1
|
Fernández M, Aldana M, Duarte C, García-Huidobro MR, Varas O, Estévez RA, Pulgar J, Quijón PA, Pulgar J. Exploring the relationship between upwelling intensity and socio-ecological attributes of marine exploitation areas for benthic resources (MEABRs), along the southern Humboldt Current system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124102. [PMID: 39799773 DOI: 10.1016/j.jenvman.2025.124102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/10/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The Eastern Boundary Upwelling Systems (EBUS) sustains some of the most productive marine systems on Earth. Within each of these systems, the upwelling process exhibits spatial and temporal variation resulting in marked differences in upwelling intensity and seasonality along extensive coastlines. The study of this variation is well needed, given the magnitude of the services provided by upwelling, and the impending impacts of global warming on EBUS. The critical link between the physical variability associated with upwelling intensity and its consequences on socio-ecological variables remain severely understudied. This study aimed to address such a gap by exploring the influence of coastal upwelling intensity on socio-ecological attributes of co-management units named Marine Exploitation Areas for Benthic Resources (MEABRs), along one the most productive ecosystems of the world: The southern Humboldt Current system. We evaluated the non-linear influence of upwelling on 1) the harvest of economically important resources, 2) the number of exploited species, 3) number and gender distribution of fishers involved, and 4) fishery activities. Our data indicated that on the one hand the annual harvest of commercial species, and all the exploited resources combined, were consistently higher in MEABRs associated with intermediate to high upwelling intensities. On the other hand, the harvest of kelp, the number of species harvested, and the number of fishers per MEABR increased towards low upwelling intensities, showing signals of fishery diversification. Interestingly, representation of female fishers increased towards high upwelling intensities, suggesting that multiple factors account for the variation in this, and other socio-ecological variables examined. Our study provides first-hand information about harvest levels and the allocation of fishery activities and gender distribution when MEABRs associated with different upwelling intensities are compared. Such information will assist in the identification of ecological and social vulnerabilities in a global warming scenario.
Collapse
Affiliation(s)
- Melissa Fernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo A Estévez
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Javiera Pulgar
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Chile.
| |
Collapse
|
2
|
Fong CR, Frazier M, Clawson G, Epperly H, Froehlich HE, Halpern BS. Downscaled climate change threats to United States freshwater finfish aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177596. [PMID: 39561894 DOI: 10.1016/j.scitotenv.2024.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Climate change threatens food production, yet gaps remain in our understanding of these threats to aquaculture, the fastest growing food production subsector. To build climate-resilient practices and policies we need to quantify and map current and future climate threats to aquaculture. Here, we explore how downscaled climate change [SSP 2 (eq. RCP 4.5) and SSP 5 (eq. RCP8.5), CMIP6] threats - including water scarcity, flooding, and increasing temperature - may directly affect United States (US) freshwater farmed fish (N = 7) based on their biological thermal tolerances and indirectly challenge the operations required for production, including to the human workforce. Aquaculture in the US is dominated by catfish, trout, and tilapia production and is widespread, with some form of finfish aquaculture present in every state and nearly half of all counties across the country. Given the current location of catfish, tilapia, bass, and carp in the US and their tolerance to warmer conditions, we find increasing temperatures are less likely to biologically impact these species negatively. In contrast, current trout, sturgeon, and perch production will be biologically threatened by rising temperatures. With respect to operational needs for facilities, increases in 'wet bulb' temperatures in the Southeast will regularly challenge human physiological limits and constrain worker capacity. Drought in the Southwest will also limit an intrinsically water dependent system, affecting nearly all taxa. While current areas of aquaculture will tend to become increasingly challenging for farmed fishes, new potential habitats will open up for nearly all species. Overall, in the absence of immediate greenhouse gas mitigation, there are several non-mutually exclusive climate adaptations, yet these adaptations can be extremely costly. Ultimately, freshwater aquaculture in the US is going to be under intense climate pressure, which may drive out small operations and cause the country to further increase dependence on international aquatic food imports.
Collapse
Affiliation(s)
- Caitlin R Fong
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, United States of America.
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, United States of America
| | - Gage Clawson
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, United States of America
| | - Haley Epperly
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, United States of America
| | - Halley E Froehlich
- Department of Environmental Science, University of California Santa Barbara, United States of America; Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, United States of America
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, United States of America; Bren School Environmental Science, University of California Santa Barbara, United States of America
| |
Collapse
|
3
|
Arce G, García-Alaminos Á, Ortiz M, Zafrilla J. Attributing climate-change-related disaster displacement responsibilities along global production chains. iScience 2024; 27:111124. [PMID: 39524332 PMCID: PMC11550006 DOI: 10.1016/j.isci.2024.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Climate change creates hostile living conditions in various regions, provoking climate-driven migration. The literature points to a polarization between the countries responsible for climate change and the regions suffering its consequences. Given this dichotomy, this study analyses the link between unsustainable consumption by world powers and the increasing vulnerability of some developing countries. We identify the most vulnerable countries to climate migrations and perform a responsibility assessment on environmental migration through historical consumption-based contributions to climate change. The main results show that the areas most vulnerable to climate migration are low-income countries from Asia and Africa, whereas the US, China, Japan, and Russia are the major economies responsible for climate change driving those migrations. According to our estimations, top responsible countries should contribute 0.2%-0.5% of their GDP to a global financial fund for climate migrants. This work supports the principle of climate justice regarding worldwide current challenges.
Collapse
Affiliation(s)
- Guadalupe Arce
- Higher Technical School of Agronomy and Forestry Engineering and Biotechnology, University of Castilla-La Mancha, Albacete, Spain
| | | | - Mateo Ortiz
- Faculty of Social Sciences and Law, University of Castilla-La Mancha, Toledo, Spain
| | - Jorge Zafrilla
- Faculty of Economics and Business, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
4
|
Brodie LP, Caballero SV, Ojea E, Taylor SFW, Roberts M, Vianello P, Jiddawi N, Aswani S, Bueno J. A new framework on climate-induced food-security risk for small-scale fishing communities in Tanzania. Food Secur 2024; 16:1125-1145. [PMID: 39429539 PMCID: PMC11489249 DOI: 10.1007/s12571-024-01472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/02/2024] [Indexed: 10/22/2024]
Abstract
Food insecurity is a pressing issue facing our world, particularly affecting coastal communities who rely on marine resources. The problem is further compounded by the rapidly changing climate, a deteriorating environment and growing human populations. It is essential to evaluate this issue accurately to reduce risk and improve the situation of coastal communities, especially in countries with less socioeconomic development. To this end, we develop a food security social-ecological risk assessment framework for developing communities in coastal areas of the Western Indian Ocean facing a changing environment. The framework integrates local ecological knowledge, expert scientific opinion, survey data, and satellite sea surface temperature (SST) and chlorophyll-a observation. We conducted a local-scale case study in four regions in Tanzania; Mafia, Pemba, Tanga, and Unguja, revealing that they face moderate to high risk levels of food insecurity. The highest risk was observed in the island communities of Pemba and Unguja, while the communities of Mafia and Tanga had the lowest risk due to lower exposure and sensitivity to climate change. Our results show that recognizing the key differences across risk components is crucial in identifying effective intervention strategies for local practitioners. This study highlights the need for detailed assessments to provide accurate information on local-scale food security dynamics, specifically when assessing impacts induced by environmental and climatic changes. Supplementary Information The online version contains supplementary material available at 10.1007/s12571-024-01472-x.
Collapse
Affiliation(s)
- Lara Paige Brodie
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Smit Vasquez Caballero
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
- Center for Applied Economics and Strategy, RTI International, Research Triangle Park, Durham, NC 27709 USA
| | - Elena Ojea
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | | | - Michael Roberts
- National Oceanography Centre, Southampton, SO14 3ZH UK
- Nelson Mandela University, Port Elizabeth, South Africa
| | | | | | | | - Juan Bueno
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| |
Collapse
|
5
|
Alabia ID, Molinos JG, Hirata T, Narita D, Hirawake T. Future redistribution of fishery resources suggests biological and economic trade-offs according to the severity of the emission scenario. PLoS One 2024; 19:e0304718. [PMID: 38843266 PMCID: PMC11156307 DOI: 10.1371/journal.pone.0304718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Climate change is anticipated to have long-term and pervasive effects on marine ecosystems, with cascading consequences to many ocean-reliant sectors. For the marine fisheries sector, these impacts can be further influenced by future socio-economic and political factors. This raises the need for robust projections to capture the range of potential biological and economic risks and opportunities posed by climate change to marine fisheries. Here, we project future changes in the abundance of eight commercially important fish and crab species in the eastern Bering Sea and Chukchi Sea under different CMIP6 Shared Socioeconomic Pathways (SSPs) leading to contrasting future (2021-2100) scenarios of warming, sea ice concentration, and net primary production. Our results revealed contrasting patterns of abundance and distribution changes across species, time periods and climate scenarios, highlighting potential winners and losers under future climate change. In particular, the least changes in future species abundance and distribution were observed under SSP126. However, under the extreme scenario (SSP585), projected Pacific cod and snow crab abundances increased and decreased, respectively, with concurrent zonal and meridional future shifts in their centers of gravity. Importantly, projected changes in species abundance suggest that fishing at the same distance from the current major port in the Bering Sea (i.e., Dutch Harbor) could yield declining catches for highly valuable fisheries (e.g., Pacific cod and snow crab) under SSP585. This is driven by strong decreases in future catches of highly valuable species despite minimal declines in maximum catch potential, which are dominated by less valuable taxa. Hence, our findings show that projected changes in abundance and shifting distributions could have important biological and economic impacts on the productivity of commercial and subsistence fisheries in the eastern Bering and Chukchi seas, with potential implications for the effective management of transboundary resources.
Collapse
Affiliation(s)
- Irene D. Alabia
- Arctic Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Takafumi Hirata
- Arctic Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daiju Narita
- Graduate School and College of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Hirawake
- National Institute of Polar Research, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, Japan
| |
Collapse
|
6
|
Kruse M, Letschert J, Cormier R, Rambo H, Gee K, Kannen A, Schaper J, Möllmann C, Stelzenmüller V. Operationalizing a fisheries social-ecological system through a Bayesian belief network reveals hotspots for its adaptive capacity in the southern North sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120685. [PMID: 38552519 DOI: 10.1016/j.jenvman.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Fisheries social-ecological systems (SES) in the North Sea region confront multifaceted challenges stemming from environmental changes, offshore wind farm expansion, and marine protected area establishment. In this paper, we demonstrate the utility of a Bayesian Belief Network (BN) approach in comprehensively capturing and assessing the intricate spatial dynamics within the German plaice-related fisheries SES. The BN integrates ecological, economic, and socio-cultural factors to generate high-resolution maps of profitability and adaptive capacity potential (ACP) as prospective management targets. Our analysis of future scenarios, delineating changes in spatial constraints, economics, and socio-cultural aspects, identifies factors that will exert significant influence on this fisheries SES in the near future. These include the loss of fishing grounds due to the installation of offshore wind farms and marine protected areas, as well as reduced plaice landings due to climate change. The identified ACP hotspots hold the potential to guide the development of localized management strategies and sustainable planning efforts by highlighting the consequences of management decisions. Our findings emphasize the need to consider detailed spatial dynamics of fisheries SES within marine spatial planning (MSP) and illustrate how this information may assist decision-makers and practitioners in area prioritization. We, therefore, propose adopting the concept of fisheries SES within broader integrated management approaches to foster sustainable development of inherently dynamic SES in a rapidly evolving marine environment.
Collapse
Affiliation(s)
- M Kruse
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany.
| | - J Letschert
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany
| | - R Cormier
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - H Rambo
- Federal Maritime and Hydrographic Agency, Hamburg, Germany
| | - K Gee
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - A Kannen
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - J Schaper
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - C Möllmann
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Germany
| | | |
Collapse
|
7
|
Audzijonyte A, Delius GW, Stuart-Smith RD, Novaglio C, Edgar GJ, Barrett NS, Blanchard JL. Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model. PLoS Biol 2023; 21:e3002392. [PMID: 38079442 PMCID: PMC10712853 DOI: 10.1371/journal.pbio.3002392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.
Collapse
Affiliation(s)
- Asta Audzijonyte
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Gustav W. Delius
- Department of Mathematics, University of York, York, United Kingdom
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Camilla Novaglio
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Neville S. Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Jiang C, Yi M, Luo Z, He X, Lin H, Hubert N, Yan Y. DNA barcoding the ichthyofauna of the Beibu Gulf: Implications for fisheries management in a seafood market hub. Ecol Evol 2023; 13:e10822. [PMID: 38089891 PMCID: PMC10711522 DOI: 10.1002/ece3.10822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
The Beibu Gulf in China is situated in the tropics, in the western Pacific Ocean. It is an emblematic region combining proximity to a marine biodiversity hotspot and a major seafood hub. Intensification of marine fishing and ocean warming led to a drastic decline in fish populations in the Beibu Gulf during the last decades. This situation urges the development of molecular resources of the Beibu Gulf fish fauna in order to enable automated molecular identifications at the species level for next-generation monitoring. With this objective, we present the results of a large-scale campaign to DNA barcode fishes of the Beibu Gulf. We successfully generated 789 new DNA barcodes corresponding to 263 species which, together with 291 sequences mined from Genbank and BOLD, resulted in a reference library of 1080 sequences from 285 species. Based on the use of four DNA-based species delimitation methods (BIN, ASAP, mPTP, mGMYC), a total of 285 Molecular Operational Taxonomical Units (MOTUs). A single case of cryptic diversity was detected in Scomberomorus guttatus and a single species pair was not captured by delimitation methods. Intraspecific K2P genetic distances averaged 0.36% among sequences within species, whereas K2P genetic distances among species within genera averaged 6.96%. The most speciose families in open water trawling differ from those at fish market, and discrepancies with historical data are discussed in the light of recently documented stock collapses.
Collapse
Affiliation(s)
- Changping Jiang
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Murong Yi
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang)ZhanjiangChina
| | - Zhisen Luo
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Xiongbo He
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China SeaGuangdong Ocean UniversityZhanjiangChina
| | - Hung‐Du Lin
- The Affiliated School of National Tainan First Senior High SchoolTainanTaiwan
| | - Nicolas Hubert
- Institut de Recherche pour le Développement, UMR 226 ISEM (IRD, UM, CNRS)Université de MontpellierMontpellierFrance
| | - Yunrong Yan
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang)ZhanjiangChina
- Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China SeaGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
9
|
Shalders TC, Champion C, Coleman MA, Butcherine P, Broadhurst MK, Mead B, Benkendorff K. Impacts of seasonal temperatures, ocean warming and marine heatwaves on the nutritional quality of eastern school prawns (Metapenaeus macleayi). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162778. [PMID: 36906039 DOI: 10.1016/j.scitotenv.2023.162778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ocean warming and marine heatwaves significantly alter environmental conditions in marine and estuarine environments. Despite their potential global importance for nutrient security and human health, it is not well understood how thermal impacts could alter the nutritional quality of harvested marine resources. We tested whether short-term experimental exposure to seasonal temperatures, projected ocean-warming temperatures, and marine heatwaves affected the nutritional quality of the eastern school prawn (Metapenaeus macleayi). In addition, we tested whether nutritional quality was affected by the duration of exposure to warm temperatures. We show the nutritional quality of M. macleayi is likely to be resilient to short- (28 d), but not longer-term (56 d) exposure to warming temperatures. The proximate, fatty acid and metabolite compositions of M. macleayi were unchanged after 28 d exposure to simulated ocean warming and marine heatwaves. The ocean-warming scenario did, however, show potential for elevated sulphur, iron and silver levels after 28 d. Decreasing saturation of fatty acids in M. macleayi after 28 d exposure to cooler temperatures indicates homeoviscous adaptation to seasonal changes. We found that 11 % of measured response variables were significantly different between 28 and 56 d when exposed to the same treatment, indicating the duration of exposure time and time of sampling are critical when measuring this species' nutritional response. Further, we found that future acute warming events could reduce harvestable biomass, despite survivors retaining their nutritional quality. Developing a combined knowledge of the variability in seafood nutrient content with shifts in the availability of harvested seafood is crucial for understanding seafood-derived nutrient security in a changing climate.
Collapse
Affiliation(s)
- Tanika C Shalders
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Peter Butcherine
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Matt K Broadhurst
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Bryan Mead
- Analytical Research Laboratory, Southern Cross Analytical and Research Services, Southern Cross University, Lismore, New South Wales, Australia
| | - Kirsten Benkendorff
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
10
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
11
|
Ma S, Kang B, Li J, Sun P, Liu Y, Ye Z, Tian Y. Climate risks to fishing species and fisheries in the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159325. [PMID: 36216044 DOI: 10.1016/j.scitotenv.2022.159325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change is one of the most concerning topics in the Anthropocene. Increasing sea water temperature will trigger a series of ecological consequences, altering the various functions and services that marine ecosystems provide for humans. Fisheries, specifically, will likely face the most direct impact. China provides unparalleled catches with enormous and intensive fishing effort, and China Seas are suffering from significantly increasing water temperature. However, uncertainties in the impacts of climate change on fishing species and fisheries in the China Seas present challenges for the formulation of coping and adapting strategies. Here, we employed a climate risk assessment framework to evaluate the climate risks of fishing species and fisheries of various provinces in China in the past decade, aiming to benefit the development and prioritization of appropriate adaptation options to climate change. Results show that considering the water temperature in the 2010s, 20 % of fishing species in the China Seas have one-fourth of their habitats unsuitable, and the situation will become worse with future warming scenarios in the 2050s when nearly half of species will have at least one-fourth of their habitats no longer suitable. Integrating hazard, exposure and vulnerability, climate risks to fisheries feature heterogeneity among provinces. Climate risks to fisheries of northern provinces are characterized by low hazard and high exposure, while the southern counterparts are largely determined by high hazard and low exposure. Climate change is threatening fishing species and remarkably altering fishery patterns in China Seas. Shifting fishing targets, increasing fishing efficiency, raising catch diversity, and updating fishery-related industries would be effective steps to help fisheries adapt to climate change, and adaptation strategies need to be tailored considering local realities.
Collapse
Affiliation(s)
- Shuyang Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Bin Kang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianchao Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenjiang Ye
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus Roots Use Different Strategies to Respond to Warm Temperatures. Int J Mol Sci 2023; 24:ijms24021143. [PMID: 36674684 PMCID: PMC9863162 DOI: 10.3390/ijms24021143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.
Collapse
|
13
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
14
|
Begum M, Masud MM, Alam L, Mokhtar MB, Amir AA. The impact of climate variables on marine fish production: an empirical evidence from Bangladesh based on autoregressive distributed lag (ARDL) approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87923-87937. [PMID: 35819668 DOI: 10.1007/s11356-022-21845-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Several studies have highlighted the significant impact of climate change on agriculture. However, there have been little empirical enquiries into the impact of climate change on marine fish production, particularly in Bangladesh. Hence, this study aims to investigate the impact of climate change on marine fish production in Bangladesh using data from 1961 to 2019. Data were obtained from the Food and Agriculture Organization, Bangladesh Meteorological Department, the World Development Indicators, and the National Oceanic and Atmospheric Administration. The autoregressive distributed lag (ARDL) model was used to describe the dynamic link between CO2 emissions, average temperature, Sea Surface Temperature (SST), rainfall, sunshine, wind and marine fish production. The ARDL approach to cointegration revealed that SST (β = 0.258), rainfall (β =0.297), and sunshine (β =0.663) significantly influence marine fish production at 1% and 10% levels in the short run and at 1% level in the long run. The results also found that average temperature has a significant negative impact on fish production in both short and long runs. On the other hand, CO2 emissions have a negative impact on marine fish production in the short run. Specifically, for every 1% rise in CO2 emissions, marine fish production will decline by 0.11%. The findings of this study suggest that policymakers formulate better policy frameworks for climate change adaptation and sustainable management of marine fisheries at the national level. Research and development in Bangladesh's fisheries sector should also focus on marine fish species that can resist high sea surface temperatures, CO2 emissions, and average temperatures.
Collapse
Affiliation(s)
- Mahfuza Begum
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Mehedi Masud
- Department of Development Studies, Faculty of Business and Economics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lubna Alam
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia.
| | - Mazlin Bin Mokhtar
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Ahmad Aldrie Amir
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
15
|
Cheung WWL, Palacios-Abrantes J, Frölicher TL, Palomares ML, Clarke T, Lam VWY, Oyinlola MA, Pauly D, Reygondeau G, Sumaila UR, Teh LCL, Wabnitz CCC. Rebuilding fish biomass for the world's marine ecoregions under climate change. GLOBAL CHANGE BIOLOGY 2022; 28:6254-6267. [PMID: 36047439 DOI: 10.1111/gcb.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Rebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14-Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch-based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7-2.7 times (interquartile range) of current (average 2014-2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4-2.0 and 1.1-1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo-Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate-sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade-offs between climate-resilient biomass rebuilding and the high near-term demand for seafood to support the well-being of coastal communities across the tropics.
Collapse
Affiliation(s)
- William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Juliano Palacios-Abrantes
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Center for Limnology, University of Wisconsin, Madison, Wisconsin, USA
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Maria Lourdes Palomares
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tayler Clarke
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vicky W Y Lam
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Muhammed A Oyinlola
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, Quebec City, Quebec, Canada
| | - Daniel Pauly
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel Reygondeau
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - U Rashid Sumaila
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lydia C L Teh
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colette C C Wabnitz
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Stanford Center for Ocean Solutions, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Mehrabi Z, Delzeit R, Ignaciuk A, Levers C, Braich G, Bajaj K, Amo-Aidoo A, Anderson W, Balgah RA, Benton TG, Chari MM, Ellis EC, Gahi NZ, Gaupp F, Garibaldi LA, Gerber JS, Godde CM, Grass I, Heimann T, Hirons M, Hoogenboom G, Jain M, James D, Makowski D, Masamha B, Meng S, Monprapussorn S, Müller D, Nelson A, Newlands NK, Noack F, Oronje M, Raymond C, Reichstein M, Rieseberg LH, Rodriguez-Llanes JM, Rosenstock T, Rowhani P, Sarhadi A, Seppelt R, Sidhu BS, Snapp S, Soma T, Sparks AH, Teh L, Tigchelaar M, Vogel MM, West PC, Wittman H, You L. Research priorities for global food security under extreme events. ONE EARTH (CAMBRIDGE, MASS.) 2022; 5:756-766. [PMID: 35898653 PMCID: PMC9307291 DOI: 10.1016/j.oneear.2022.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Extreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic. Here, we present a prioritization of threats to global food security from extreme events, as well as emerging research questions that highlight the conceptual and practical challenges that exist in designing, adopting, and governing resilient food systems. We hope that these findings help in directing research funding and resources toward food system transformations needed to help society tackle major food system risks and food insecurity under extreme events.
Collapse
Affiliation(s)
- Zia Mehrabi
- Department of Environmental Studies, University of Colorado, Boulder, CO, USA
- Mortenson Center in Global Engineering, University of Colorado Boulder, Boulder, CO, USA
| | | | - Adriana Ignaciuk
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Christian Levers
- Department of Environmental Geography, Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Ginni Braich
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Kushank Bajaj
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Araba Amo-Aidoo
- Kassel University, Department of Agricultural Engineering, Kassel University, 37213 Witzenhausen, Germany
- Kumasi Technical University, Department of Automotive and Agricultural Mechanization, P.O. Box 854, Kumasi, Ghana
| | - Weston Anderson
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
- International Research Institute for Climate and Society, Columbia University, Palisades, NY 10964, USA
| | - Roland A. Balgah
- College of Technology, The University of Bamenda, Bamenda, Cameroon
- Higher Institute of Agriculture and Rural Development, Bamenda University of Science and Technology – BUST, Bamenda, Cameroon
| | - Tim G. Benton
- Royal Institute of International Affairs, Chatham House, 10 St James Sq, London SW1Y 4LE, UK
| | - Martin M. Chari
- Risk & Vulnerability Science Centre, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Erle C. Ellis
- Department of Geography & Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | - Franziska Gaupp
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
- Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg, 14473 Potsdam, Germany
| | - Lucas A. Garibaldi
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
| | - James S. Gerber
- Institute on the Environment, University of Minnesota, St. Paul, MN 55108, USA
| | - Cecile M. Godde
- Agriculture and Food Business Unit, Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD, Australia
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, Institute of Agricultural Sciences in the Tropics, University of Hohenheim, Stuttgart, Germany
| | - Tobias Heimann
- Kiel Institute for the World Economy (IfW), Kiel, Germany
| | - Mark Hirons
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Gerrit Hoogenboom
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Meha Jain
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Dana James
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - David Makowski
- UMR MIA 518, Université Paris-Saclay, INRAE, AgroParisTech, Paris, France
| | - Blessing Masamha
- Human Sciences Research Council (HSRC), Africa Institute of South Africa (AISA), 134 Pretorius Street, Pretoria, Gauteng, South Africa
| | - Sisi Meng
- Keough School of Global Affairs, University of Notre Dame, Notre Dame, IN, USA
| | - Sathaporn Monprapussorn
- Department of Geography, Faculty of Social Sciences, Srinakharinwirot University, Bangkok, Thailand
| | - Daniel Müller
- Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Theodor-Lieser-Str. 2, 06120 Halle (Saale), Germany
| | - Andrew Nelson
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
| | - Nathaniel K. Newlands
- Agriculture and Agri-Food Canada, Science and Technology Branch, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Frederik Noack
- Food and Resource Economics Group, the University of British Columbia, Vancouver, BC, Canada
| | - MaryLucy Oronje
- Centre for Agriculture and Biosciences International (CABI), 673 Canary Bird, Limuru Road, Muthaiga, Nairobi, Kenya
| | - Colin Raymond
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA
| | | | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Todd Rosenstock
- The Alliance of Bioversity International and International Center for Tropical Agriculture, Rome, Italy
| | - Pedram Rowhani
- Department of Geography, University of Sussex, Brighton, UK
| | - Ali Sarhadi
- Lorenz Center, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralf Seppelt
- Helmholtz Institute for Environmental Research (UFZ), Leipzig, Germany
- Institute of Geoscience and Geography, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Balsher S. Sidhu
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Sieglinde Snapp
- Department of Plant, Soil and Microbial Sciences, Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA
| | - Tammara Soma
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Adam H. Sparks
- Department of Primary Industries and Regional Development, Perth, WA 6000, Australia
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD 4350, Australia
| | - Louise Teh
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | | | - Martha M. Vogel
- Man and the Biosphere Programme, Division of Ecological and Earth Sciences, Natural Sciences Sector, UNESCO, Paris, France
| | - Paul C. West
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
- Project Drawdown, 3450 Sacramento Street, San Francisco, CA, USA
| | - Hannah Wittman
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Liangzhi You
- International Food Policy Research Institute, Washington, DC, USA
| |
Collapse
|
17
|
Cinner JE, Caldwell IR, Thiault L, Ben J, Blanchard JL, Coll M, Diedrich A, Eddy TD, Everett JD, Folberth C, Gascuel D, Guiet J, Gurney GG, Heneghan RF, Jägermeyr J, Jiddawi N, Lahari R, Kuange J, Liu W, Maury O, Müller C, Novaglio C, Palacios-Abrantes J, Petrik CM, Rabearisoa A, Tittensor DP, Wamukota A, Pollnac R. Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nat Commun 2022; 13:3530. [PMID: 35790744 PMCID: PMC9256605 DOI: 10.1038/s41467-022-30991-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.
Collapse
Affiliation(s)
- Joshua E Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Iain R Caldwell
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Lauric Thiault
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278, CNRS-EPHE-UPVD, Maison des Océans, 195 rue Saint-Jacques, 75005, Paris, France
- Moana Ecologic, Rocbaron, France
| | - John Ben
- Private Fisheries and Environment Consultant, Lau, Morobe, Papua New Guinea
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Center for Marine Socioecology, Hobart, TAS, Australia
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC) & Ecopath International Initiative (EII), Barcelona, 08003, Spain
| | - Amy Diedrich
- College of Science and Engineering, James Cook University, Building 142, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Tyler D Eddy
- Centre for Fisheries Ecosystems Research, Fisheries & Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason D Everett
- School of Mathematics and Physics, University of Queensland, Brisbane, QLD, Australia
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, QLD, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Christian Folberth
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Didier Gascuel
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro / Inrae / Ifremer, Rennes, France
| | - Jerome Guiet
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Georgina G Gurney
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Ryan F Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jonas Jägermeyr
- NASA Goddard Institute for Space Studies, New York City, NY, USA
- Columbia University, Climate School, New York, NY, 10025, USA
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Narriman Jiddawi
- Institute for Marine Science, University of Dar Es Salaam, Zanzibar, Tanzania
| | - Rachael Lahari
- Environment and Marine Scientist, New Ireland Province, Papua New Guinea
| | - John Kuange
- Wildlife Conservation Society, Goroka, EHP, Papua New Guinea
| | - Wenfeng Liu
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Olivier Maury
- MARBEC, IRD, Univ Montpellier, CNRS, Ifremer, Sète, France
| | - Christoph Müller
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Camilla Novaglio
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Center for Marine Socioecology, Hobart, TAS, Australia
| | - Juliano Palacios-Abrantes
- Center for Limnology, University of Wisconsin - Madison, Wisconsin, WI, USA
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Colleen M Petrik
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92093, USA
| | - Ando Rabearisoa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Derek P Tittensor
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
| | - Andrew Wamukota
- School of Environmental and Earth Sciences, Pwani University, P.O. Box 195, Kilifi, Kenya
| | - Richard Pollnac
- Department of Marine Affairs, University of Rhode Island, Kingston, RI, 02881, USA
- School of Marine & Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA, 98105, USA
| |
Collapse
|
18
|
Islam SS, Xue X, Caballero-Solares A, Bradbury IR, Rise ML, Fleming IA. Distinct early life stage gene expression effects of hybridization among European and North American farmed and wild Atlantic salmon populations. Mol Ecol 2022; 31:2712-2729. [PMID: 35243721 DOI: 10.1111/mec.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
Due to multi-generation domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1 hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1 hybrids using 44K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1 hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.
Collapse
Affiliation(s)
- Shahinur S Islam
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian R Bradbury
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada.,Salmonids Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Road, St. John's, NL, A1C 5X, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian A Fleming
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| |
Collapse
|
19
|
Using species distribution models only may underestimate climate change impacts on future marine biodiversity. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Secur 2022; 14:805-827. [PMID: 35075379 PMCID: PMC8771179 DOI: 10.1007/s12571-021-01246-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
The contribution of aquatic animal protein to the global, animal-source protein supply and the relative importance of aquaculture to capture fisheries in supplying this protein is relevant in assessments and decisions related to the future of aquatic food production and its security. Meat of terrestrial animals, milk, and eggs resulted in 76,966 Kt crude protein compared with 13,950 Kt or 15.3% from aquatic animals in 2018.While aquaculture produced a greater tonnage of aquatic animals, capture fisheries resulted in 7,135 Kt crude protein while aquaculture yielded 6,815 Kt. Capture fisheries production has not increased in the past two decades, and aquaculture production must increase to assure the growing demand for fisheries products by a larger and more affluent population. We estimated based on status quo consumption, that aquaculture production would need to increase from 82,087 Kt in 2018 to 129,000 Kt by 2050 to meet the demand of the greater population. About two-thirds of finfish and crustacean production by aquaculture is feed-based, and feeds for these species include fishmeal and fish oil as ingredients. Aquaculture feeds require a major portion of the global supply of fishmeal and fish oil. An estimated 71.0% of fishmeal and 73.9% of fish oil are made from the catch with the rest coming from aquatic animal processing waste. The catch of small, pelagic fish from the ocean is not predicted to increase in the future. Aquaculture should reduce its fishmeal and oil use to lessen its dependency on small wild fish important to the integrity of marine food webs and food security for the poor in many coastal areas. Fishmeal and fish oil shortages for use in aquaculture feed will result in a limit on production in the future if goals to lessen their use in feeds are not met.
Collapse
Affiliation(s)
- Claude E. Boyd
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849 USA
| | | | - Robert P. Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849 USA
| |
Collapse
|
21
|
Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, Setter RO, Smith CZ, Webster KM, Patz JA, Franklin EC. Over half of known human pathogenic diseases can be aggravated by climate change. NATURE CLIMATE CHANGE 2022; 12:869-875. [PMID: 35968032 PMCID: PMC9362357 DOI: 10.1038/s41558-022-01426-1] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 05/14/2023]
Abstract
It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions.
Collapse
Affiliation(s)
- Camilo Mora
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Tristan McKenzie
- Department of Earth Sciences, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Isabella M. Gaw
- Marine Biology Graduate Program, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Jacqueline M. Dean
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Hannah von Hammerstein
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Tabatha A. Knudson
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Renee O. Setter
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Charlotte Z. Smith
- Department of Natural Resources and Environmental Management, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kira M. Webster
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Jonathan A. Patz
- Nelson Institute & Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Erik C. Franklin
- Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Hawaiʻi Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Kaneohe, HI USA
| |
Collapse
|
22
|
Mulders Y, Filbee‐Dexter K, Bell S, Bosch NE, Pessarrodona A, Sahin D, Vranken S, Zarco‐Perello S, Wernberg T. Intergrading reef communities across discrete seaweed habitats in a temperate-tropical transition zone: Lessons for species reshuffling in a warming ocean. Ecol Evol 2022; 12:e8538. [PMID: 35127041 PMCID: PMC8796930 DOI: 10.1002/ece3.8538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022] Open
Abstract
Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool-water kelps are decreasing, while seaweeds with warm-water affinities are increasing. These habitat-forming species provide different ecological functions, and shifts to warm-affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool-affinity (kelp) and warm-affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool-affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats.
Collapse
Affiliation(s)
- Yannick Mulders
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Karen Filbee‐Dexter
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
| | - Sahira Bell
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Nestor E. Bosch
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Defne Sahin
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Sofie Vranken
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Thomas Wernberg
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
23
|
Pita I, Mouillot D, Moullec F, Shin YJ. Contrasted patterns in climate change risk for Mediterranean fisheries. GLOBAL CHANGE BIOLOGY 2021; 27:5920-5933. [PMID: 34309958 DOI: 10.1111/gcb.15814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Climate change is rapidly becoming one of the biggest threats to marine life, and its impacts have the potential to strongly affect fisheries upon which millions of people rely. This is particularly crucial for the Mediterranean Sea, which is one of the world's biodiversity hotspots, one of the world's most overfished regions, and where temperatures are rising 25% faster than in the rest of the ocean on average. In this study, we calculated a vulnerability index for 100 species that compose 95% of the Mediterranean catches, through a trait-based approach. The Climate Risk Assessment (CRA) methodology was subsequently used to assess the risks due to climate change of Mediterranean fisheries. We found that the northern Mediterranean fisheries target more vulnerable species than their southern counterparts. However, when combining this catch-based vulnerability with a suite of socio-economic parameters, north African countries stand out as the most vulnerable to climate change impacts. Indeed, considering countries' exposure of the fisheries sector and their vulnerability to climate change, a sharp contrast between northern and southern Mediterranean appears, with Egypt and Tunisia scoring the highest risk. By integrating a trait-based approach on targeted marine species with socio-economic features, our analysis helps to better understand the ramifications of climate change consequences on Mediterranean fisheries and highlights the regions that could potentially be particularly affected.
Collapse
Affiliation(s)
- Ignacio Pita
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
| | - David Mouillot
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Fabien Moullec
- Coastal Systems (COS), Royal Netherlands Institute for Sea Research, Den Burg, Noord-Holland, The Netherlands
| | - Yunne-Jai Shin
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
| |
Collapse
|
24
|
Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 2021; 19:e3001435. [PMID: 34727097 PMCID: PMC8562822 DOI: 10.1371/journal.pbio.3001435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
Collapse
Affiliation(s)
- Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alexandre C. Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Patrick F. Smallhorn-West
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- WorldFish, Bayan Lepas, Malaysia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
25
|
Barnard P, Moomaw WR, Fioramonti L, Laurance WF, Mahmoud MI, O’Sullivan J, Rapley CG, Rees WE, Rhodes CJ, Ripple WJ, Semiletov IP, Talberth J, Tucker C, Wysham D, Ziervogel G. World scientists' warnings into action, local to global. Sci Prog 2021; 104:368504211056290. [PMID: 34763547 PMCID: PMC10450599 DOI: 10.1177/00368504211056290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
'We have kicked the can down the road once again - but we are running out of road.' - Rachel Kyte, Dean of Fletcher School at Tufts University.We, in our capacities as scientists, economists, governance and policy specialists, are shifting from warnings to guidance for action before there is no more 'road.' The science is clear and irrefutable; humanity is in advanced ecological overshoot. Our overexploitation of resources exceeds ecosystems' capacity to provide them or to absorb our waste. Society has failed to meet clearly stated goals of the UN Framework Convention on Climate Change. Civilization faces an epochal crossroads, but with potentially much better, wiser outcomes if we act now.What are the concrete and transformative actions by which we can turn away from the abyss? In this paper we forcefully recommend priority actions and resource allocation to avert the worst of the climate and nature emergencies, two of the most pressing symptoms of overshoot, and lead society into a future of greater wellbeing and wisdom. Humanity has begun the social, economic, political and technological initiatives needed for this transformation. Now, massive upscaling and acceleration of these actions and collaborations are essential before irreversible tipping points are crossed in the coming decade. We still can overcome significant societal, political and economic barriers of our own making.Previously, we identified six core areas for urgent global action - energy, pollutants, nature, food systems, population stabilization and economic goals. Here we identify an indicative, systemic and time-limited framework for priority actions for policy, planning and management at multiple scales from household to global. We broadly follow the 'Reduce-Remove-Repair' approach to rapid action. To guide decision makers, planners, managers, and budgeters, we cite some of the many experiments, mechanisms and resources in order to facilitate rapid global adoption of effective solutions.Our biggest challenges are not technical, but social, economic, political and behavioral. To have hope of success, we must accelerate collaborative actions across scales, in different cultures and governance systems, while maintaining adequate social, economic and political stability. Effective and timely actions are still achievable on many, though not all fronts. Such change will mean the difference for billions of children and adults, hundreds of thousands of species, health of many ecosystems, and will determine our common future.
Collapse
Affiliation(s)
- Phoebe Barnard
- Stable Planet Alliance, USA
- Center for Environmental Politics, University of Washington, USA
- African Climate and Development Initiative, University of Cape Town, South Africa
| | - William R Moomaw
- Fletcher School, Tufts University and Woodwell Climate Research Center, USA
| | - Lorenzo Fioramonti
- Center for the Study of Governance Innovation, University of Pretoria, South Africa
- Member of Parliament, Italy
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | | | - Jane O’Sullivan
- School of Agriculture and Food Sciences, The University of Queensland, Australia
| | | | - William E Rees
- School of Community and Regional Planning, University of British Columbia, Canada
| | | | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, USA
| | - Igor P Semiletov
- Laboratory of Arctic Research, Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences
- Institute of Ecology, Higher School of Economics, Russia
| | | | | | | | - Gina Ziervogel
- Department of Environmental and Geographic Science, University of Cape Town, South Africa
| |
Collapse
|
26
|
Lazzari N, Becerro MA, Sanabria-Fernandez JA, Martín-López B. Assessing social-ecological vulnerability of coastal systems to fishing and tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147078. [PMID: 33905936 DOI: 10.1016/j.scitotenv.2021.147078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Detecting areas with high social-ecological vulnerability (SEV) is essential to better inform management interventions for building resilience in coastal systems. The SEV framework, developed by the Intergovernmental Panel on Climate Change, is a robust method to identify SEV of tropical coastal systems to climate change. Yet, the application of this framework to temperate regions and other drivers of change remains underexplored. This study operationalizes the SEV framework to assess the social-ecological implications of fishing and tourism in temperate coastal systems. We spatially represented the SEV of coastal systems and identified the social and ecological vulnerability dimensions underpinning this SEV. Our results demonstrate that different dimensions contribute differently to the SEV, suggesting the need for distinctive management intervention to reduce the vulnerability of coastal systems. Our findings also highlight that livelihood diversification and the protection of marine areas may be plausible strategies to build resilience in temperate coastal systems that face fishing and tourism pressures. With this study, we hope to encourage the application of the SEV framework to other drivers of change for building more resilient coastal systems.
Collapse
Affiliation(s)
- Natali Lazzari
- The BITES lab, Center for Advanced Studies of Blanes (CEAB-CSIC), Acc Cala S Francesc 14, 17300 Blanes (Gerona), Spain.
| | - Mikel A Becerro
- The BITES lab, Center for Advanced Studies of Blanes (CEAB-CSIC), Acc Cala S Francesc 14, 17300 Blanes (Gerona), Spain.
| | - Jose A Sanabria-Fernandez
- The BITES lab, Center for Advanced Studies of Blanes (CEAB-CSIC), Acc Cala S Francesc 14, 17300 Blanes (Gerona), Spain.
| | - Berta Martín-López
- Leuphana University of Lüneburg, Faculty of Sustainability, Institute for Ethics and Transdisciplinary Sustainability Research, Universitätsallee 1, 21355 Lüneburg, Germany.
| |
Collapse
|
27
|
Laffoley D, Baxter J, Amon D, Claudet J, Hall‐Spencer J, Grorud‐Colvert K, Levin L, Reid P, Rogers A, Taylor M, Woodall L, Andersen N. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2021; 31:1512-1534. [PMID: 33362396 PMCID: PMC7753556 DOI: 10.1002/aqc.3512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The ocean is the linchpin supporting life on Earth, but it is in declining health due to an increasing footprint of human use and climate change. Despite notable successes in helping to protect the ocean, the scale of actions is simply not now meeting the overriding scale and nature of the ocean's problems that confront us.Moving into a post-COVID-19 world, new policy decisions will need to be made. Some, especially those developed prior to the pandemic, will require changes to their trajectories; others will emerge as a response to this global event. Reconnecting with nature, and specifically with the ocean, will take more than good intent and wishful thinking. Words, and how we express our connection to the ocean, clearly matter now more than ever before.The evolution of the ocean narrative, aimed at preserving and expanding options and opportunities for future generations and a healthier planet, is articulated around six themes: (1) all life is dependent on the ocean; (2) by harming the ocean, we harm ourselves; (3) by protecting the ocean, we protect ourselves; (4) humans, the ocean, biodiversity, and climate are inextricably linked; (5) ocean and climate action must be undertaken together; and (6) reversing ocean change needs action now.This narrative adopts a 'One Health' approach to protecting the ocean, addressing the whole Earth ocean system for better and more equitable social, cultural, economic, and environmental outcomes at its core. Speaking with one voice through a narrative that captures the latest science, concerns, and linkages to humanity is a precondition to action, by elevating humankind's understanding of our relationship with 'planet Ocean' and why it needs to become a central theme to everyone's lives. We have only one ocean, we must protect it, now. There is no 'Ocean B'.
Collapse
Affiliation(s)
- D. Laffoley
- IUCN World Commission on Protected AreasIUCN (International Union for Conservation of Nature)GlandSwitzerland
| | - J.M. Baxter
- Marine Alliance for Science and Technology for Scotland, School of Biology, East SandsUniversity of St AndrewsSt AndrewsUK
| | - D.J. Amon
- Department of Life SciencesNatural History MuseumLondonUK
| | - J. Claudet
- National Centre for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDParisFrance
| | - J.M. Hall‐Spencer
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - K. Grorud‐Colvert
- Department of Integrative BiologyOregon State UniversityCorvallisUSA
| | - L.A. Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
| | - P.C. Reid
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- The LaboratoryThe Continuous Plankton Recorder Survey, Marine Biological AssociationCitadel HillPlymouthUK
| | - A.D. Rogers
- Somerville CollegeUniversity of OxfordOxfordUK
- REV OceanLysakerNorway
| | | | - L.C. Woodall
- Department of ZoologyUniversity of OxfordOxfordUK
| | - N.F. Andersen
- Department of Environment and GeographyUniversity of YorkYorkUK
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
28
|
Arida E, Ashari H, Dahruddin H, Fitriana YS, Hamidy A, Irham M, Kadarusman, Riyanto A, Wiantoro S, Zein MSA, Hadiaty RK, Apandi, Krey F, Kurnianingsih, Melmambessy EHP, Mulyadi, Ohee HL, Saidin, Salamuk A, Sauri S, Suparno, Supriatna N, Suruwaky AM, Laksono WT, Warikar EL, Wikanta H, Yohanita AM, Slembrouck J, Legendre M, Gaucher P, Cochet C, Delrieu-Trottin E, Thébaud C, Mila B, Fouquet A, Borisenko A, Steinke D, Hocdé R, Semiadi G, Pouyaud L, Hubert N. Exploring the vertebrate fauna of the Bird's Head Peninsula (Indonesia, West Papua) through DNA barcodes. Mol Ecol Resour 2021; 21:2369-2387. [PMID: 33942522 DOI: 10.1111/1755-0998.13411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Biodiversity knowledge is widely heterogeneous across the Earth's biomes. Some areas, due to their remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, these areas have frequently experienced a fast development of anthropogenic activities during the last decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have been much less explored biologically. Here, we describe the results of a DNA-based inventory of aquatic and terrestrial vertebrate communities, which was the objective of a multidisciplinary expedition to the Bird's Head Peninsula (West Papua, Indonesia) conducted between 17 October and 20 November 2014. This expedition resulted in the assembly of 1005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation methods (GMYC, PTP, RESL, ABGD), 264 molecular operational taxonomic units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. This study suggests that the diversity of vertebrates of the Bird's Head is severely underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas are discussed.
Collapse
Affiliation(s)
- Evy Arida
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hidayat Ashari
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hadi Dahruddin
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Yuli Sulistya Fitriana
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Amir Hamidy
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Mohammad Irham
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Kadarusman
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Awal Riyanto
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Sigit Wiantoro
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Moch Syamsul Arifin Zein
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Renny K Hadiaty
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Apandi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Frengky Krey
- Jurusan Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Papua, Jl. Gunung Salju Amban, Manokwari, Indonesia
| | - Kurnianingsih
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Edy H P Melmambessy
- Program Studi Manajemen Sumberdaya Perairan, Fakultas Pertanian, Universitas Musamus, Jl. Kamizaun Mopah Lama, Rimba Jaya, Merauke, Indonesia
| | - Mulyadi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Henderite L Ohee
- Jurusan Biologi, Fakultas MIPA, Universitas Cendrawasih, Jl. Kamp Wolker Waena Jayapura, Jayapura, Indonesia
| | - Saidin
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Ayub Salamuk
- Dinas Kelautan dan Perikanan Kabupaten Kaimana, Jl.Utarum Kampung Coa, Kaimana, Indonesia
| | - Sopian Sauri
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Suparno
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Nanang Supriatna
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Amir M Suruwaky
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Wahyudi Tri Laksono
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Evie L Warikar
- Jurusan Biologi, Fakultas MIPA, Universitas Cendrawasih, Jl. Kamp Wolker Waena Jayapura, Jayapura, Indonesia
| | - Hadi Wikanta
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Aksamina M Yohanita
- Jurusan Biologi, Fakultas MIPA, Universitas Papua Jl. Gunung Salju - Amban, Manokwari, Indonesia
| | - Jacques Slembrouck
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Marc Legendre
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Philippe Gaucher
- USR LEEISA- Laboratoire Ecologie, Evolution, Interactions des Systèmes amazoniens, Centre de Recherche de Montabo, cayenne, French Guiana
| | - Christophe Cochet
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | | | | | - Borja Mila
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antoine Fouquet
- UMR 5174 EDB CNRS, Université Paul Sabatier, IRD, Toulouse, France
| | - Alex Borisenko
- Department of Integrative Biology, Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Dirk Steinke
- Department of Integrative Biology, Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Régis Hocdé
- UMR 9190 MARBEC (IRD, UM, CNRS, IFREMER), Université de Montpellier, Montpellier, France
| | - Gono Semiadi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Laurent Pouyaud
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Nicolas Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| |
Collapse
|
29
|
Proceedings of the 7th Series of Seminars on Advances in Apomixis Research. PLANTS 2021; 10:plants10030565. [PMID: 33802754 PMCID: PMC8002402 DOI: 10.3390/plants10030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
These proceedings contain the abstracts for the presentations given at the 7th biennial Seminars on Advances in Apomixis Research, held virtually on 2-3 and 9 December 2020. The first day hosted the kick-off meeting of the EU-funded Mechanisms of Apomictic Development (MAD) project, while the remaining days were dedicated to oral presentations and in-depth exchanges on the latest progress in the field of apomixis and plant reproductive biology research.
Collapse
|
30
|
Harris F, Dalin C, Cuevas S, N R L, Adhya T, Joy EJM, Scheelbeek PFD, Kayatz B, Nicholas O, Shankar B, Dangour AD, Green R. Trading water: virtual water flows through interstate cereal trade in India. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2020; 15:125005. [PMID: 33850516 PMCID: PMC7610577 DOI: 10.1088/1748-9326/abc37a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Cereals are an important component of the Indian diet, providing 47% of the daily dietary energy intake. Dwindling groundwater reserves in India especially in major cereal-growing regions are an increasing challenge to national food supply. An improved understanding of interstate cereal trade can help to identify potential risks to national food security. Here, we quantify the trade between Indian states of five major cereals and the associated trade in virtual (or embedded) water. To do this, we modelled interstate trade of cereals using Indian government data on supply and demand; calculated virtual water use of domestic cereal production using state- and product-specific water footprints and state-level data on irrigation source; and incorporated virtual water used in the production of internationally-imported cereals using country-specific water footprints. We estimate that 40% (94 million tonnes) of total cereal food supply was traded between Indian states in 2011-12, corresponding to a trade of 54.0 km3 of embedded blue water, and 99.4 km3 of embedded green water. Of the cereals traded within India, 41% were produced in states with over-exploited groundwater reserves (defined according to the Central Ground Water Board) and a further 21% in states with critically depleting groundwater reserves. Our analysis indicates a high dependency of Indian cereal consumption on production in states with stressed groundwater reserves. Substantial changes in agricultural practices and land use may be required to secure future production, trade and availability of cereals in India. Diversifying production systems could increase the resilience of India's food system.
Collapse
Affiliation(s)
- Francesca Harris
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Carole Dalin
- Institute for Sustainable Resources, Bartlett School of Environment, Energy and Resources, University College London, London, United Kingdom
| | - Soledad Cuevas
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
- Centre for Development, Environment and Policy, School of Oriental & African Studies, London, United Kingdom
| | - Lakshmikantha N R
- Ashoka Trust for Research in Ecology and the Environment, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Tapan Adhya
- Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, India
| | - Edward J M Joy
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Pauline F D Scheelbeek
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Benjamin Kayatz
- Helmholtz Centre Potsdam German Research Centre for Geosciences, Potsdam, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Owen Nicholas
- Department of Statistical Science, University College London, London, United Kingdom
| | - Bhavani Shankar
- Institute for Sustainable Food & Department of Geography, University of Sheffield, Sheffield, United Kingdom
| | - Alan D Dangour
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Rosemary Green
- Department of Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
31
|
Jordan CJ, Palmer AA. Virtual meetings: A critical step to address climate change. SCIENCE ADVANCES 2020; 6:eabe5810. [PMID: 32938670 PMCID: PMC7494333 DOI: 10.1126/sciadv.abe5810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Chloe J Jordan
- Chloe J. Jordan National Institute on Drug Abuse, Rockville, MD 20852, USA
- Abraham A. Palmer Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA. Corresponding author.
| | - Abraham A Palmer
- Chloe J. Jordan National Institute on Drug Abuse, Rockville, MD 20852, USA
- Abraham A. Palmer Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA. Corresponding author.
| |
Collapse
|
32
|
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root Growth Adaptation to Climate Change in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:544. [PMID: 32457782 PMCID: PMC7227386 DOI: 10.3389/fpls.2020.00544] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Climate change is threatening crop productivity worldwide and new solutions to adapt crops to these environmental changes are urgently needed. Elevated temperatures driven by climate change affect developmental and physiological plant processes that, ultimately, impact on crop yield and quality. Plant roots are responsible for water and nutrients uptake, but changes in soil temperatures alters this process limiting crop growth. With the predicted variable climatic forecast, the development of an efficient root system better adapted to changing soil and environmental conditions is crucial for enhancing crop productivity. Root traits associated with improved adaptation to rising temperatures are increasingly being analyzed to obtain more suitable crop varieties. In this review, we will summarize the current knowledge about the effect of increasing temperatures on root growth and their impact on crop yield. First, we will describe the main alterations in root architecture that different crops undergo in response to warmer soils. Then, we will outline the main coordinated physiological and metabolic changes taking place in roots and aerial parts that modulate the global response of the plant to increased temperatures. We will discuss on some of the main regulatory mechanisms controlling root adaptation to warmer soils, including the activation of heat and oxidative pathways to prevent damage of root cells and disruption of root growth; the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will also consider that in the field, increasing temperatures are usually associated with other abiotic and biotic stresses such as drought, salinity, nutrient deficiencies, and pathogen infections. We will present recent advances on how the root system is able to integrate and respond to complex and different stimuli in order to adapt to an increasingly changing environment. Finally, we will discuss the new prospects and challenges in this field as well as the more promising pathways for future research.
Collapse
Affiliation(s)
| | | | | | - M. Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|