA- and DHA-lipids and EC thickness and volume in relation to mild traumatic brain injury (mTBI). Results showed that left EC thickness was higher among ε4 carriers with mTBI. Repeated mTBI (r-mTBI) was associated with reduced right EC thickness after controlling for ε4, age and sex. Age, plus mTBI chronicity were linked to increased EC White Matter Volume (WMV). After controlling for age and sex, the advancing age of ε4 carriers with blast mTBI was associated with reduced right EC Grey Matter Volume (GMV) and thickness. Among ε4 carriers, plasma tau and Aβ40 were associated with mTBI and blast mTBI, respectively. Chronic mTBI, ε4 and AA to DHA ratios in phosphatidylcholine, ethanolamides, and phosphatidylethanolamine were associated with decreased left EC GMV and WMV. Further research is needed to explore these as biomarkers for detecting AD pathology following mTBI.
Collapse
Grants
- I01 RX002172 RRD VA
- I01 RX002174 RRD VA
- I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170, I01 CX001820 U.S. Department of Veterans Affairs
- I01 CX001135 CSRD VA
- UL1 TR002538 NCATS NIH HHS
- I01 RX003443 RRD VA
- I01 RX001880 RRD VA
- I01 RX002171 RRD VA
- I01 HX003155 HSRD VA
- I01 RX002076 RRD VA
- I01 CX001246 CSRD VA
- I01 RX002170 RRD VA
- UL1 TR000105 NCATS NIH HHS
- I01 RX002173 RRD VA
- AZ160065 Congressionally Directed Medical Research Programs
- UL1 TR001067 NCATS NIH HHS
- W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095 U.S. Department of Defense
- I01 RX003444 RRD VA
- UL1 RR025764 NCRR NIH HHS
- I01 RX003442 RRD VA
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- I01 RX002767 RRD VA
- I01 RX001135 RRD VA
Collapse
Affiliation(s)
- Gregory Aldrich
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - James E Evans
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Roderick Davis
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Lucia Jurin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Sarah Oberlin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | - Aurore Nkiliza
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Hannah M Lindsey
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - William C Walker
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Wilde
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.
| |
Collapse
|
11
|
D'Arcy RCN, McCarthy D, Harrison D, Levenberg Z, Wan J, Hepburn A, Kirby ED, Yardley T, Yamada-Bagg N, Fickling SD, Munce TA, Dodick DW, Ahmad C, Stein KS. An objective neurophysiological study of subconcussion in female and male high school student athletes. Sci Rep 2024; 14:28929. [PMID: 39572747 PMCID: PMC11582815 DOI: 10.1038/s41598-024-80262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Emerging evidence from neurophysiological brain vital sign studies show repeatable sensitivity to cumulative subconcussive impairments over a season of contact sports. The current study addressed the need for research comparing a low-contact control group to high-contact group. Importantly, the study also expanded the scope of neurophysiological changes related to repetitive head impacts to include female athletes in addition to male athletes. In total, 89 high school student athletes underwent 231 brain vital sign scans over a full calendar year. The results replicated prior subconcussive cognitive impairments (N400 delays) and sensory impairments (N100 amplitude reductions) in male athletes and demonstrated similar subconcussive impairments for the first time in female athletes. While there was no significant subconcussive difference between female and male athletes, female athletes show overall larger responses in general. The findings demonstrated that subconcussive impairments are detectable in a controlled experimental comparison for both female and male high school athletes. The study highlights the opportunity to monitor subconcussive changes in cognitive processing for both female and male athletes to help advance prevention, mitigation and management efforts aimed at reducing athletes' risk of potential long-term negative health outcomes related to cumulative exposure to repetitive head impacts.
Collapse
Affiliation(s)
- Ryan C N D'Arcy
- BrainNET, Health and Technology District, Surrey, BC, Canada.
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada.
- Faculty of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - David McCarthy
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Derek Harrison
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | | | - Julian Wan
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Aidan Hepburn
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Eric D Kirby
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Tanja Yardley
- Surrey Neuroplasticity Clinic, HealthTech Connex, Surrey, BC, Canada
| | | | - Shaun D Fickling
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
| | - Thayne A Munce
- Environmental Influences on Health & Disease Group, Sanford Research, Sioux Falls, SD, USA
| | - David W Dodick
- Mayo Clinic College of Medicine, Rochester, MN, USA
- Atria Academy of Science and Medicine, New York City, NY, USA
| | - Christopher Ahmad
- New York Presbyterian Hospital, New York City, NY, USA
- Columbia University Irving Medical Center, New York City, NY, USA
| | - Ken Shubin Stein
- Atria Academy of Science and Medicine, New York City, NY, USA
- Hospital for Special Surgery, New York City, NY, USA
| |
Collapse
|
12
|
Fahr J, Kraff O, Deuschl C, Dodel R. Concussion in Female Athletes of Contact Sports: A Scoping Review. Orthop J Sports Med 2024; 12:23259671241276447. [PMID: 39421039 PMCID: PMC11483826 DOI: 10.1177/23259671241276447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Recent studies have described higher incidences of concussion, with more severe symptoms and worse outcomes in female athletes compared with male athletes. Purpose To compile current knowledge about sex-specific differences in incidence, biomechanics, biomarkers, imaging, and outcomes of concussion in athletes participating in contact sports to better understand which fields should be explored in more detail. Study Design Scoping review; Level of evidence, 3. Methods The PubMed database was searched for articles published between January 2000 and November 2020 using the Medical Subject Headings terms "craniocerebral trauma" and "brain concussion" combined with the contact sports "football,""soccer,""hockey," and "boxing." Eligibility criteria were based on the recommendations of the Scottish Intercollegiate Guidelines Network. It focused on sex-specific differences within 5 major topics: (1) epidemiology, (2) biomechanics, (3) biomarkers, (4) imaging, and (5) specific concussion outcome variables, including neurocognitive performance, injury severity, and behavioral and psychological symptoms. Results A total of 22 studies were included. Eight studies investigated the incidence of concussion, with 4 of the 8 finding a significantly higher incidence rate for female versus male athletes. Six studies that focused on biomechanics found that female athletes received fewer impacts with lower magnitudes. One study addressed biomarkers, showing that S100 calcium-binding protein B and neuron-specific enolase were increased after a game in female athletes, and the level of increase was similar to the changes found in male athletes. Based on the 3 imaging studies, affected brain tissue was greatest in areas associated with tau pathology in chronic traumatic encephalopathy. One study showed a lower hypointensity burden index after a season of ice hockey for female athletes, while another study showed more regions with white matter alterations. Seven studies examined concussion outcomes, with 4 studies showing more severe neuropsychological deficits; in addition, female athletes reported more and worse symptoms than male athletes. Conclusion The results of this review indicated that female athletes had a higher risk of sustaining a concussion, although they received fewer impacts with lower magnitudes than male athletes. Biomarkers were able to be used equally for both sexes. Female athletes also had a higher neuropsychological deficit and increasingly worse symptoms after a concussion.
Collapse
Affiliation(s)
- Jana Fahr
- Department of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Trauma Surgery, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging (ELH), University Duisburg Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute of Radiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Richard Dodel
- Department of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Munce TA, Fickling SD, Nijjer SR, Poel DN, D'Arcy RCN. Mixed martial arts athletes demonstrate different brain vital sign profiles compared to matched controls at baseline. Front Neurol 2024; 15:1438368. [PMID: 39364418 PMCID: PMC11448351 DOI: 10.3389/fneur.2024.1438368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
We investigated objective brain vital signs derived from event-related potentials (ERPs) for mixed martial arts (MMA) athletes and matched controls (N = 24). Brain vital sign scans were acquired from 9 MMA athletes and 15 age-and sex-matched controls. Our analysis specifically compared differences in brain vital signs between MMA athletes and controls at baseline. We predicted that MMA athletes would show significant differences relative to controls due to their ongoing exposure to repetitive head impacts. Participants were scanned to extract three well-established ERPs: N100 for auditory sensation; P300 for basic attention; and N400 for cognitive processing. Scans were verified using automated reports, with N100, P300, and N400 amplitudes and latencies manually identified by a blinded reviewer. Brain vital signs were compared across groups with a Kruskal-Wallis H-test for independent samples, with FDR correction for multiple comparisons. We identified significant differences between MMA athletes and controls. Specifically, there were significant N400 amplitude reductions, indicating that exposure to repetitive head impacts in MMA may be associated with changes in brain function.
Collapse
Affiliation(s)
- Thayne A Munce
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Shaun D Fickling
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
| | | | - Daniel N Poel
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Ryan C N D'Arcy
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
- BrainNET, Health and Technology District, Surrey, BC, Canada
- DM Centre for Brain Health, Faculty of Medicine (Radiology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
15
|
Hirad AA, Mix D, Venkataraman A, Meyers SP, Mahon BZ. Strain concentration drives the anatomical distribution of injury in acute and chronic traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595352. [PMID: 38826417 PMCID: PMC11142169 DOI: 10.1101/2024.05.22.595352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Brain tissue injury caused by mild traumatic brain injury (mTBI) disproportionately concentrates in the midbrain, cerebellum, mesial temporal lobe, and the interface between cortex and white matter at sulcal depths 1-12. The bio-mechanical principles that explain why physical impacts to different parts of the skull translate to common foci of injury concentrated in specific brain structures are unknown. A general and longstanding idea, which has not to date been directly tested in humans, is that different brain regions are differentially susceptible to strain loading11,13-15. We use Magnetic Resonance Elastography (MRE) in healthy participants to develop whole-brain bio-mechanical vulnerability maps that independently define which regions of the brain exhibit disproportionate strain concentration. We then validate those vulnerability maps in a prospective cohort of mTBI patients, using diffusion MRI data collected at three cross-sectional timepoints after injury: acute, sub-acute, chronic. We show that regions that exhibit high strain, measured with MRE, are also the sites of greatest injury, as measured with diffusion MR in mTBI patients. This was the case in acute, subacute, and chronic subgroups of the mTBI cohort. Follow-on analyses decomposed the biomechanical cause of increased strain by showing it is caused jointly by disproportionately higher levels of energy arriving to 'high-strain' structures, as well as the inability of 'high strain' structures to effectively disperse that energy. These findings establish a causal mechanism that explains the anatomy of injury in mTBI based on in vivo rheological properties of the human brain.
Collapse
Affiliation(s)
- Adnan A. Hirad
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
- Del Monte Neuroscience Institute, University of Rochester, NY, USA
| | - Doran Mix
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, 1462
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, NY, 14623, USA
| | - Steven P. Meyers
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15206
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15206
| |
Collapse
|
16
|
McLean C, Lavender AP, Pereira E, Peek K, Davey P, Ma’ayah F, Morris S, Georgieva J. The Acute Effects of Ball Pressure on Anticipation Timing Following a Series of Purposeful Headers in Adult Football (Soccer) Players. Sports (Basel) 2024; 12:102. [PMID: 38668570 PMCID: PMC11053744 DOI: 10.3390/sports12040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
The purpose of this study is to investigate the acute effects of ball pressure on anticipation timing following a series of purposeful headers in adult football (soccer) players. There is evidence to suggest acute neurophysiological changes to the brain following purposeful heading; this may lead to altered anticipation timing as a result, potentially having future safety implications for players. A repeated measures crossover design was used. Seventeen participants aged between 20 and 30 years performed (i) 20 rotational headers with a lower-pressure match ball (58.6 kPa; 8.5 psi), (ii) 20 rotational headers with a higher-pressure match ball (103.4 kPa; 15 psi), or (iii) 20 non-headers (kicks) as a control each on separate days. The effect of ball pressure on anticipation timing accuracy, measured as absolute, constant, and variable errors, was assessed before and immediately after each intervention session using an anticipation timing task. Differences between group means were compared using repeated measures ANOVA and linear mixed effects models, with p-values of <0.05 considered statistically significant. No significant differences in anticipation timing accuracy across interventions were detected between control, occluded, and non-occluded trials. This finding differs from the previous literature regarding the measurable, acute effects of purposeful heading. The anticipation timing task may lack sensitivity for detecting the effects of repeated heading on brain function.
Collapse
Affiliation(s)
- Chad McLean
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Andrew P. Lavender
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ethan Pereira
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Kerry Peek
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Lidcombe, NSW 2006, Australia;
| | - Paul Davey
- Curtin School of Nursing, Curtin University, Bentley, WA 6102, Australia;
| | - Fadi Ma’ayah
- School of Education, Curtin University, Bentley, WA 6102, Australia;
| | - Susan Morris
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Julia Georgieva
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| |
Collapse
|
17
|
Al-Khateeb ZF, Boumenar H, Adebimpe J, Shekerzade S, Henson SM, Tremoleda JL, Michael-Titus AT. The cellular senescence response and neuroinflammation in juvenile mice following controlled cortical impact and repetitive mild traumatic brain injury. Exp Neurol 2024; 374:114714. [PMID: 38325653 DOI: 10.1016/j.expneurol.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Hasna Boumenar
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joycee Adebimpe
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Shenel Shekerzade
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Siân M Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
O’Connell CJ, Brown RS, Peach TM, Traubert OD, Schwierling HC, Notorgiacomo GA, Robson MJ. Strain in the Midbrain: Impact of Traumatic Brain Injury on the Central Serotonin System. Brain Sci 2024; 14:51. [PMID: 38248266 PMCID: PMC10813794 DOI: 10.3390/brainsci14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.
Collapse
Affiliation(s)
- Christopher J. O’Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Ryan S. Brown
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Taylor M. Peach
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Owen D. Traubert
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA;
| | - Hana C. Schwierling
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | | | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Hageman G, Hageman I, Nihom J. Chronic Traumatic Encephalopathy in Soccer Players: Review of 14 Cases. Clin J Sport Med 2024; 34:69-80. [PMID: 37403989 DOI: 10.1097/jsm.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Exposure to repetitive sports-related concussions or (sub)concussive head trauma may lead to chronic traumatic encephalopathy (CTE). Which impact (heading or concussion) poses the greatest risk of CTE development in soccer players? DESIGN Narrative review. SETTING Teaching hospital and University of Applied sciences. PATIENTS A literature search (PubMed) was conducted for neuropathologic studies in the period 2005-December 2022, investigating soccer players with dementia and a CTE diagnosis, limited to English language publications. 210 papers were selected for final inclusion, of which 7 papers described 14 soccer players. ASSESSMENT Magnetic resonance imaging studies in soccer players show that lifetime estimates of heading numbers are inversely correlated with cortical thickness, grey matter volume, and density of the anterior temporal cortex. Using diffusion tensor imaging-magnetic resonance imaging, higher frequency of headings-particularly with rotational accelerations-are associated with impaired white matter integrity. Serum neurofilament light protein is elevated after heading. MAIN OUTCOME MEASURES Chronic traumatic encephalopathy pathology, history of concussion, heading frequency. RESULTS In 10 of 14 soccer players, CTE was the primary diagnosis. In 4 cases, other dementia types formed the primary diagnosis and CTE pathology was a concomitant finding. Remarkably, 6 of the 14 cases had no history of concussion, suggesting that frequent heading may be a risk for CTE in patients without symptomatic concussion. Rule changes in heading duels, management of concussion during the game, and limiting the number of high force headers during training are discussed. CONCLUSIONS Data suggest that heading frequency and concussions are associated with higher risk of developing CTE in (retired) soccer players. However based on this review of only 14 players, questions persist as to whether or not heading is a risk factor for CTE or long-term cognitive decline.
Collapse
Affiliation(s)
- Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| | - Ivar Hageman
- Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Jik Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| |
Collapse
|
20
|
Meyers SP, Hirad A, Gonzalez P, Bazarian JJ, Mirabelli MH, Rizzone KH, Ma HM, Rosella P, Totterman S, Schreyer E, Tamez-Pena JG. Clinical performance of a multiparametric MRI-based post concussive syndrome index. Front Neurol 2023; 14:1282833. [PMID: 38170071 PMCID: PMC10759224 DOI: 10.3389/fneur.2023.1282833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Diffusion Tensor Imaging (DTI) has revealed measurable changes in the brains of patients with persistent post-concussive syndrome (PCS). Because of inconsistent results in univariate DTI metrics among patients with mild traumatic brain injury (mTBI), there is currently no single objective and reliable MRI index for clinical decision-making in patients with PCS. Purpose This study aimed to evaluate the performance of a newly developed PCS Index (PCSI) derived from machine learning of multiparametric magnetic resonance imaging (MRI) data to classify and differentiate subjects with mTBI and PCS history from those without a history of mTBI. Materials and methods Data were retrospectively extracted from 139 patients aged between 18 and 60 years with PCS who underwent MRI examinations at 2 weeks to 1-year post-mTBI, as well as from 336 subjects without a history of head trauma. The performance of the PCS Index was assessed by comparing 69 patients with a clinical diagnosis of PCS with 264 control subjects. The PCSI values for patients with PCS were compared based on the mechanism of injury, time interval from injury to MRI examination, sex, history of prior concussion, loss of consciousness, and reported symptoms. Results Injured patients had a mean PCSI value of 0.57, compared to the control group, which had a mean PCSI value of 0.12 (p = 8.42e-23) with accuracy of 88%, sensitivity of 64%, and specificity of 95%, respectively. No statistically significant differences were found in the PCSI values when comparing the mechanism of injury, sex, or loss of consciousness. Conclusion The PCSI for individuals aged between 18 and 60 years was able to accurately identify patients with post-concussive injuries from 2 weeks to 1-year post-mTBI and differentiate them from the controls. The results of this study suggest that multiparametric MRI-based PCSI has great potential as an objective clinical tool to support the diagnosis, treatment, and follow-up care of patients with post-concussive syndrome. Further research is required to investigate the replicability of this method using other types of clinical MRI scanners.
Collapse
Affiliation(s)
- Steven P. Meyers
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Adnan Hirad
- Department of Vascular Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | - Jeffrey J. Bazarian
- Departments of Emergency Medicine, Neurology, Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Mark H. Mirabelli
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Katherine H. Rizzone
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Heather M. Ma
- Department of Physical Medicine and Rehabilitation, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Peter Rosella
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | | | - Jose G. Tamez-Pena
- School of Medicine and Health Sciences, Tecnologico de Monterey, Monterrey, Mexico
| |
Collapse
|
21
|
Tsutsumi S, Sasadai J, Maeda N, Shimizu R, Suzuki A, Fukui K, Arima S, Tashiro T, Kaneda K, Yoshimi M, Mizuta R, Ishihara H, Esaki H, Tsuchida K, Terada T, Komiya M, Urabe Y. Head Impact in Blind Football During the Tokyo Paralympics: Video-Based Observational Study. Am J Phys Med Rehabil 2023; 102:836-839. [PMID: 36757853 DOI: 10.1097/phm.0000000000002187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
ABSTRACT Head impacts during blind football are common and have high injury rates; however, their characteristics and impact are still underreported. We compared head impact characteristics in blind football players with and without falls on all 18 official blind football match videos from the Tokyo 2020 Paralympic games. The rate of head impacts with falls was significantly higher in the preliminary phase, offense phase, and during dribbling. Significant differences in the region of the head impacted were also observed among the impact subjects/objects. The findings in this study would contribute to the development of injury prevention measures to minimize head injuries from head impact in blind football.
Collapse
Affiliation(s)
- Shogo Tsutsumi
- From the Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (ST, NM, KF, SA, T Tashiro, KK, MY, RM, HI, HE, KT, T Terada, MK, YU); and Sports Medical Center, Japan Institute of Sports Sciences (JISS), Tokyo, Japan (JS, RS, AS)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McIver KG, Lee P, Bucherl S, Talavage TM, Myer GD, Nauman EA. Design Considerations for the Attenuation of Translational and Rotational Accelerations in American Football Helmets. J Biomech Eng 2023; 145:061008. [PMID: 36628996 PMCID: PMC10782865 DOI: 10.1115/1.4056653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Participants in American football experience repetitive head impacts that induce negative changes in neurocognitive function over the course of a single season. This study aimed to quantify the transfer function connecting the force input to the measured output acceleration of the helmet system to provide a comparison of the impact attenuation of various modern American football helmets. Impact mitigation varied considerably between helmet models and with location for each helmet model. The current data indicate that helmet mass is a key variable driving force attenuation, however flexible helmet shells, helmet shell cutouts, and more compliant padding can improve energy absorption.
Collapse
Affiliation(s)
- Kevin G. McIver
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Patrick Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Sean Bucherl
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Thomas M. Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
| | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA 30542; Emory Sports Medicine Center, Atlanta, GA 30329; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329; The Micheli Center for Sports Injury Prevention, Waltham, MA 02452
| | - Eric A. Nauman
- Dane A. and Mary Louise Miller Professor Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221
| |
Collapse
|
23
|
Kong L, Qiu S, Chen Y, He Z, Huang P, He Q, Zhang RY, Feng XQ, Deng L, Li Y, Yan F, Yang GZ, Feng Y. Assessment of vibration modulated regional cerebral blood flow with MRI. Neuroimage 2023; 269:119934. [PMID: 36754123 DOI: 10.1016/j.neuroimage.2023.119934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Human brain experiences vibration of certain magnitude and frequency during various physical activities such as vehicle transportation and machine operation, which may cause traumatic brain injury or other brain diseases. However, the mechanisms of brain pathogenesis due to vibration are not fully elucidated due to the lack of techniques to study brain functions while applying vibration to the brain at a specific magnitude and frequency. Here, this study reported a custom-built head-worn electromagnetic actuator that applied vibration to the brain in vivo at an accurate frequency inside a magnetic resonance imaging scanner while cerebral blood flow (CBF) was acquired. Using this technique, CBF values from 45 healthy volunteers were quantitatively measured immediately following vibration at 20, 30, 40 Hz, respectively. Results showed increasingly reduced CBF with increasing frequency at multiple regions of the brain, while the size of the regions expanded. Importantly, the vibration-induced CBF reduction regions largely fell inside the brain's default mode network (DMN), with about 58 or 46% overlap at 30 or 40 Hz, respectively. These findings demonstrate that vibration as a mechanical stimulus can change strain conditions, which may induce CBF reduction in the brain with regional differences in a frequency-dependent manner. Furthermore, the overlap between vibration-induced CBF reduction regions and DMN suggested a potential relationship between external mechanical stimuli and cognitive functions.
Collapse
Affiliation(s)
- Linghan Kong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Suhao Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Zhao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Qiang He
- Shanghai United Imaging Healthcare Co Ltd, Shanghai, China
| | - Ru-Yuan Zhang
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai, China
| | - Guang-Zhong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Pavlovic N, Clermont C, Cairns J, Williamson RA, Emery CA, Stefanyshyn D. Differences in head impact biomechanics between playing positions in Canadian high school football players. J Sports Sci 2023; 40:2697-2703. [PMID: 36862832 DOI: 10.1080/02640414.2023.2184824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The objective of this study was to compare head impact magnitudes and time between impacts among positions in Canadian high-school football. Thirty nine players from two high-school football teams were recruited and assigned a position profile: Profile 1 (quarterback, receiver, defensive back, kicker), Profile 2 (linebacker, running back), and Profile 3 (linemen). Players wore instrumented mouthguards to measure peak magnitudes of linear and angular acceleration and velocity for each head impact throughout the season. A principal component analysis reduced the dimensionality of biomechanical variables, resulting in one principal component (PC1) score assigned to every impact. Time between impacts was calculated by subtracting the timestamps of subsequent head impacts within a session. Significant differences in PC1 scores and time between impacts occurred between playing position profiles (ps<0.001). Post-hoc comparisons determined that PC1 was greatest in Profile 2, followed by Profiles 1 and 3. Time between impacts was lowest in Profile 3, followed by Profiles 2 and 1. This study delivers a new method of reducing the multidimensionality of head impact magnitudes and suggests different Canadian high-school football playing positions experience different head impact magnitudes and frequencies, which is important for monitoring concussion and repetitive head impact exposure.
Collapse
Affiliation(s)
- Nina Pavlovic
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Christian Clermont
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua Cairns
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Rylen A Williamson
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Darren Stefanyshyn
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Johnstone DM, Mitrofanis J, Stone J. The brain's weakness in the face of trauma: How head trauma causes the destruction of the brain. Front Neurosci 2023; 17:1141568. [PMID: 36950132 PMCID: PMC10026135 DOI: 10.3389/fnins.2023.1141568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Of all our organs, the brain is perhaps the best protected from trauma. The skull has evolved to enclose it and, within the skull, the brain floats in a protective bath of cerebrospinal fluid. It is becoming evident, however, that head trauma experienced in young adult life can cause a dementia that appears decades later. The level of trauma that induces such destruction is still being assessed but includes levels well below that which cracks the skull or causes unconsciousness or concussion. Clinically this damage appears as dementia, in people who played body-contact sports in their youth or have survived accidents or the blasts of combat; and appears also, we argue, in old age, without a history of head trauma. The dementias have been given different names, including dementia pugilistica (affecting boxers), chronic traumatic encephalopathy (following certain sports, particularly football), traumatic brain injury (following accidents, combat) and Alzheimer's (following decades of life). They share common features of clinical presentation and neuropathology, and this conceptual analysis seeks to identify features common to these forms of brain injury and to identify where in the brain the damage common to them occurs; and how it occurs, despite the protection provided by the skull and cerebrospinal fluid. The analysis suggests that the brain's weak point in the face of trauma is its capillary bed, which is torn by the shock of trauma. This identification in turn allows discussion of ways of delaying, avoiding and even treating these trauma-induced degenerations.
Collapse
Affiliation(s)
- Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle and School of Medical Sciences, The University of Sydney, Darlington, NSW, Australia
| | - John Mitrofanis
- Fonds de Dotation Clinatec, Université Grenoble Alpes, France and Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jonathan Stone
- Honorary Associate, Centenary Institute and University of Sydney, Darlington, NSW, Australia
| |
Collapse
|
26
|
Liang B, Alosco ML, Armañanzas R, Martin BM, Tripodis Y, Stern RA, Prichep LS. Long-Term Changes in Brain Connectivity Reflected in Quantitative Electrophysiology of Symptomatic Former National Football League Players. J Neurotrauma 2023; 40:309-317. [PMID: 36324216 PMCID: PMC9902050 DOI: 10.1089/neu.2022.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to repetitive head impacts (RHI) has been associated with long-term disturbances in cognition, mood, and neurobehavioral dysregulation, and reflected in neuroimaging. Distinct patterns of changes in quantitative features of the brain electrical activity (quantitative electroencephalogram [qEEG]) have been demonstrated to be sensitive to brain changes seen in neurodegenerative disorders and in traumatic brain injuries (TBI). While these qEEG biomarkers are highly sensitive at time of injury, the long-term effects of exposure to RHI on brain electrical activity are relatively unexplored. Ten minutes of eyes closed resting EEG data were collected from a frontal and frontotemporal electrode montage (BrainScope Food and Drug Administration-cleared EEG acquisition device), as well as assessments of neuropsychiatric function and age of first exposure (AFE) to American football. A machine learning methodology was used to derive a qEEG-based algorithm to discriminate former National Football League (NFL) players (n = 87, 55.40 ± 7.98 years old) from same-age men without history of RHI (n = 68, 54.94 ± 7.63 years old), and a second algorithm to discriminate former players with AFE <12 years (n = 33) from AFE ≥12 years (n = 54). The algorithm separating NFL retirees from controls had a specificity = 80%, a sensitivity = 60%, and an area under curve (AUC) = 0.75. Within the NFL population, the algorithm separating AFE <12 from AFE ≥12 resulted in a sensitivity = 76%, a specificity = 52%, and an AUC = 0.72. The presence of a profile of EEG abnormalities in the NFL retirees and in those with younger AFE includes features associated with neurodegeneration and the disruption of neuronal transmission between regions. These results support the long-term consequences of RHI and the potential of EEG as a biomarker of persistent changes in brain function.
Collapse
Affiliation(s)
- Bo Liang
- BrainScope Company, Chevy Chase, Maryland, USA
| | - Michael L. Alosco
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Ruben Armañanzas
- BrainScope Company, Chevy Chase, Maryland, USA
- Institute for Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
- Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Brett M. Martin
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Robert A. Stern
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
- Departments of Neurosurgery and Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Castaño-Leon AM, Sánchez Carabias C, Hilario A, Ramos A, Navarro-Main B, Paredes I, Munarriz PM, Panero I, Eiriz Fernández C, García-Pérez D, Moreno-Gomez LM, Esteban-Sinovas O, Garcia Posadas G, Gomez PA, Lagares A. Serum assessment of traumatic axonal injury: the correlation of GFAP, t-Tau, UCH-L1, and NfL levels with diffusion tensor imaging metrics and its prognosis utility. J Neurosurg 2023; 138:454-464. [PMID: 35901687 DOI: 10.3171/2022.5.jns22638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Diagnosis of traumatic axonal injury (TAI) is challenging because of its underestimation by conventional MRI and the technical requirements associated with the processing of diffusion tensor imaging (DTI). Serum biomarkers seem to be able to identify patients with abnormal CT scanning findings, but their potential role to assess TAI has seldomly been explored. METHODS Patients with all severities of traumatic brain injury (TBI) were prospectively included in this study between 2016 and 2021. They underwent blood extraction within 24 hours after injury and imaging assessment, including DTI. Serum concentrations of glial fibrillary acidic protein, total microtubule-associated protein (t-Tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NfL) were measured using an ultrasensitive Simoa multiplex assay panel, a digital form of enzyme-linked immunosorbent assay. The Glasgow Outcome Scale-Extended score was determined at 6 months after TBI. The relationships between biomarker concentrations, volumetric analysis of corpus callosum (CC) lesions, and fractional anisotropy (FA) were analyzed by nonparametric tests. The prognostic utility of the biomarker was determined by calculating the C-statistic and an ordinal regression analysis. RESULTS A total of 87 patients were included. Concentrations of all biomarkers were significantly higher for patients compared with controls. Although the concentration of the biomarkers was affected by the presence of mass lesions, FA of the CC was an independent factor influencing levels of UCH-L1 and NfL, which positioned these two biomarkers as better surrogates of TAI. Biomarkers also performed well in determining patients who would have had unfavorable outcome. NfL and the FA of the CC are independent complementary factors related to outcome. CONCLUSIONS UCH-L1 and NfL seem to be the biomarkers more specific to detect TAI. The concentration of NfL combined with the FA of the CC might help predict long-term outcome.
Collapse
Affiliation(s)
- Ana M Castaño-Leon
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | | | - Amaya Hilario
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Ana Ramos
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Blanca Navarro-Main
- 4Department of Psychiatry, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid; and
| | - Igor Paredes
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pablo M Munarriz
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Irene Panero
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Carla Eiriz Fernández
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Daniel García-Pérez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Luis Miguel Moreno-Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Olga Esteban-Sinovas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Guillermo Garcia Posadas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pedro A Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Alfonso Lagares
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid.,5Department of Surgery, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Lee D, Lee Y, Lee Y, Kim K. Functional Connectivity in the Mouse Brainstem Represents Signs of Recovery from Concussion. J Neurotrauma 2023; 40:240-249. [PMID: 36103389 DOI: 10.1089/neu.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is one of the most frequent neurological disorders. Diagnostic criteria for mTBI are based on cognitive or neurological symptoms without fully understanding the neuropathological basis for explaining behaviors. From the neuropathological perspective of mTBI, recent neuroimaging studies have focused on structural or functional differences in motor-related cortical regions but did not compare topological network properties between the post-concussion days in the brainstem. We investigated temporal changes in functional connectivity and evaluated network properties of functional networks in the mouse brainstem. We observed a significantly decreased functional connectivity and global and local network properties on post-concussion day 7, which normalized on post-concussion day 14. Functional connectivity and local network properties on post-concussion day 2 were also significantly decreased compared with those on post-concussion day 14, but there were no significant group differences in global network properties between days 2 and 14. We also observed that the local efficiency and clustering coefficient of the brainstem network were significantly correlated with anxiety-like behaviors on post-concussion days 7 and 14. This study suggests that functional connectivity in the mouse brainstem provides vital recovery signs from concussion through functional reorganization.
Collapse
Affiliation(s)
- Dongha Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yujeong Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yoonsang Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
29
|
Wilkerson GB, Colston MA, Acocello SN, Hogg JA, Carlson LM. Subtle impairments of perceptual-motor function and well-being are detectable among military cadets and college athletes with self-reported history of concussion. Front Sports Act Living 2023; 5:1046572. [PMID: 36761780 PMCID: PMC9905443 DOI: 10.3389/fspor.2023.1046572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction A lack of obvious long-term effects of concussion on standard clinical measures of behavioral performance capabilities does not preclude the existence of subtle neural processing impairments that appear to be linked to elevated risk for subsequent concussion occurrence, and which may be associated with greater susceptibility to progressive neurodegenerative processes. The purpose of this observational cohort study was to assess virtual reality motor response variability and survey responses as possible indicators of suboptimal brain function among military cadets and college athletes with self-reported history of concussion (HxC). Methods The cohort comprised 75 college students (20.7 ± 2.1 years): 39 Reserve Officer Training Corp (ROTC) military cadets (10 female), 16 football players, and 20 wrestlers; HxC self-reported by 20 (29.2 ± 27.1 months prior, range: 3-96). A virtual reality (VR) test involving 40 lunging/reaching responses to horizontally moving dots (filled/congruent: same direction; open/incongruent: opposite direction) was administered, along with the Sport Fitness and Wellness Index (SFWI) survey. VR Dispersion (standard deviation of 12 T-scores for neck, upper extremity, and lower extremity responses to congruent vs. incongruent stimuli originating from central vs. peripheral locations) and SFWI response patterns were the primary outcomes of interest. Results Logistic regression modeling of VR Dispersion (range: 1.5-21.8), SFWI (range: 44-100), and an interaction between them provided 81% HxC classification accuracy (Model χ 2[2] = 26.03, p < .001; Hosmer & Lemeshow χ 2[8] = 1.86, p = .967; Nagelkerke R 2 = .427; Area Under Curve = .841, 95% CI: .734, .948). Binary modeling that included VR Dispersion ≥3.2 and SFWI ≤86 demonstrated 75% sensitivity and 86% specificity with both factors positive (Odds Ratio = 17.6, 95% CI: 5.0, 62.1). Discussion/Conclusion Detection of subtle indicators of altered brain processes that might otherwise remain unrecognized is clearly important for both short-term and long-term clinical management of concussion. Inconsistency among neck, upper extremity, and lower extremity responses to different types of moving visual stimuli, along with survey responses suggesting suboptimal well-being, merit further investigation as possible clinical indicators of persisting effects of concussion that might prove to be modifiable.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Marisa A Colston
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Shellie N Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jennifer A Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M Carlson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| |
Collapse
|
30
|
Kercher KA, Steinfeldt JA, Macy JT, Seo DC, Kawata K. Drill Intensity and Head Impact Exposure in Adolescent Football. Pediatrics 2022; 150:189733. [PMID: 36226553 PMCID: PMC9675985 DOI: 10.1542/peds.2022-057725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to examine head-impact exposure by intensity level and position group, and to test the hypothesis that there would be an increase in cumulative head-impact exposure between drill intensities after controlling for duration in each level with air recording the lowest frequency and magnitude and live recording the highest: air < bags < control < thud < live. METHODS We conducted a prospective, multisite study in 1 season with players from 3 high school football teams (n = 74). Each player wore a sensor-installed mouthguard, which monitored head-impact frequency, peak linear acceleration (PLA), and peak rotational acceleration (PRA). Practice drills and games were categorized by level of contact. RESULTS A total of 7312 impacts were recorded with a median of 67 (interquartile range:128) impacts per player. After controlling for duration, increases in head-impact outcomes by level of contact were observed (air < bags = control < thud = live). Live drills had higher cumulative head-impact frequency (45.4 ± 53.0 hits) and magnitude (PLA: 766.3 ± 932.9 g; PRA: 48.9 ± 61.3 kilorad/s2) per player than other levels (P < .0001). In comparison, air drills had the lowest cumulative frequency (4.2 ± 6.9 hits) and magnitude (PLA: 68.0 ± 121.6 g; PRA: 6.4 ± 13.2 kilorad/s2). CONCLUSIONS These data support the levels-of-contact system as a practical approach to limiting head-impact exposure in tackle football. Our findings are clinically important, because data have begun to suggest the relationship between chronic head-impact exposure and decline in brain health. Since head-impact exposure was influenced by levels of contact, regulation of the duration of certain drill intensities (eg, thud, live) may associate with reduced head-impact exposure in high school football.
Collapse
Affiliation(s)
- Kyle A. Kercher
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Jesse A. Steinfeldt
- Department of Counseling and Educational Psychology School of Education, Indiana University, Bloomington, Indiana
| | - Jonathan T. Macy
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Dong-Chul Seo
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, Indiana,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
31
|
Zhan X, Liu Y, Cecchi NJ, Gevaert O, Zeineh MM, Grant GA, Camarillo DB. Finding the Spatial Co-Variation of Brain Deformation With Principal Component Analysis. IEEE Trans Biomed Eng 2022; 69:3205-3215. [PMID: 35349430 PMCID: PMC9580615 DOI: 10.1109/tbme.2022.3163230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Strain and strain rate are effective traumatic brain injury metrics. In finite element (FE) head model, thousands of elements were used to represent the spatial distribution of these metrics. Owing that these metrics are resulted from brain inertia, their spatial distribution can be represented in more concise pattern. Since head kinematic features and brain deformation vary largely across head impact types (Zhan et al., 2021), we applied principal component analysis (PCA) to find the spatial co-variation of injury metrics (maximum principal strain (MPS), MPS rate (MPSR) and MPS × MPSR) in four impact types: simulation, football, mixed martial arts and car crashes, and used the PCA to find patterns in these metrics and improve the machine learning head model (MLHM). METHODS We applied PCA to decompose the injury metrics for all impacts in each impact type, and investigate the spatial co-variation using the first principal component (PC1). Furthermore, we developed a MLHM to predict PC1 and then inverse-transform to predict for all brain elements. The accuracy, the model complexity and the size of training dataset of PCA-MLHM are compared with previous MLHM (Zhan et al., 2021). RESULTS PC1 explained variance on the datasets. Based on PC1 coefficients, the corpus callosum and midbrain exhibit high variance on all datasets. Finally, the PCA-MLHM reduced model parameters by 74% with a similar MPS estimation accuracy. CONCLUSION The brain injury metric in a dataset can be decomposed into mean components and PC1 with high explained variance. SIGNIFICANCE The spatial co-variation analysis enables better interpretation of the patterns in brain injury metrics. It also improves the efficiency of MLHM.
Collapse
|
32
|
Helmet Technology, Head Impact Exposure, and Cortical Thinning Following a Season of High School Football. Ann Biomed Eng 2022; 50:1608-1619. [PMID: 35867315 DOI: 10.1007/s10439-022-03023-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to compare the effects of wearing older, lower-ranked football helmets (LRank) to wearing newer, higher-ranked football helmets (HRank) on pre- to post-season changes in cortical thickness in response to repetitive head impacts and assess whether changes in cortical thickness are associated with head impact exposure for either helmet type. 105 male high-school athletes (NHRank = 52, NLRank = 53) wore accelerometers affixed behind the left mastoid during all practices and games for one regular season of American football to monitor head impact exposure. Pre- and post-season magnetic resonance imaging (MRI) were completed to assess longitudinal changes in cortical thickness. Significant reductions in cortical thickness (i.e., cortical thinning) were observed pre- to post-season for each group, but these longitudinal alterations were not significantly different between the LRank and HRank groups. Further, significant group-by-head impact exposure interactions were observed when predicting changes in cortical thickness. Specifically, a greater frequency of high magnitude head impacts during the football season resulted in greater cortical thinning for the LRank group, but not for the HRank group. These data provide preliminary in vivo evidence that HRank helmets may provide a buffer between the specific effect of high magnitude head impacts on regional thinning by dissipating forces more evenly throughout the cortex. However, future research with larger sample sizes, increased longitudinal measures and additional helmet technologies is warranted to both expand upon and further validate the present study findings.
Collapse
|
33
|
Lavender AP, Georgieva J, Takechi R. A Suggested New Term and Definition to Describe the Cumulative Physiological and Functional Effects of Non-injurious Head Impacts. Front Neurol 2022; 13:799884. [PMID: 35432181 PMCID: PMC9009409 DOI: 10.3389/fneur.2022.799884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Andrew P. Lavender
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
- *Correspondence: Andrew P. Lavender
| | - Julia Georgieva
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
34
|
Tamez-Peña J, Rosella P, Totterman S, Schreyer E, Gonzalez P, Venkataraman A, Meyers SP. Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning. Front Neurol 2022; 12:734329. [PMID: 35082743 PMCID: PMC8784748 DOI: 10.3389/fneur.2021.734329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS). Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury. Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p < 0.0001) and associated with the time from injury (p < 0.01). Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.
Collapse
Affiliation(s)
- José Tamez-Peña
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico.,Qmetrics Technologies, Rochester, NY, United States
| | - Peter Rosella
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | | | | | | | - Arun Venkataraman
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | - Steven P Meyers
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
35
|
Nowak MK, Ejima K, Quinn PD, Bazarian JJ, Mickleborough TD, Harezlak J, Newman SD, Kawata K. ADHD May Associate With Reduced Tolerance to Acute Subconcussive Head Impacts: A Pilot Case-Control Intervention Study. J Atten Disord 2022; 26:125-139. [PMID: 33161816 PMCID: PMC8102643 DOI: 10.1177/1087054720969977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test our hypothesis that individuals with ADHD would exhibit reduced resiliency to subconcussive head impacts induced by ten soccer headings. METHOD We conducted a case-control intervention study in 51 adults (20.6 ± 1.7 years old). Cognitive assessment, using ImPACT, and plasma levels of neurofilament-light (NF-L), Tau, glial-fibrillary-acidic protein (GFAP), and ubiquitin-C-terminal hydrolase-L1 (UCH-L1) were measured. RESULTS Ten controlled soccer headings demonstrated ADHD-specific transient declines in verbal memory function. Ten headings also blunted learning effects in visual memory function in the ADHD group while the non-ADHD counterparts improved both verbal and visual memory functions even after ten headings. Blood biomarker levels of the ADHD group were sensitive to the stress induced by ten headings, where plasma GFAP and UCH-L1 levels acutely increased after 10 headings. Variance in ADHD-specific verbal memory decline was correlated with increased levels of plasma GFAP in the ADHD group. CONCLUSIONS These data suggest that ADHD may reduce brain tolerance to repetitive subconcussive head impacts.
Collapse
Affiliation(s)
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Patrick D. Quinn
- Department of Applied Health, Indiana University-Bloomington, USA
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, USA
| | | | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University-Bloomington, USA
- Program in Neuroscience, Indiana University-Bloomington, USA
| |
Collapse
|
36
|
Omalu B, Hammers J. In Reply: Recommendation to Create New Neuropathologic Guidelines for the Postmortem Diagnosis of Chronic Traumatic Encephalopathy. Neurosurgery 2022; 90:e21-e23. [PMID: 34982893 DOI: 10.1227/neu.0000000000001768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Bennet Omalu
- Department of Medical Pathology and Laboratory Medicine , University of California, Davis, Davis , California , USA
| | - Jennifer Hammers
- Forensic Science and Law Program , Bayer School of Natural and Environmental Sciences , Duquesne University, Pittsburgh , Pennsylvania , USA
| |
Collapse
|
37
|
Objectively-based vergence and accommodative dynamics in mild traumatic brain injury (mTBI): A mini review. Vision Res 2021; 191:107967. [PMID: 34808548 DOI: 10.1016/j.visres.2021.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Vergence and accommodation have been critical areas of investigation in those with mild traumatic brain injury (mTBI). In this mini-review, the major laboratory studies in the area using objective assessment of vergence and accommodative dynamics in this population are discussed. These include the basic findings, their diagnostic and therapeutic implications, potential study limitations, and suggested future research directions. All studies provided important new information, and insights, into the area. There were two key outcomes of the reviewed studies common to both the vergence and accommodative systems in those with mTBI. First, most dynamic parameter's responsivity at baseline was abnormal: it was slowed, delayed, and/or inaccurate as compared to the normative control data. Second, most of the abnormal dynamic parameter's responsivity could be remediated, at least in part, following a short period of oculomotor-based vision therapy, thus demonstrating considerable residual neuroplasticity in the damaged, human brain.
Collapse
|
38
|
Wilkerson GB, Bruce JR, Wilson AW, Huang N, Sartipi M, Acocello SN, Hogg JA, Mansouri M. Perceptual-Motor Efficiency and Concussion History Are Prospectively Associated With Injury Occurrences Among High School and Collegiate American Football Players. Orthop J Sports Med 2021; 9:23259671211051722. [PMID: 34722788 PMCID: PMC8552393 DOI: 10.1177/23259671211051722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background: After a sport-related concussion (SRC), the risk for lower extremity injury is approximately 2 times greater, and the risk for another SRC may be as much as 3 to 5 times greater. Purpose: To assess the predictive validity of screening methods for identification of individual athletes who possess an elevated risk of SRC. Study Design: Case-control study; Level of evidence, 3. Methods: Metrics derived from a smartphone flanker test software application and self-ratings of both musculoskeletal function and overall wellness were acquired from American high school and college football players before study participation. Occurrences of core or lower extremity injury (CLEI) and SRC were documented for all practice sessions and games for 1 season. Receiver operating characteristic and logistic regression analyses were used to identify variables that provided the greatest predictive accuracy for CLEI or SRC occurrence. Results: Overall, there were 87 high school and 74 American college football players included in this study. At least 1 CLEI was sustained by 45% (39/87) of high school players and 55% (41/74) of college players. Predictors of CLEI included the flanker test conflict effect ≥69 milliseconds (odds ratio [OR], 2.12; 90% CI, 1.24-3.62) and a self-reported lifetime history of SRC (OR, 1.70; 90% CI, 0.90-3.23). Of players with neither risk factor, only 38% (29/77) sustained CLEI compared with 61% (51/84) of players with 1 or both of the risk factors (OR, 2.56; 90% CI, 1.50-4.36). SRC was sustained by 7 high school players and 3 college players. Predictors of SRC included the Overall Wellness Index score ≤78 (OR, 9.83; 90% CI, 3.17-30.50), number of postconcussion symptoms ≥4 (OR, 8.35; 90% CI, 2.71-25.72), the Sport Fitness Index score ≤78 (OR, 5.16; 90% CI, 1.70-15.65), history of SRC (OR, 4.03; 90% CI, 1.35-12.03), and the flanker test inverse efficiency ratio ≥1.7 (OR, 3.19; 90% CI, 1.08-9.47). Conclusion: Survey responses and smartphone flanker test metrics predicted greater injury incidence among individual football players classified as high-risk compared with that for players with a low-risk profile.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Jeremy R Bruce
- Department of Orthopaedic Surgery, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Andrew W Wilson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Neal Huang
- Department of Orthopaedic Surgery, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Mina Sartipi
- Center for Urban Informatics and Progress, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Shellie N Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Jennifer A Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Misagh Mansouri
- Center for Urban Informatics and Progress, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| |
Collapse
|
39
|
Glass JD. Re: The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2021;80(3):210-9. J Neuropathol Exp Neurol 2021; 80:1007-1008. [PMID: 34718653 PMCID: PMC11494670 DOI: 10.1093/jnen/nlab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Head Impact Research Using Inertial Sensors in Sport: A Systematic Review of Methods, Demographics, and Factors Contributing to Exposure. Sports Med 2021; 52:481-504. [PMID: 34677820 DOI: 10.1007/s40279-021-01574-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The number and magnitude of head impacts have been assessed in-vivo using inertial sensors to characterise the exposure in various sports and to help understand their potential relationship to concussion. OBJECTIVES We aimed to provide a comprehensive review of the field of in-vivo sensor acceleration event research in sports via the summary of data collection and processing methods, population demographics and factors contributing to an athlete's exposure to sensor acceleration events. METHODS The systematic search resulted in 185 cohort or cross-sectional studies that recorded sensor acceleration events in-vivo during sport participation. RESULTS Approximately 5800 participants were studied in 20 sports using 18 devices that included instrumented helmets, headbands, skin patches, mouthguards and earplugs. Female and youth participants were under-represented and ambiguous results were reported for these populations. The number and magnitude of sensor acceleration events were affected by a variety of contributing factors, suggesting sport-specific analyses are needed. For collision sports, being male, being older, and playing in a game (as opposed to a practice), all contributed to being exposed to more sensor acceleration events. DISCUSSION Several issues were identified across the various sensor technologies, and efforts should focus on harmonising research methods and improving the accuracy of kinematic measurements and impact classification. While the research is more mature for high-school and collegiate male American football players, it is still in its early stages in many other sports and for female and youth populations. The information reported in the summarised work has improved our understanding of the exposure to sport-related head impacts and has enabled the development of prevention strategies, such as rule changes. CONCLUSIONS Head impact research can help improve our understanding of the acute and chronic effects of head impacts on neurological impairments and brain injury. The field is still growing in many sports, but technological improvements and standardisation of processes are needed.
Collapse
|
41
|
Wilkerson GB, Nabhan DC, Perry TS. A Novel Approach to Assessment of Perceptual-Motor Efficiency and Training-Induced Improvement in the Performance Capabilities of Elite Athletes. Front Sports Act Living 2021; 3:729729. [PMID: 34661098 PMCID: PMC8517233 DOI: 10.3389/fspor.2021.729729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Standard clinical assessments of mild traumatic brain injury are inadequate to detect subtle abnormalities that can be revealed by sophisticated diagnostic technology. An association has been observed between sport-related concussion (SRC) and subsequent musculoskeletal injury, but the underlying neurophysiological mechanism is not currently understood. A cohort of 16 elite athletes (10 male, 6 female), which included nine individuals who reported a history of SRC (5 male, 4 female) that occurred between 4 months and 8 years earlier, volunteered to participate in a 12-session program for assessment and training of perceptual-motor efficiency. Performance metrics derived from single- and dual-task whole-body lateral and diagonal reactive movements to virtual reality targets in left and right directions were analyzed separately and combined in various ways to create composite representations of global function. Intra-individual variability across performance domains demonstrated very good SRC history classification accuracy for the earliest 3-session phase of the program (Reaction Time Dispersion AUC = 0.841; Deceleration Dispersion AUC = 0.810; Reaction Time Discrepancy AUC = 0.825, Deceleration Discrepancy AUC = 0.794). Good earliest phase discrimination was also found for Composite Asymmetry between left and right movement directions (AUC = 0.778) and Excursion Average distance beyond the minimal body displacement necessary for virtual target deactivation (AUC = 0.730). Sensitivity derived from Youden's Index for the 6 global factors ranged from 67 to 89% and an identical specificity value of 86% for all of them. Median values demonstrated substantial improvement from the first 3-session phase to the last 3-session phase for Composite Asymmetry and Excursion Average. The results suggest that a Composite Asymmetry value ≥ 0.15 and an Excursion Average value ≥ 7 m, provide reasonable qualitative approximations for clinical identification of suboptimal perceptual-motor performance. Despite acknowledged study limitations, the findings support a hypothesized relationship between whole-body reactive agility performance and functional connectivity among brain networks subserving sensory perception, cognitive decision-making, and motor execution. A complex systems approach appears to perform better than traditional data analysis methods for detection of subtle perceptual-motor impairment, which has the potential to advance both clinical management of SRC and training for performance enhancement.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Dustin C Nabhan
- Oslo Sports Trauma Research Center, Norwegian School of Sport Science, Oslo, Norway
| | - Tyler S Perry
- Orthopedics and Sports Medicine, Emory Healthcare, Atlanta, GA, United States
| |
Collapse
|
42
|
Beard K, Yang Z, Haber M, Flamholz M, Diaz-Arrastia R, Sandsmark D, Meaney DF, Issadore D. Extracellular vesicles as distinct biomarker reservoirs for mild traumatic brain injury diagnosis. Brain Commun 2021; 3:fcab151. [PMID: 34622206 PMCID: PMC8491985 DOI: 10.1093/braincomms/fcab151] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Mild traumatic brain injury does not currently have a clear molecular diagnostic panel to either confirm the injury or to guide its treatment. Current biomarkers for traumatic brain injury rely mainly on detecting circulating proteins in blood that are associated with degenerating neurons, which are less common in mild traumatic brain injury, or with broad inflammatory cascades which are produced in multiple tissues and are thus not brain specific. To address this issue, we conducted an observational cohort study designed to measure a protein panel in two compartments—plasma and brain-derived extracellular vesicles—with the following hypotheses: (i) each compartment provides independent diagnostic information and (ii) algorithmically combining these compartments accurately classifies clinical mild traumatic brain injury. We evaluated this hypothesis using plasma samples from mild (Glasgow coma scale scores 13–15) traumatic brain injury patients (n = 47) and healthy and orthopaedic control subjects (n = 46) to evaluate biomarkers in brain-derived extracellular vesicles and plasma. We used our Track Etched Magnetic Nanopore technology to isolate brain-derived extracellular vesicles from plasma based on their expression of GluR2, combined with the ultrasensitive digital enzyme-linked immunosorbent assay technique, Single-Molecule Array. We quantified extracellular vesicle-packaged and plasma levels of biomarkers associated with two categories of traumatic brain injury pathology: neurodegeneration and neuronal/glial damage (ubiquitin C-terminal hydrolase L1, glial fibrillary acid protein, neurofilament light and Tau) and inflammation (interleukin-6, interleukin-10 and tumour necrosis factor alpha). We found that GluR2+ extracellular vesicles have distinct biomarker distributions than those present in the plasma. As a proof of concept, we showed that using a panel of biomarkers comprised of both plasma and GluR2+ extracellular vesicles, injured patients could be accurately classified versus non-injured patients.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijian Yang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miranda Flamholz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Symons GF, Clough M, Mutimer S, Major BP, O'Brien WT, Costello D, McDonald SJ, Chen Z, White O, Mychasiuk R, Law M, Wright DK, O'Brien TJ, Fielding J, Kolbe SC, Shultz SR. Cognitive ocular motor deficits and white matter damage chronically after sports-related concussion. Brain Commun 2021; 3:fcab213. [PMID: 34595476 PMCID: PMC8477916 DOI: 10.1093/braincomms/fcab213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
A history of concussion has been linked to long-term cognitive deficits; however, the neural underpinnings of these abnormalities are poorly understood. This study recruited 26 asymptomatic male Australian footballers with a remote history of concussion (i.e. at least six months since last concussion), and 23 non-collision sport athlete controls with no history of concussion. Participants completed three ocular motor tasks (prosaccade, antisaccade and a cognitively complex switch task) to assess processing speed, inhibitory control and cognitive flexibility, respectively. Diffusion tensor imaging data were acquired using a 3 T MRI scanner, and analysed using tract-based spatial statistics, to investigate white matter abnormalities and how they relate to ocular motor performance. Australian footballers had significantly slower adjusted antisaccade latencies compared to controls (P = 0.035). A significant switch cost (i.e. switch trial error > repeat trial error) was also found on the switch task, with Australian footballers performing increased magnitude of errors on prosaccade switch trials relative to prosaccade repeat trials (P = 0.023). Diffusion tensor imaging analysis found decreased fractional anisotropy, a marker of white matter damage, in major white matter tracts (i.e. corpus callosum, corticospinal tract) in Australian footballers relative to controls. Notably, a larger prosaccade switch cost was significantly related to reduced fractional anisotropy in anterior white matter regions found to connect to the prefrontal cortex (i.e. a key cortical ocular motor centre involved in executive functioning and task switching). Taken together, Australian footballers with a history of concussion have ocular motor deficits indicative of poorer cognitive processing speed and cognitive flexibility, which are related to reduce white matter integrity in regions projecting to important cognitive ocular motor structures. These findings provide novel insights into the neural mechanisms that may underly chronic cognitive impairments in individuals with a history of concussion.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Steven Mutimer
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Brendan P Major
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
44
|
Chen A, Zhang Z, Cao C, Lu J, Wu S, Ma S, Feng Y, Wang S, Xu G, Song J. Altered Attention Network in Paratroopers Exposed to Repetitive Subconcussion: Evidence Based on Behavioral and Event-Related Potential Results. J Neurotrauma 2021; 38:3306-3314. [PMID: 34549595 DOI: 10.1089/neu.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cognitive impairment caused by repetitive subconcussion has received increasing attention in recent years. Although the dysfunction of attention has been confirmed by neuropsychological research using scales, there is no event-related potentials (ERPs) research. The Attention Network Test (ANT) has been widely used to evaluate the three separate components of attention processing (alerting, orienting, and executive control). Twenty-seven paratroopers exposed to repetitive subconcussion (subconcussion group) and 25 matched healthy control participants (HCs group) were enrolled, and all of them performed the ANT test while continuous scalp electroencephalography data were recorded. On the behavioral performance level, the subconcussion group showed a slower task response, with an especially significant slower reaction time in alerting. Concerning ERP results, reduction amplitudes of cue-N1 in the alerting network were observed, indicating that this group was less able to make efficient use of cues and maintain an alerting state for incoming information. For the orienting network, no difference in N1 amplitude was observed between the two groups. Moreover, there was a reduced P3 amplitude in the executive control network in the subconcussion group compared with the HCs group, suggesting a dysfunction of attentional resource allocation and inhibition control in the former group. This study is, to our knowledge, the first analysis of the altered attention network caused by repetitive subconcussion from the perspectives of behavioral and neuropsychology levels. These preliminary results revealed the possible damage of the alerting and executive control networks and provided a reference for further research on subconcussion cognitive impairment.
Collapse
Affiliation(s)
- Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Zhihao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jinjiang Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shenghui Ma
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| |
Collapse
|
45
|
Lees B, Earls NE, Meares S, Batchelor J, Oxenham V, Rae CD, Jugé L, Cysique LA. Diffusion Tensor Imaging in Sport-Related Concussion: A Systematic Review Using an a priori Quality Rating System. J Neurotrauma 2021; 38:3032-3046. [PMID: 34309410 DOI: 10.1089/neu.2021.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) of brain white matter (WM) may be useful for characterizing the nature and degree of brain injury after sport-related concussion (SRC) and assist in establishing objective diagnostic and prognostic biomarkers. This study aimed to conduct a systematic review using an a priori quality rating strategy to determine the most consistent DTI-WM changes post-SRC. Articles published in English (until June 2020) were retrieved by standard research engine and gray literature searches (N = 4932), using PRISMA guidelines. Eligible studies were non-interventional naturalistic original studies that conducted DTI within 6 months of SRC in current athletes from all levels of play, types of sports, and sex. A total of 29 articles were included in the review, and after quality appraisal by two raters, data from 10 studies were extracted after being identified as high quality. High-quality studies showed widespread moderate-to-large WM differences when SRC samples were compared to controls during the acute to early chronic stage (days to weeks) post-SRC, including both increased and decreased fractional anisotropy and axial diffusivity and decreased mean diffusivity and radial diffusivity. WM differences remained stable in the chronic stage (2-6 months post-SRC). DTI metrics were commonly associated with SRC symptom severity, although standardized SRC diagnostics would improve future research. This indicates that microstructural recovery is often incomplete at return to play and may lag behind clinically assessed recovery measures. Future work should explore interindividual trajectories to improve understanding of the heterogeneous and dynamic WM patterns post-SRC.
Collapse
Affiliation(s)
- Briana Lees
- The Matilda Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicola E Earls
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Vincent Oxenham
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,St. Vincent's Hospital Applied Medical Research Centre, Peter Duncan Neuroscience, Sydney, New South Wales, Australia.,School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
47
|
Hellewell SC, Welton T, Pearce AJ, Maller JJ, Grieve SM. Diffusion MRI as a complementary assessment to cognition, emotion, and motor dysfunction after sports-related concussion: a systematic review and critical appraisal of the literature. Brain Imaging Behav 2021; 15:1685-1704. [PMID: 32720180 DOI: 10.1007/s11682-020-00336-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sports-related concussion (SRC) is a complex and heterogeneous injury with psychological, cognitive and functional consequences. Advances in diffusion magnetic resonance imaging (dMRI) allow sensitive measurement of white matter pathology post-SRC and may provide insight into injury and recovery. We systematically reviewed and meta-analyzed the literature examining dMRI alongside cognitive, emotional or motor assessments to determine relationships between these analyses. Sixteen studies examining young athletes (n = 6) or retired professionals (n = 10) met the inclusion criteria, with 12 emotional, 10 cognitive and four motor assessments. Studies had heterogeneous methodology, moderate quality and modest sample sizes. Fractional anisotropy (FA) was the most frequent dMRI metric, with SRC-induced changes described most commonly in the frontal lobe and least in the cerebellum and brainstem. There is an emerging complementary role for dMRI as part of a comprehensive assessment battery for SRC. However, larger-scale studies with broader subject populations (specifically, in females and in the 30-45 year age range) are needed to corroborate findings and determine the true diagnostic utility of dMRI post-SRC.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Thomas Welton
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alan J Pearce
- School of Allied Health, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jerome J Maller
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.,General Electric Healthcare, Richmond, VIC, 3181, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia. .,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
48
|
Johnson B, Walter AE, Wilkes JR, Papa L, Slobounov SM. Changes in White Matter of the Cervical Spinal Cord after a Single Season of Collegiate Football. Neurotrauma Rep 2021; 2:84-93. [PMID: 34223548 PMCID: PMC8240824 DOI: 10.1089/neur.2020.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The involvement of the central nervous system (CNS), specifically the white matter tracts in the cervical spinal cord, was examined with diffusion tensor imaging (DTI) following exposure to repetitive head acceleration events (HAEs) after a single season of collegiate football. Fifteen National Collegiate Athletic Association (NCAA) Division 1 football players underwent DTI of the cervical spinal cord (vertebral level C1–4) at pre-season (before any contact practices began) and post-season (within 1 week of the last regular season game) intervals. Helmet accelerometer data were also collected in parallel throughout the season. From pre-season to post-season, a significant decrease (p < 0.05) of axial diffusivity was seen within the right spino-olivary tract. In addition, a significant decrease (p < 0.05) in global white matter fractional anisotropy (FA) along with increases (p < 0.05) in global white matter mean diffusivity (MD) and radial diffusivity (RD) were found. These changes in FA from pre-season to post-season were significantly moderated by previous concussion history (p < 0.05) and number of HAEs over 80 g (p < 0.05). Despite the absence of sports-related concussion (SRC), we present measurable changes in the white matter integrity of the cervical spinal cord suggesting injury from repetitive HAEs, or SRC, may include the entirety of the CNS, not just the brain.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexa E Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James R Wilkes
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Semyon M Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
49
|
Major B, Symons GF, Sinclair B, O'Brien WT, Costello D, Wright DK, Clough M, Mutimer S, Sun M, Yamakawa GR, Brady RD, O'Sullivan MJ, Mychasiuk R, McDonald SJ, O'Brien TJ, Law M, Kolbe S, Shultz SR. White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cereb Cortex 2021; 31:5331-5338. [PMID: 34148076 DOI: 10.1093/cercor/bhab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.
Collapse
Affiliation(s)
- Brendan Major
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Ben Sinclair
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael J O'Sullivan
- Department of Faculty of Medicine, UQ Centre for Clinical Research and Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Meng Law
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
50
|
Espinoza TR, Hendershot KA, Liu B, Knezevic A, Jacobs BB, Gore RK, Guskiewicz KM, Bazarian JJ, Phelps SE, Wright DW, LaPlaca MC. A Novel Neuropsychological Tool for Immersive Assessment of Concussion and Correlation with Subclinical Head Impacts. Neurotrauma Rep 2021; 2:232-244. [PMID: 34223554 PMCID: PMC8240822 DOI: 10.1089/neur.2020.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mild traumatic brain injury (mTBI) remains a diagnostic challenge and therefore strategies for objective assessment of neurological function are key to limiting long-term sequelae. Current assessment methods are not optimal in austere environments such as athletic fields; therefore, we developed an immersive tool, the Display Enhanced Testing for Cognitive Impairment and mTBI (DETECT) platform, for rapid objective neuropsychological (NP) testing. The objectives of this study were to assess the ability of DETECT to accurately identify neurocognitive deficits associated with concussion and evaluate the relationship between neurocognitive measures and subconcussive head impacts. DETECT was used over a single season of two high school and two college football teams. Study participants were instrumented with Riddell Head Impact Telemetry (HIT) sensors and a subset tested with DETECT immediately after confirmed impacts for different combinations of linear and rotational acceleration. A total of 123 athletes were enrolled and completed baseline testing. Twenty-one players were pulled from play for suspected concussion and tested with DETECT. DETECT was 86.7% sensitive (95% confidence interval [CI]: 59.5%, 98.3%) and 66.7% specific (95% CI: 22.3%, 95.7%) in correctly identifying athletes with concussions (15 of 21). Weak but significant correlations were found between complex choice response time (processing speed and divided attention) and both linear (Spearman rank correlation coefficient 0.262, p = 0.02) and rotational (Spearman coefficient 0.254, p = 0.03) acceleration on a subset of 76 players (113 DETECT tests) with no concussion symptoms. This study demonstrates that DETECT confers moderate to high sensitivity in identifying acute cognitive impairment and suggests that football impacts that do not result in concussion may negatively affect cognitive performance immediately following an impact. Specificity, however, was not optimal and points to the need for additional studies across multiple neurological domains. Given the need for more objective concussion screening in triage situations, DETECT may provide a solution for mTBI assessment.
Collapse
Affiliation(s)
- Tamara R Espinoza
- Department of Emergency Medicine, Division of Emergency Neurosciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristopher A Hendershot
- Department of Emergency Medicine, Division of Emergency Neurosciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian Liu
- Georgia Tech Research Institute (GTRI), Advanced Human Integration Branch, Atlanta, Georgia, USA
| | - Andrea Knezevic
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Breanne B Jacobs
- Department of Emergency Medicine, Division of Emergency Neurosciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Russell K Gore
- Complex Concussion Clinic, Shepherd Center, Atlanta, Georgia, USA
| | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina, North Carolina, USA
| | - Jeffery J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, New York, USA
| | - Shean E Phelps
- Georgia Tech Research Institute (GTRI), Advanced Human Integration Branch, Atlanta, Georgia, USA
| | - David W Wright
- Department of Emergency Medicine, Division of Emergency Neurosciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michelle C LaPlaca
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
| |
Collapse
|