1
|
Xu X, Xu C, Zhang W, Liu Z, Wei Y, Yang K, Yuan B. Single-Lipid Diffusion Behaviors in Cell Membranes Modulated by Cholesterol-Based Heterogeneity. J Phys Chem B 2025. [PMID: 40418728 DOI: 10.1021/acs.jpcb.5c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Over a century after the proposal of Fluid Mosaic Model, the relationship between functionally related multiple-scale spatial heterogeneity of the cell membrane and mobility of component molecules, both inherent features of cell membrane, remains elusive. Single-lipid tracking enables the analysis of structural heterogeneity at different spatial scales within the cell membrane from a lipid diffusion perspective. Herein, specifically designed cholesterol (Chol)-based membrane systems were utilized to investigate the distinct impacts of molecular-level interactions between diverse membrane components and micrometer-scale spatial confinement on lipid diffusion. The results demonstrate that the incorporation of Chol into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes decelerates lipid diffusion, with a positive correlation observed between the degree of deceleration and the mole ratio of Chol molecules. Across all these systems, lipid diffusion consistently adheres to the continuous time random walk (CTRW) model, indicating lipid entrapment resulting from specific molecular interactions. Conversely, micrometer-scale spatial confinement induced by phase separation not only reduces the diffusion rate of DOPC molecules but also triggers a transition from CTRW to fractional Brownian motion (fBM) or random walk on a fractal (RWF) mode within a confinement width range of 6.3-5.4 μm, suggesting a crowded microenvironment. In living cell membranes, this transformation in lipid diffusion is observed following Chol depletion, implying that lipid raft disruption leads to increased crowding within the lipid microenvironment. This study enhances our understanding of the relationship between lipid diffusion and membrane microenvironment across different spatial scales while providing insights into characterizing spatially heterogeneous structures within cell membranes from the perspective of lipid diffusion.
Collapse
Affiliation(s)
- Xiao Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiheng Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
2
|
Mao X, Lan Y, Lou F, Zhang Z, Jin Q, Jia Y, Li Y. Molecular understanding of transmembrane transport of mRNA carried by graphene oxide: Effect of membrane tension. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102826. [PMID: 40288623 DOI: 10.1016/j.nano.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
In recent years, graphene oxide (GO) has emerged as a promising nanocarrier for targeted mRNA delivery. However, the detailed molecular mechanisms governing its transmembrane transport remain poorly understood. Here, we employ molecular simulations to systematically investigate how membrane surface tension and binding configurations influence the transmembrane behavior of GO-mRNA nanocomplexes. Our findings reveal a membrane tension-dependent entry pathway that nanocomplex entry cell from adhesion/penetration to endocytosis, suggesting a potential mechanism for tumor cell drug resistance development. Furthermore, we demonstrate distinct transmembrane dynamics process for three predominant GO-mRNA binding modes, exhibiting variations in translocation velocity, penetration depth, and resultant membrane deformation. These computational insights provide crucial theoretical guidance for engineering optimized mRNA delivery carrier, potentially advancing the biomedical application of GO-based nanoplatforms in gene therapy and precision oncology.
Collapse
Affiliation(s)
- Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Lan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fangzhou Lou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qi Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuandi Jia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, Gao Y, Zheng J, Zhong S, Puzyn T, Gao X. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407793. [PMID: 39252670 DOI: 10.1002/adma.202407793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejiao J Gao
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland
| | - Yuanjie Ma
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Yuxin Wan
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yurou Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Sorokina AS, Gumerov RA, Noguchi H, Potemkin II. Computer Simulations of Responsive Nanogels at Lipid Membrane. Macromol Rapid Commun 2024; 45:e2400406. [PMID: 39150327 DOI: 10.1002/marc.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The swelling and collapse of responsive nanogels on a planar lipid bilayer are studied by means of mesoscopic computer simulations. The effects of molecular weight, cross-linking density, and adhesion strength are examined. The conditions for collapse-mediated engulfing by the bilayer are found. In particular, the results show that at low hydrophobicity level the increase in the nanogel softness decreases the engulfing rate. On the contrary, for stronger hydrophobicity level the trend changes to the opposite one. At the same time, when the cross-linking density is too low or the adhesion strength is too high the nanogel deformation at the membrane suppresses the engulfing regardless of the network swelling ratio. Finally, for comparative reasons, the behavior of the nanogels is also studied at the solid surface. These results may be useful in the design of soft particles capable of tuning of their elasticity and porosity for successful intracellular drug delivery.
Collapse
Affiliation(s)
- Anastasia S Sorokina
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| |
Collapse
|
6
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Yin Y, Ge X, Ouyang J, Na N. Tumor-activated in situ synthesis of single-atom catalysts for O 2-independent photodynamic therapy based on water-splitting. Nat Commun 2024; 15:2954. [PMID: 38582750 PMCID: PMC11258260 DOI: 10.1038/s41467-024-46987-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, C3N4-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of C3N4 nanosheets. This in situ synthesis overcomes toxicity from random distribution and catalyst release in healthy tissues. Based on the Ligand-to-Metal charge transfer (LMCT) process, C3N4-Mn SACs exhibit enhanced absorption in the red-light region. Thereby, a water-splitting process is induced by C3N4-Mn SACs under 660 nm irradiation, which initiates the O2-independent generation of highly toxic hydroxyl radical (·OH) for cancer-specific PDT. Subsequently, the ·OH-initiated lipid peroxidation process is demonstrated to devote effective cancer cell death. The in situ synthesized SACs facilitate the precise cancer-specific conversion of inert H2O to reactive ·OH, which facilitates efficient cancer therapy in female mice. This strategy achieves efficient and precise cancer therapy, not only avoiding the side effects on normal tissues but also overcoming tumor hypoxia.
Collapse
Affiliation(s)
- Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Guo X, Yang L, Deng C, Ren L, Li S, Zhang X, Zhao J, Yue T. Nanoparticles traversing the extracellular matrix induce biophysical perturbation of fibronectin depicted by surface chemistry. NANOSCALE 2024; 16:6199-6214. [PMID: 38446101 DOI: 10.1039/d3nr06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for in vivo molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH3+ exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH3 and NP-COO- selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.
Collapse
Affiliation(s)
- Xing Guo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Luyao Ren
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
11
|
Chen YQ, Xue MD, Li JL, Huo D, Ding HM, Ma Y. Uncovering the Importance of Ligand Mobility on Cellular Uptake of Nanoparticles: Insights from Experimental, Computational, and Theoretical Investigations. ACS NANO 2024; 18:6463-6476. [PMID: 38346263 DOI: 10.1021/acsnano.3c11982] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The cellular uptake of nanoparticles (NPs) by biological cells is an important and fundamental process in drug delivery. Previous studies reveal that the physicochemical properties of nanoparticles as well as those of functionalized ligands can both critically affect the uptake behaviors. However, the effect of the conjugation strategy (i.e., the "bond" between the ligand and the NP) on the cellular uptake is overlooked and remains largely elusive. Here, by taking the broadly employed gold nanoparticle as an example, we comprehensively assessed the relationship between the conjugation strategy and uptake behaviors by introducing three ligands with the same functional terminal but different anchoring sites. As revealed by in vitro cell experiments and multiscale molecular simulations, the uptake efficiency of gold NPs was positively correlated with the strength of the "bond" and more specifically the ligand mobility on the NP surface. Moreover, we validated the results presented above by proposing a thermodynamic theory for the wrapping of NPs with mobile ligands. Further, we also showed that the endocytic pathway of NPs was highly dependent on ligand mobility. Overall, this study uncovered a vital role of conjugation strategy in the cellular uptake and may provide useful guidelines for tailoring the biobehaviors of nanoparticles.
Collapse
Affiliation(s)
- Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Meng-Die Xue
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Tan B, Hu J, Wu F. Cholesterols Induced Distinctive Entry of the Graphene Nanosheet into the Cell Membrane. ACS OMEGA 2024; 9:9216-9225. [PMID: 38434853 PMCID: PMC10905697 DOI: 10.1021/acsomega.3c08236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Graphene nanosheets are highly valued in the biomedical field due to their potential applications in drug delivery, biological imaging, and biosensors. Their biological effects on mammalian cells may be influenced by cholesterols, which are crucial components in cell membranes that take part in many vital processes. Therefore, it is particularly important to investigate the effect of cholesterols on the transport mechanism of graphene nanosheets in the cell membrane as well as the final stable configuration of graphene, which may have an impact on cytotoxicity. In this paper, the molecular details of a graphene nanosheet interacting with a 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) membrane with cholesterols were studied using molecular dynamics simulations. Results showed that the structure of the graphene nanosheet transits from the cut-in state in a pure DPPC membrane to being sandwiched between two DPPC leaflets when cholesterols reach a certain concentration. The underlying mechanism showed that cholesterols are preferentially adsorbed on the graphene nanosheet, which causes a larger disturbance to the nearby DPPC tails and thus guides the graphene nanosheet into the core of lipid bilayers to form a sandwiched structure. Our results are helpful for understanding the fundamental interaction mechanism between the graphene nanosheet and cell membrane and to explore the potential applications of the graphene nanosheet in biomedical sciences.
Collapse
Affiliation(s)
- Binbin Tan
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanmei Hu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengmin Wu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Morotomi-Yano K, Hayami S, Yano KI. Adhesion States Greatly Affect Cellular Susceptibility to Graphene Oxide: Therapeutic Implications for Cancer Metastasis. Int J Mol Sci 2024; 25:1927. [PMID: 38339205 PMCID: PMC10855874 DOI: 10.3390/ijms25031927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Graphene oxide (GO) has received increasing attention in the life sciences because of its potential for various applications. Although GO is generally considered biocompatible, it can negatively impact cell physiology under some circumstances. Here, we demonstrate that the cytotoxicity of GO greatly varies depending on the cell adhesion states. Human HCT-116 cells in a non-adhered state were more susceptible to GO than those in an adherent state. Apoptosis was partially induced by GO in both adhered and non-adhered cells to a similar extent, suggesting that apoptosis induction does not account for the selective effects of GO on non-adhered cells. GO treatment rapidly decreased intracellular ATP levels in non-adhered cells but not in adhered ones, suggesting ATP depletion as the primary cause of GO-induced cell death. Concurrently, autophagy induction, a cellular response for energy homeostasis, was more evident in non-adhered cells than in adhered cells. Collectively, our observations provide novel insights into GO's action with regard to cell adhesion states. Because the elimination of non-adhered cells is important in preventing cancer metastasis, the selective detrimental effects of GO on non-adhered cells suggest its therapeutic potential for use in cancer metastasis.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Ken-ichi Yano
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
15
|
Zhao HY, Chen YQ, Luo XY, Cai MJ, Li JY, Lin XY, Zhang H, Ding HM, Jiang GL, Hu Y. Ligand Phase Separation-Promoted, "Squeezing-Out" Mode Explaining the Mechanism and Implications of Neutral Nanoparticles That Escaped from Lysosomes. ACS NANO 2024; 18:2162-2183. [PMID: 38198577 DOI: 10.1021/acsnano.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Neutral nanomaterials functionalized with PEG or similar molecules have been popularly employed as nanomedicines. Compared to positive counterparts that are capable of harnessing the well-known proton sponge effect to facilitate their escape from lysosomes, it is yet unclear how neutral substances got their entry into the cytosol. In this study, by taking PEGylated, neutral Au nanospheres as an example, we systematically investigated their time-dependent translocation postuptake. Specifically, we harnessed dissipative particle dynamics simulations to uncover how nanospheres bypass lysosomal entrapment, wherein a mechanism termed as "squeezing-out" mode was discovered. We next conducted a comprehensive investigation on how nanomaterials implicate lysosomes in terms of integrity and functionality. By using single-molecule imaging, specific preservation of PEG-terminated with targeting moieties in lysosomes supports the "squeezing-out" mode as the mechanism underlying the lysosomal escape of nanomaterials. All evidence points out that such a process is benign to lysosomes, wherein the escape of nanomaterials proceeds at the expense of targeting moieties loss. Furthermore, we proved that by fine-tuning of the efficacy of nanomaterials escaping from lysosomes, modulation of distinct pathways and metabolic machinery can be achieved readily, thereby offering us a simple and robust tool to implicate cells.
Collapse
Affiliation(s)
- Hui-Yue Zhao
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Xing-Yu Luo
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Ming-Jie Cai
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Jia-Yi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin-Yu Lin
- School of Stomatology, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Guang-Liang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| |
Collapse
|
16
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Hu M, Chen H, Wang H, Burov S, Barkai E, Wang D. Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping. ACS NANO 2023; 17:21708-21718. [PMID: 37879044 DOI: 10.1021/acsnano.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle-polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find "knobs", namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via reversible adsorption to the nanoparticle surface. Our work bears significance in unraveling the fundamental physics behind the exponential decay of the displacement distribution at the tails, which is commonly observed in soft materials and nanomaterials.
Collapse
Affiliation(s)
- Ming Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stanislav Burov
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
18
|
Zhang Y, Kim G, Zhu Y, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Small Extracellular Vesicles. ACS NANO 2023; 17:10191-10205. [PMID: 37127891 DOI: 10.1021/acsnano.3c00305] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yini Zhu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
20
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
21
|
Zhu X, Huang C, Li N, Ma X, Li Z, Fan J. Distinct roles of graphene and graphene oxide nanosheets in regulating phospholipid flip-flop. J Colloid Interface Sci 2023; 637:112-122. [PMID: 36689797 DOI: 10.1016/j.jcis.2023.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Two-dimensional (2D) nanomaterials, such as graphene nanosheets (GNs) and graphene oxide nanosheets (GOs), could adhere onto or insert into a biological membrane, leading to a change in membrane properties and biological activities. Consequently, GN and GO become potential candidates for mediating interleaflet phospholipid transfer. In this work, molecular dynamics (MD) simulations were employed to investigate the effects of GN and GO on lipid flip-flop behavior and the underlying molecular mechanisms. Of great interest is that GN and GO work in opposite directions. The inserted GN can induce the formation of an ordered nanodomain, which dramatically elevates the free energy barrier of flipping phospholipids from one leaflet to the other, thus leading to a decreased lipid flip-flop rate. In contrast, the embedded GO can catalyze the transport of phospholipids between membrane leaflets by facilitating the formation of water pores. These results suggest that GN may work as an inhibitor of the interleaflet lipid translocation, while GO may play the role of scramblases. These findings are expected to expand promising biomedical applications of 2D nanomaterials.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Wang J, Zhu J, Zheng Q, Wang D, Wang H, He Y, Wang J, Zhan X. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163560. [PMID: 37080310 DOI: 10.1016/j.scitotenv.2023.163560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nanoplastics are an emerging environmental pollutant, having a potential risk to the terrestrial ecosystem. In the natural environment, almost all the micro-or nano-plastics will be aged by many factors and their characterizations of the surface will be modified. However, the toxicity and mechanism of the modified polystyrene nanoparticles (PS-NPs) to plant cells are not clear. In the study, the amino- and carboxyl-modified PS-NPs with different sizes (20 and 200 nm) were selected as the typical representatives to investigate their effects on protoplast cell viability, reactive oxygen species (ROS) production in the cell and the leakage of cell-inclusion and apoptosis. The results indicated that the 20 nm amino-modified PS-NPs (PS-20A) could significantly damage the structure of the cell, especially the cell membrane, chloroplast and mitochondrion. After being modified by amino group, smaller size nanoplastics had the potential to cause more severe damage. In addition, compared with carboxyl-modified PS-NPs, the amino-modified PS-NPs induced more ROS production and caused higher membrane permeability/lactate dehydrogenase (LDH) leakage. Apoptosis assay indicated that the proportion of viable cells in the PS-20A treatment decreased significantly, and the proportion of necrotic cells increased by four times. This study provides new insights into the toxicity and damage mechanism of PS-NPs to terrestrial vascular plants at the cellular level, and guides people to pay attention to the quality and safety of agricultural products caused by nanoplastics.
Collapse
Affiliation(s)
- Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
23
|
Ding Z, Zhang X, Wang Y, Ogino K, Wu Y, Yue H, Jiao Z, Song C, Lu G, Wang S, Gao X, Gao Y, Shi M, Wang Y, Ma G, Wei W. Nanomaterial's interfacial stimulation of vascular endothelial cells and divergent guidances for nanomedicine treating vasculature-associated diseases. NANO TODAY 2023; 49:101815. [DOI: 10.1016/j.nantod.2023.101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
|
24
|
Xu Z, Liu G, Gao L, Xu D, Wan H, Dai X, Zhang X, Tao L, Yan LT. Configurational Entropy-Enabled Thermostability of Cell Membranes in Extremophiles: From Molecular Mechanism to Bioinspired Design. NANO LETTERS 2023; 23:1109-1118. [PMID: 36716197 DOI: 10.1021/acs.nanolett.2c04939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Zhang Y, Zhu Y, Kim G, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523510. [PMID: 36711460 PMCID: PMC9882333 DOI: 10.1101/2023.01.20.523510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.
Collapse
|
26
|
Gao L, Xu D, Wan H, Zhang X, Dai X, Yan LT. Understanding Interfacial Nanoparticle Organization through Simulation and Theory: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11137-11148. [PMID: 36070512 DOI: 10.1021/acs.langmuir.2c01192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the behaviors of nanoparticles at interfaces is crucial not only for the design of novel nanostructured materials with superior properties but also for a better understanding of many biological systems where nanoscale objects such as drug molecules, viruses, and proteins can interact with various interfaces. Theoretical studies and tailored computer simulations offer unique approaches to investigating the evolution and formation of structures as well as to determining structure-property relationships regarding the interfacial nanostructures. In this feature article, we summarize our efforts to exploit computational approaches as well as theoretical modeling in understanding the organization of nanoscale objects at the interfaces of various systems. First, we present the latest research advances and state-of-the-art computational techniques for the simulation of nanoparticles at interfaces. Then we introduce the applications of multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in the interfacial nanoparticle organization, covering the interfaces of polymer, nanoscience, biomacromolecules, and biomembranes. Finally, we discuss future directions to signify the framework in tailoring the interfacial organization of nanoparticles based on the computational design. This feature article could promote further efforts toward fundamental research and the wide applications of theoretical approaches in designing interfacial assemblies for new types of functional nanomaterials and beyond.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
27
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
28
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
29
|
Gabriel L, Almeida H, Avelar M, Sarmento B, das Neves J. MPTHub: An Open-Source Software for Characterizing the Transport of Particles in Biorelevant Media. NANOMATERIALS 2022; 12:nano12111899. [PMID: 35683754 PMCID: PMC9182034 DOI: 10.3390/nano12111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The study of particle transport in different environments plays an essential role in understanding interactions with humans and other living organisms. Importantly, obtained data can be directly used for multiple applications in fields such as fundamental biology, toxicology, or medicine. Particle movement in biorelevant media can be readily monitored using microscopy and converted into time-resolved trajectories using freely available tracking software. However, translation into tangible and meaningful parameters is time consuming and not always intuitive. We developed new software—MPTHub—as an open-access, standalone, user-friendly tool for the rapid and reliable analysis of particle trajectories extracted from video microscopy. The software was programmed using Python and allowed to import and analyze trajectory data, as well as to export relevant data such as individual and ensemble time-averaged mean square displacements and effective diffusivity, and anomalous transport exponent. Data processing was reliable, fast (total processing time of less than 10 s), and required minimal memory resources (up to a maximum of around 150 MB in random access memory). Demonstration of software applicability was conducted by studying the transport of different polystyrene nanoparticles (100–200 nm) in mucus surrogates. Overall, MPTHub represents a freely available software tool that can be used even by inexperienced users for studying the transport of particles in biorelevant media.
Collapse
Affiliation(s)
- Leandro Gabriel
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Helena Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Avelar
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-220-408-800
| |
Collapse
|
30
|
Li Y, Zhang M, Niu X, Yue T. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model. Colloids Surf B Biointerfaces 2022; 214:112467. [PMID: 35366575 DOI: 10.1016/j.colsurfb.2022.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Nanoparticles (NPs) enter cells via multiple pathways, all of which are NP size dependent. Previous studies indicated that the clathrin-mediated endocytosis has different selectivity for the NP size, but the regulatory mechanism remains unclear and difficult to study at the molecular scale in vivo. By means of computer simulation, here we design membrane wrapping on differently sized NPs with mimic clathrin assembly at the opposite membrane side. With relatively large NPs readily wrapped by a pure membrane as manifested, clathrin modulates the process and tunes the size selectivity. Although finite curvature can be generated by cage-like clathrin assembly to facilitate membrane wrapping on relatively small NPs, the clathrin assemblage has a certain range of size, which is mismatched with larger NPs. Besides, the local membrane patch is rigidified by clathrin to increase the barrier of membrane wrapping on larger NPs. Competition of these items determines whether membrane wrapping on NPs is promoted or suppressed, and can be tuned by the NP-membrane adhesion strength, clathrin concentration, and inter-NP distance. Our results highlight the significance of complex environment in altering the nature of NP interaction with cell membranes, and are expected to help design NPs for biomedical applications requiring precise control of NP uptake or cell membrane attachment.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Man Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinhui Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
31
|
Li Z, Zhu X, Li J, Zhong J, Zhang J, Fan J. Molecular insights into the resistance of phospholipid heads to the membrane penetration of graphene nanosheets. NANOSCALE 2022; 14:5384-5391. [PMID: 35319035 DOI: 10.1039/d1nr07684a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interaction between nanomaterials and phospholipid membranes underlies many emerging biological applications. To what extent hydrophilic phospholipid heads shield the bilayer from the integration of hydrophobic nanomaterials remains unclear, and this open question contains important insights for understanding biological membrane physics. Here, we present molecular dynamics (MD) simulations to clarify the resistance of phospholipid heads to the membrane penetration of graphene nanosheets. With 130 simulation trials, we observed that ∼22% graphene nanosheets penetrate the POPC bilayer. Sharp corners of the nanosheets should have a lower energy barrier than nanosheet edges, but interestingly, the membrane penetration mainly starts from the edge-approaching orientation. We thoroughly analyzed the pentration pathway and propulsion, indicating that the membrane penetration of graphene nanosheets is dominated by the joint effects of nanosheet edges and corners. Furthermore, the molecular origin of the resistance is clarified by evaluating the bilayers of different phospholipids, which successfully correlates the penetration resistance of phospholipid heads with the correlated motions of neighboring phospholipids for the first time. These results are expected to inspire future studies on the dynamic behavior of phospholipids, bio-nano interfaces, and design of biological nanomaterials.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jie Zhong
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
32
|
Mu C, Xing D, Zhang D, Gong C, Wang J, Zhao L, Li D, Zhang X. Mass Spectrometry and Cryogenic Electron Microscopy Illuminate Molecular-Level Mechanisms of the Oxidative and Structural Damage to Lipid Membranes by Radical-Bearing Graphene Oxide. J Phys Chem Lett 2022; 13:2638-2643. [PMID: 35298160 DOI: 10.1021/acs.jpclett.2c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomedical applications of graphene in tumor and bacterial treatment have become cutting-edge fields due to its unique physical and chemical properties. However, a mechanistic understanding of the interactions and reactions between graphene-based material and biological systems such as lipid membranes remains elusive, especially at the molecular level. By using the unique field-induced droplet ionization mass spectrometry and cryogenic electron microscopy methodologies, we reveal the oxidation products of monolayer lipid membranes at the air-water interface and the change in the morphology of bilayer lipid membranes in an aqueous solution caused by the incorporation of graphene oxide bearing π-conjugated carbon radicals [hydrated graphene oxide (hGO)]. We discovered that hGO is an efficient source of hydroxyl radicals and that it is not only the incorporation of the hGO sheets but also the irregular packing of the lipid oxides from the hydroxyl radical oxidation that causes the structural distortions of the liposomes.
Collapse
Affiliation(s)
- Chaonan Mu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dong Xing
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chu Gong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jie Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Lingling Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Danyang Li
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Kang Y, Yin S, Liu J, Jiang Y, Huang Z, Chen L, Shao L. Nano-graphene oxide depresses neurotransmission by blocking retrograde transport of mitochondria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127660. [PMID: 34772551 DOI: 10.1016/j.jhazmat.2021.127660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The application of graphene-family nanomaterials (GFNs) in neuromedicine has recently gained increased attention, but the associated exposure risk for synaptic function and the underlying mechanism remains obscure. The results of this study utilizing nanosized graphene oxide (nGO) suggest that they exert depressive effects on neurotransmission, mainly due to energy deficiency at synaptic contacts. Mitophagy is activated but fails to renew mitochondria and maintain mitochondrial-mediated energy metabolism because of blockage of autophagosome transport through the microtubule system from the axonal terminal to the soma. Further investigation of the underlying mechanism indicates that nGO increases the level of microtubule detyrosination, which restrains loading of the dynactin-dynein motor complex onto microtubules and subsequently inhibits the efficacy of the retrograde transport route. Thus, our study reveals the underlying mechanism by which nGO depresses neurotransmission, and contributes to our understanding of the neurobiological effects of GFNs.
Collapse
Affiliation(s)
- Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
34
|
Feng H, Liu Y, Xu Y, Li S, Liu X, Dai Y, Zhao J, Yue T. Benzo[a]pyrene and heavy metal ion adsorption on nanoplastics regulated by humic acid: Cooperation/competition mechanisms revealed by molecular dynamics simulations. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127431. [PMID: 34653861 DOI: 10.1016/j.jhazmat.2021.127431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics adsorb pollutants and organic matter to aggravate or alleviate impact to the eco-environment and human health. However, the interaction mechanisms remain unclear and difficult to study using current experimental techniques. By means of molecular dynamics simulation, here we investigate adsorption of benzo[a]pyrene (BaP) and heavy metal ions (Cu2+) on nanoplastics of different materials and surface charges regulated by humic acid (HA). Among considered materials, polystyrene shows the highest capacity of adsorbing BaPs via forming sandwiched π-stacking structures with benzene rings. Driven by hydrophobic, electrostatic and hydrogen bonding interactions, HAs spontaneously aggregate into micelle-like structures with hydrophobic core and charged exterior accessible to BaPs and Cu2+, respectively. Cationic and neutral nanoplastics adsorb more HAs to form eco-coronas, which modulate BaP and Cu2+ adsorption via following cooperation/competition mechanisms. On one hand, the direct binding of BaPs to nanoplastics is hindered by HAs through BaP encapsulation plus competitive adsorption. On the other hand, adsorbed HAs expose carboxyl groups to offer rich binding sites to promote Cu2+ adsorption on neutral and cationic nanoplastics, while unbound HAs compete with anionic nanoplastics to inhibit Cu2+ adsorption. These results provide molecular level insights into transport, transformation and accessibility of nanoplastics with coexisting contaminants in the aqueous environment.
Collapse
Affiliation(s)
- Hao Feng
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingjie Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yan Xu
- College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
35
|
Hosseini AN, Lund M, Ejtehadi MR. A modified Jarzynski free-energy estimator to eliminate non-conservative forces and its application in nanoparticle-membrane interactions. Phys Chem Chem Phys 2022; 24:3647-3654. [PMID: 35103740 DOI: 10.1039/d1cp05218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational methods to understand interactions in bio-complex systems are however limited to time-scales typically much shorter than in Nature. For example, on the nanoscale level, interactions between nanoparticles (NPs)/molecules/peptides and membranes are central in complex biomolecular processes such as membrane-coated NPs or cellular uptake. This can be remedied by the application of e.g. Jarzynski's equality where thermodynamic properties are extracted from non-equilibrium simulations. Although, the out of equilibrium work leads to non-conservative forces. We here propose a correction Pair Forces method, that removes these forces. Our proposed method is based on the calculation of pulling forces in backward and forward directions for the Jarzynski free-energy estimator using steered molecular dynamics simulation. Our results show that this leads to much improvement for NP-membrane translocation free energies. Although here we have demonstrated the application of the method in molecular dynamics simulation, it could be applied for experimental approaches.
Collapse
Affiliation(s)
- Atiyeh Najla Hosseini
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.,LINXS - Lund Institute for Advanced Neutral and X-ray Scattering, Lund University, Sweden.
| | | |
Collapse
|
36
|
Lin Z, Deng Q, Fang Q, Li X, Liu X, Wang J, Chen S, Huang X, Yang L, Miao Y, Yu XY. Black Phosphorus nanoparticles for dual therapy of non-small cell lung cancer. J Drug Target 2022; 30:614-622. [PMID: 35078385 DOI: 10.1080/1061186x.2022.2032093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lung cancer remains one of the leading causes of death in humans. Gefitinib is an inhibitor of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) commonly used to suppress tumor growth. However, constantly use of gefitinib results in drug-resistance, reduced efficacy, and undesired side effects. To circumvent these drawbacks, targeted and photothermal therapies have emerged as effective strategies. Herein, we are first to adopt a black phosphorus nanoparticle-based novel delivering strategy by combining gefitinib and cancer cytomembrane to treat non-small cell lung cancer (NSCLC). In these gefitinib-containing nano-carrier, cyanine5 (Cy5) biotin-labeled black phosphorus was incorporated with cancer membrane and then consist of a nanomaterial (BPGM), which enabled to deliver gefitinib to the tumors effectively. The combination of BPGM showed reinforcing effects to suppress NSCLC cells and xenograft tumors without apparent adverse effects both in vitro and in vivo. BPGM facilitated the delivery of gefitinib to tumor tissue and extended its retention time within tumors. These studies thus suggest that black phosphorus may serve as novel delivery strategy for lung cancer.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436.,School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences & the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qi Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyan Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No.58, Pu Yu Dong Road, Shanghai 200011, China
| | - Jianglin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Sheng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xiaotao Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Langyu Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Yingling Miao
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| |
Collapse
|
37
|
Nature of bilayer lipids affects membranes deformation and pore resealing during nanoparticle penetration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112530. [DOI: 10.1016/j.msec.2021.112530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
|
38
|
Xia Y, Sun S, Zhang Z, Ma W, Dou Y, Bao M, Yang K, Yuan B, Kang Z. Real-Time Monitoring the Staged Interactions between Cationic Surfactants and a Phospholipid Bilayer Membrane. Phys Chem Chem Phys 2022; 24:5360-5370. [DOI: 10.1039/d1cp05598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cationic surfactant-lipid interaction directs the development of novel types of nanodrugs or nanocarriers. The membrane action of cationic surfactants also has a wide range of applications. In this work,...
Collapse
|
39
|
Feng YH, Chen BZ, Fei WM, Cui Y, Zhang CY, Guo XD. Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AIChE J 2021. [DOI: 10.1002/aic.17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| | - Wen Min Fei
- Department of Dermatology China‐Japan Friendship Hospital Beijing China
- Graduate School Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Yong Cui
- Department of Dermatology China‐Japan Friendship Hospital Beijing China
- Graduate School Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division Tsinghua Shenzhen International Graduate School Shenzhen China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| |
Collapse
|
40
|
Zhao BR, Li B, Shi X. Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks. NANOSCALE 2021; 13:17404-17416. [PMID: 34647122 DOI: 10.1039/d1nr05368j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the diffusion of rod-shaped nanocarriers with different rigidities and aspect ratios in cross-linked networks using coarse-grained molecular dynamics (CGMD) simulations. The diffusivity of the nanorods increases with a reduction in the rigidities of the nanorods and network, as well as with an increasing aspect ratio with respect to the same volume fraction of the nanorods. The nanorods show an anisotropic diffusion pathway through translocating along their major axes at short time scales, and the anisotropy of diffusion decreases at long time scales. Meanwhile, the diffusion of the nanorods shows a sub-diffusion regime that deviates from Brownian motion in most cases due to the trapping of the nanorods in a cage composed of the network. The nanorod could hop when it escapes from the cage and the hopping behavior depends on the rigidities of both the nanorod and network, as well as the local network density. The rotational motion of the trapped nanorod also enhances the probability of hopping. Our results may help in the understanding of the microscopic mechanism for the diffusion of rod-shaped and other relevant nanocarriers, in a cross-linked network environment.
Collapse
Affiliation(s)
- Bo-Ran Zhao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
41
|
Wu F, Jin X, Guan Z, Lin J, Cai C, Wang L, Li Y, Lin S, Xu P, Gao L. Membrane Nanopores Induced by Nanotoroids via an Insertion and Pore-Forming Pathway. NANO LETTERS 2021; 21:8545-8553. [PMID: 34623162 DOI: 10.1021/acs.nanolett.1c01331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of membrane nanopores is one of the crucial activities of cells and has attracted considerable attention. However, the understanding of their types and mechanisms is still limited. Herein, we report a novel nanopore formation phenomenon achieved through the insertion of polymeric nanotoroids into the cellular membrane. As revealed by theoretical simulations, the nanotoroid can embed in the membrane, leaving a nanopore on the cell. The through-the-cavity wrapping of lipids is critical for the retention of the nanotoroid in the membrane, which is attributed to both a relatively large inner cavity of the nanotoroid and a moderate attraction between the nanotoroid and membrane lipids. Under the guidance of the simulation predictions, experiments using polypeptide toroids as pore-forming agents were performed, confirming the unique biophysical phenomenon. This work demonstrates a distinctive pore-forming pathway, deepens the understanding of the membrane nanopore phenomenon, and assists in the design of advanced pore-forming materials.
Collapse
Affiliation(s)
- Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhou Guan
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yongsheng Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
42
|
Liu G, Xu Z, Dai X, Zeng Y, Wei Y, He X, Yan LT, Tao L. De Novo Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. J Am Chem Soc 2021; 143:17250-17260. [PMID: 34618447 DOI: 10.1021/jacs.1c08332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
43
|
Zhao Y, Lu Y, Wang D. Tracking of Nanoparticle Diffusion at a Liquid-Liquid Interface Adsorbed by Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12118-12127. [PMID: 34610245 DOI: 10.1021/acs.langmuir.1c01978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emulsions stabilized by both nanoparticles and surfactants often display longer shelf life than those stabilized by nanoparticles or surfactants alone. Although numerous works have been conducted to understand the effect of nanoparticles and surfactants on the variation of interfacial tension, little is known about interfacial diffusion when both nanoparticles and surfactants are present at interfaces. In this work, we used single-particle fluorescence tracking to study the lateral diffusion of individual hydrophobic nanoparticles at hexane-glycerol interfaces adsorbed by different amounts of nonionic surfactants. When the surfactant concentration is over a threshold, we found that the nanoparticle diffusion exhibits a two-regime behavior involving short-time Brownian and the emergence of subdiffusive, non-Gaussian, and dynamically anticorrelated diffusion in the long lag time regime. A stepwise analysis rationalized diffusion in different lag time regimes, leading to a mechanistic interpretation regarding the two-regime behavior. These results could provide insight into the understanding of the synergistic effect for the surfactant-assistant Pickering emulsion.
Collapse
Affiliation(s)
- Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
44
|
Ni SD, Chen YL, Chen YQ, Zhou K, Ding HM. Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11707-11715. [PMID: 34570511 DOI: 10.1021/acs.langmuir.1c01613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unconjugated bilirubin (BR) may penetrate through the cell membrane and cause a severe cytotoxicity. However, the molecular mechanism underlying the penetration of BR into the cell membrane is still largely unknown. In this work, we systematically investigate the interaction of BR and a lipid bilayer under different conditions by using all-atom molecular dynamics simulations. It is found that BR at the Z,Z conformation can easily enter into the interior of the lipid bilayer due to its hydrophobicity. However, when BR transforms from the Z,Z conformation to the E,E conformation (after the blue-light emission), its penetration ability is greatly reduced (especially at its ionized state). This study may offer useful physical insights into the effect of phototherapy on the penetration behavior and the cytotoxicity of the unconjugated BR.
Collapse
Affiliation(s)
- Song-Di Ni
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Ya-Li Chen
- Rugao Guangci Hospital, Nantong 226500, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Kun Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
45
|
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021; 175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The interactions between inorganic-based nanomaterials (NMs) and biological membranes are among the most important phenomena for developing NM-based therapeutics and resolving nanotoxicology. Herein, we introduce the structural and functional effects of inorganic-based NMs on biological membranes, mainly the plasma membrane and the endomembrane system, with an emphasis on the interface, which involves highly complex networks between NMs and biomolecules (such as membrane proteins and lipids). Significant efforts have been devoted to categorizing and analyzing the interaction mechanisms in terms of the physicochemical characteristics and biological effects of NMs, which can directly or indirectly influence the effects of NMs on membranes. Importantly, we summarize that the biological membranes act as platforms and thereby mediate NMs-immune system contacts. In this overview, the existing challenges and potential applications in the areas are addressed. A strong understanding of the discussed concepts will promote therapeutic NM designs for drug delivery systems by leveraging the NMs-membrane interactions and their functions.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
46
|
Zhang Z, Ma W, He K, Yuan B, Yang K. Ligand-decoration determines the translational and rotational dynamics of nanoparticles on a lipid bilayer membrane. Phys Chem Chem Phys 2021; 23:9158-9165. [PMID: 33885120 DOI: 10.1039/d1cp00643f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles (NPs) promise a huge potential for clinical diagnostic and therapeutic applications. However, nano-bio (e.g., the NP-cell membrane) interactions and underlying mechanisms are still largely elusive. In this study, two types of congeneric peptides, namely PGLa and magainin 2 (MAG2), with similar membrane activities were employed as model ligands for NP decoration, and the diffusion behaviours (including both translation and rotation) of the ligand-decorated NPs on a lipid bilayer membrane were studied via molecular dynamics simulations. It was found that, although both PGLa- and MAG2-coated NPs showed alternatively "hopping" and "jiggling" diffusions, the PGLa-coated ones had an enhanced circling at the hopping stage, while a much confined circling at the jiggling stage. In contrast, the MAG2-coated NPs demonstrated constant circling tendencies throughout the diffusion process. Such differences in the coupling between translational and rotational dynamics of these two types of NPs are ascribed to the different ligand-lipid interactions of PGLa and MAG2, in which the PGLa ligands prefer to vertically insert into the membrane, while MAG2 tends to lie flat on the membrane surface. Our results are helpful for the understanding the underlying associations between the NP motions and their interfacial membrane interactions, and shed light on the possibility of regulating NP behaviours on a cellular surface for better biomedical uses.
Collapse
Affiliation(s)
- Zhihong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | | | | | | | | |
Collapse
|
47
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
48
|
Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová AB, Krivjanská A, Mackuľak T. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22203-22220. [PMID: 33733403 DOI: 10.1007/s11356-021-13270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnologies and different types of nanomaterials belong in present day to intensively studied materials due to their unique properties and diverse potential applications in, e.g., electronics, medicine, or display technologies. Together with the investigation of their desired beneficial properties, a need to investigate and evaluate their influence on the environment and possible harmful effects towards living organisms is growing. This review summarizes possible toxic effects of nanomaterials on environment and living organisms, focusing on the possible bioaccumulation in organisms, toxicity, and its mechanisms. The main goal of this review is to refer to potential environmental risks rising from the use of nanomaterials and the necessity to deal with the possible toxic effects considering the growing interest in the wide-scale utilization of these materials. Electron paramagnetic resonance spectroscopy as the only analytical technique capable of detecting radical species enables detection, quantification, and monitoring of the generation of short-lived radicals often coupled with toxic effects of nanomaterials, which makes it an important method in the process of nanotoxicity mechanism determination.
Collapse
Affiliation(s)
- Paula Bimová
- Department of Inorganic Technology, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Zuzana Barbieriková
- Department of Physical Chemistry, Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Grenčíková
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Krivjanská
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
49
|
Xu Z, Dai X, Bu X, Yang Y, Zhang X, Man X, Zhang X, Doi M, Yan LT. Enhanced Heterogeneous Diffusion of Nanoparticles in Semiflexible Networks. ACS NANO 2021; 15:4608-4616. [PMID: 33625839 DOI: 10.1021/acsnano.0c08877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transport of nanoparticles in semiflexible networks, which form diverse principal structural components throughout living systems, is important in biology and biomedical applications. By combining large-scale molecular simulations as well as theoretical analysis, we demonstrate here that nanoparticles in polymer networks with semiflexible strands possess enhanced heterogeneous diffusion characterized by more evident hopping dynamics. Particularly, the hopping energy barrier approximates to linear dependence on confinement parameters in the regime of moderate rigidity, in contrast to the quadratic dependence of both its soft and hard counterparts. This nonmonotonic feature can be attributed to the competition between the conformation entropy and the bending energy regulated by the chain rigidity, captured by developing an analytical model of a hopping energy barrier. Moreover, these theoretical results agree reasonably well with previous experiments. The findings bear significance in unraveling the fundamental physics of substance transport confined in network-topological environments and would provide an explanation for the dynamics diversity of nanoparticles within various networks, biological or synthetic.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Bu
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Ye Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xingkun Man
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Masao Doi
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
50
|
Liang L, Peng X, Sun F, Kong Z, Shen JW. A review on the cytotoxicity of graphene quantum dots: from experiment to simulation. NANOSCALE ADVANCES 2021; 3:904-917. [PMID: 36133293 PMCID: PMC9419276 DOI: 10.1039/d0na00904k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 05/03/2023]
Abstract
Graphene quantum dots (GQDs) generate intrinsic fluorescence and improve the aqueous stability of graphene oxide (GO) while maintaining wide chemical adaptability and high adsorption capacity. Despite GO's remarkable advantages in bio-imaging, bio-sensing, and other biomedical applications, many experiments and simulations have focused on the biosafety of GQDs. Here, we review the findings on the biosafety of GQDs from experiments; then, we review the results from simulated interactions with biological membranes, DNA molecules, and proteins; finally, we examine the intersection between experiments and simulations. The biosafety results from simulations are explained in detail. Based on the literature and our experiments, we also discuss the trends toward GQDs with better biosafety.
Collapse
Affiliation(s)
- Lijun Liang
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China +86 571 87951895
| | - Xiangming Peng
- Department of Clinical Laboratory, GuangZhou Red Cross Hospital 396 Tongfu Zhong Road Guangzhou 510220 GuangDong China
| | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China +86 571 87951895
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|