1
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 PMCID: PMC12050003 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
2
|
Martis ASA, Soundararajan L, Shetty P, Moin S, Vanje T, Jai Sankar Y, Parveen S. Chromosome number alterations cause apoptosis and cellular hypertrophy in induced pluripotent stem cell models of embryonic epiblast cells. Biol Open 2025; 14:BIO061814. [PMID: 39851179 PMCID: PMC11789280 DOI: 10.1242/bio.061814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025] Open
Abstract
Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation. Upon reversine treatment, we obtained cells with varied chromosomal content that retained pluripotency and potential to differentiate into cells of three germ lineages. However, these cells displayed lagging chromosomes, increased micronuclei content, high p53 expression and excessive apoptotic activity. Cell proliferation was not affected. Prolonged in vitro culture of these cells resulted in a selective pool of cells with supernumerary chromosomes, which exhibited cellular hypertrophy, enlarged nuclei, and overproduction of total RNAs and proteins. We conclude that increased DNA damage responses, apoptosis, and improper cellular mass and functions are possible mechanisms that contribute to abnormal epiblast development.
Collapse
Affiliation(s)
- Althea Stella Anil Martis
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pallavi Shetty
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Syed Moin
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejashree Vanje
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yogeshwaran Jai Sankar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
5
|
Bayerl J, Laird DJ. Eggs made from male mouse stem cells using error-prone culture. Nature 2023; 615:805-807. [PMID: 36922658 DOI: 10.1038/d41586-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Tan C, Xu P, Tao F. Harnessing Interactional Sensory Genes for Rationally Reprogramming Chaotic Metabolism. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0017. [PMID: 39290971 PMCID: PMC11407584 DOI: 10.34133/research.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2024]
Abstract
Rationally controlling cellular metabolism is of great importance but challenging owing to its highly complex and chaotic nature. Natural existing sensory proteins like histidine kinases (HKs) are understood as "sensitive nodes" of biological networks that can trigger disruptive metabolic reprogramming (MRP) upon perceiving environmental fluctuation. Here, the "sensitive node" genes were adopted to devise a global MRP platform consisting of a CRISPR interference-mediated dual-gene combinational knockdown toolbox and survivorship-based metabolic interaction decoding algorithm. The platform allows users to decode the interfering effects of n × n gene pairs while only requiring the synthesis of n pairs of primers. A total of 35 HK genes and 24 glycine metabolic genes were selected as the targets to determine the effectiveness of our platform in a Vibrio sp. FA2. The platform was applied to decode the interfering impact of HKs on antibiotic resistance in strain FA2. A pattern of combined knockdown of HK genes (sasA_8 and 04288) was demonstrated to be capable of reducing antibiotic resistance of Vibrio by 108-fold. Patterns of combined knockdown of glycine pathway genes (e.g., gcvT and ltaE) and several HK genes (e.g., cpxA and btsS) were also revealed to increase glycine production. Our platform may enable an efficient and rational approach for global MRP based on the elucidation of high-order gene interactions. A web-based 1-stop service (https://smrp.sjtu.edu.cn) is also provided to simplify the implementation of this smart strategy in a broad range of cells.
Collapse
Affiliation(s)
- Chunlin Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
8
|
From polyploidy to polyploidy reversal: its role in normal and disease states. Trends Genet 2022; 38:991-995. [DOI: 10.1016/j.tig.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
|
9
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
10
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Matsumoto T, Wakefield L, Peters A, Peto M, Spellman P, Grompe M. Proliferative polyploid cells give rise to tumors via ploidy reduction. Nat Commun 2021; 12:646. [PMID: 33510149 PMCID: PMC7843634 DOI: 10.1038/s41467-021-20916-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
Polyploidy is a hallmark of cancer, and closely related to chromosomal instability involved in cancer progression. Importantly, polyploid cells also exist in some normal tissues. Polyploid hepatocytes proliferate and dynamically reduce their ploidy during liver regeneration. This raises the question whether proliferating polyploids are prone to cancer via chromosome missegregation during mitosis and/or ploidy reduction. Conversely polyploids could be resistant to tumor development due to their redundant genomes. Therefore, the tumor-initiation risk of physiologic polyploidy and ploidy reduction is still unclear. Using in vivo lineage tracing we here show that polyploid hepatocytes readily form liver tumors via frequent ploidy reduction. Polyploid hepatocytes give rise to regenerative nodules with chromosome aberrations, which are enhanced by ploidy reduction. Although polyploidy should theoretically prevent tumor suppressor loss, the high frequency of ploidy reduction negates this protection. Importantly, polyploid hepatocytes that undergo multiple rounds of cell division become predominantly mononucleated and are resistant to ploidy reduction. Our results suggest that ploidy reduction is an early step in the initiation of carcinogenesis from polyploid hepatocytes.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA.
| | - Leslie Wakefield
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Peters
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Myron Peto
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Markus Grompe
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Melzer C, von der Ohe J, Hass R. Altered Tumor Plasticity after Different Cancer Cell Fusions with MSC. Int J Mol Sci 2020; 21:8347. [PMID: 33172211 PMCID: PMC7664391 DOI: 10.3390/ijms21218347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
While cell fusion demonstrates an important pathway during tissue development and regeneration of distinct organs, this process can also contribute to pathophysiological phenotypes during tumor progression. Hybrid cell formation after heterofusion between cancer cells and various other cell types within the tumor microenvironment is observed in vitro and in vivo. In particular, mesenchymal stroma/stem-like cells (MSC) perform diverse levels of communication with cancer cells by exhibiting anti- and pro-tumorigenic effects. During these cellular interactions, MSC can eventually fuse with cancer cells. Thereby, the newly generated disparate hybrid populations display aneuploidy associated with chromosomal instability. Based upon a subsequent post-hybrid selection process (PHSP), fused cancer cells can undergo apoptosis/necroptosis, senescence, dormancy, or a proliferative state by acquisition of new properties. Consequently, PHSP-surviving hybrid cancer cells demonstrate altered functionalities within the tumor tissue. This is accompanied by changes in therapeutic responsiveness and a different metastatic behavior. Accordingly, enhanced tumor plasticity interferes with successful therapeutic interventions and aggravates patient prognoses. The present review article focusses on fusion of MSC with different human cancer cells, in particular breast cancer populations and resulting characteristics of various cancer hybrid cells. Moreover, some mechanisms of cancer cell fusion are discussed together with multiple PHSP pathways.
Collapse
Affiliation(s)
| | | | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany; (C.M.); (J.v.d.O.)
| |
Collapse
|
13
|
Dörnen J, Sieler M, Weiler J, Keil S, Dittmar T. Cell Fusion-Mediated Tissue Regeneration as an Inducer of Polyploidy and Aneuploidy. Int J Mol Sci 2020; 21:E1811. [PMID: 32155721 PMCID: PMC7084716 DOI: 10.3390/ijms21051811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
The biological phenomenon of cell fusion plays a crucial role in several physiological processes, including wound healing and tissue regeneration. Here, it is assumed that bone marrow-derived stem cells (BMSCs) could adopt the specific properties of a different organ by cell fusion, thereby restoring organ function. Cell fusion first results in the production of bi- or multinucleated hybrid cells, which either remain as heterokaryons or undergo ploidy reduction/heterokaryon-to-synkaryon transition (HST), thereby giving rise to mononucleated daughter cells. This process is characterized by a merging of the chromosomes from the previously discrete nuclei and their subsequent random segregation into daughter cells. Due to extra centrosomes concomitant with multipolar spindles, the ploidy reduction/HST could also be associated with chromosome missegregation and, hence, induction of aneuploidy, genomic instability, and even putative chromothripsis. However, while the majority of such hybrids die or become senescent, aneuploidy and genomic instability appear to be tolerated in hepatocytes, possibly for stress-related adaption processes. Likewise, cell fusion-induced aneuploidy and genomic instability could also lead to a malignant conversion of hybrid cells. This can occur during tissue regeneration mediated by BMSC fusion in chronically inflamed tissue, which is a cell fusion-friendly environment, but is also enriched for mutagenic reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany; (J.D.); (M.S.); (J.W.); (S.K.)
| |
Collapse
|