1
|
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J, Yang C. Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 2025; 32:191. [PMID: 40341950 PMCID: PMC12076054 DOI: 10.3892/mmr.2025.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Protein post‑translational modifications (PTMs) play crucial roles in various life activities and aberrant protein modifications are closely associated with numerous major human diseases. Ubiquitination, the first identified protein modification system, involves the covalent attachment of ubiquitin molecules to lysine residues of target proteins. UFMylation, a recently discovered ubiquitin‑like modification, shares similarities with ubiquitination. The precursor form of ubiquitin fold modifier 1 (UFM1) undergoes synthesis and cleavage by UFM1‑specific protease 1 or UFM1‑specific protease 2 to generate activated UFM1‑G83. Subsequently, UFM1‑G83 is activated by a specific E1‑like activase, UFM1‑activating enzyme 5. UFM1‑conjugating enzyme 1 and an E3‑like ligase, UFM1‑specific ligase 1, recognize the target protein and facilitate UFMylation, leading to the degradation of the target protein. Current knowledge regarding UFMylation remains limited. Previous studies have demonstrated that defects in the UFMylation pathway can result in embryonic lethality in mice and various human diseases, highlighting the critical biological functions of UFMylation. However, the precise mechanisms underlying UFMylation remain elusive. This present review aimed to summarize recent research advances in UFMylation, with the aim of providing novel insights and perspectives for future investigations into this essential protein modification system.
Collapse
Affiliation(s)
- Rong Qin
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuhang Yuan
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fangyu Meng
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China
| | - Xingyu Yang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Chuanhua Yang
- Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Liu B, Yang T, Zhang J, Li H. UFMylation in tumorigenesis: Mechanistic insights and therapeutic opportunities. Cell Signal 2025; 129:111657. [PMID: 39954715 DOI: 10.1016/j.cellsig.2025.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Post-translational modification (PTM) is an essential mechanism that regulates protein function within cells, influencing aspects such as protein activity, stability, subcellular localization, and interactions with other molecules through the addition or removal of chemical groups on amino acid residues. One notable type of PTM is UFMylation, a recently discovered modification process that involves the covalent attachment of UFM1 to lysine residues on target proteins. This process is facilitated by a specific enzyme system that includes the UFM1-activating enzyme, the UFM1-conjugating enzyme, and the UFM1-specific ligase. UFMylation is crucial for various cellular functions, such as responding to endoplasmic reticulum stress and DNA-damage response, and it is linked to the development and progression of several human diseases, including cancers, highlighting its importance in biological processes. Despite this significance, the range of substrates, regulatory mechanisms, and biological processes associated with UFMylation are not well understood, with only a few substrates having been characterized. Here, we focus on the molecular mechanisms of UFMylation, its implications in tumorigenesis, and its interactions with tumor suppressive and oncogenic signaling pathways. Furthermore, we employed bioinformatics approaches to analyze UFMylation's role in cancer, focusing on expression profiles, mutations, prognosis, drug sensitivity, and immune infiltration to explore its therapeutic potential in immunotherapy.
Collapse
Affiliation(s)
- Bingtao Liu
- Radiotherapy center, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
3
|
Sharma R, Chirom O, Mujib A, Prasad M, Prasad A. UFMylation: Exploring a lesser known post translational modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112435. [PMID: 39993644 DOI: 10.1016/j.plantsci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Ubiquitination is a highly conserved post-translational modification (PTM) in which ubiquitin (Ub) is covalently attached to substrate proteins resulting in the alteration of protein structure, function, and stability. Another class of PTM mediated by ubiquitin-like proteins (UBLs) has gained significant attention among researchers in recent years. This article focuses on one such UBL-mediated PTM i.e. UFMylation. The enzymatic mechanism of UFMylation is similar to ubiquitination, involving three steps regulated by three different enzymes. In plants, reports suggest that UFMylation is predominantly involved in maintaining ER homeostasis including ER-phagy. However, studies related to this PTM are limited and future studies might reveal other molecular pathways regulated by UFMylation.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Oceania Chirom
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Abdul Mujib
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India; National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
4
|
Panichnantakul P, Oeffinger M. Protocol for the purification and analysis of nuclear UFMylated proteins. STAR Protoc 2025; 6:103634. [PMID: 39937649 PMCID: PMC11869847 DOI: 10.1016/j.xpro.2025.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Protein UFMylation regulates numerous cellular processes including ribosome quality control and nuclear DNA repair. Here, we present a technique to isolate nuclei and purify UFMylated proteins under denaturing non-reducing conditions from commonly used mammalian cell line models such as hTERT-RPE1, HEK293, U2OS, and HCT116 cells. We then describe procedures for identifying and analyzing purified UFMylated proteins using mass spectrometry and western blot. For complete details on the use and execution of this protocol, please refer to Panichnantakul et al.1.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de Recherches Cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada; Département de Biochimie et Médicine Moléculaire, Faculté de Médicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
5
|
Gutierrez IV, Park M, Sar L, Rodriguez R, Snider DL, Torres G, Scaglione KM, Horner SM. 14-3-3ε UFMylation promotes RIG-I-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644084. [PMID: 40166322 PMCID: PMC11957140 DOI: 10.1101/2025.03.19.644084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Post-translational modifications are critical for regulating the RIG-I signaling pathway. Previously, we identified a role for the post-translation modification UFM1 (UFMylation) in promoting RIG-I signaling by stimulating the interaction between RIG-I and its membrane-targeting protein 14-3-3ε. Here, we identify UFMylation of 14-3-3ε as a novel regulatory mechanism promoting RIG-I signaling. We demonstrate that UFM1 conjugation to lysine residue K50 or K215 results in mono-UFMylation on 14-3-3ε and enhances its ability to promote RIG-I signaling. Importantly, we show that mutation of these residues (K50R/K215R) abolishes UFMylation and impairs induction of type I and III interferons without disrupting the interaction between 14-3-3ε and RIG-I. This suggests that UFMylation of 14-3-3ε likely stabilizes signaling events downstream of RIG-I activation to promote induction of interferon. Collectively, our work suggests that UFMylation-driven activation of 14-3-3ε facilitates innate immune signaling and highlights the broader role of UFMylation for antiviral defense and immune regulation. Importance Post-translational modifications provide regulatory control of antiviral innate immune responses. Our study reveals that UFMylation of 14-3-3ε is a control point for RIG-I-mediated antiviral signaling. We demonstrate that conjugation of UFM1 to specific lysine residues on 14-3-3ε enhances downstream signaling events that facilitate interferon induction, but surprisingly it does not affect 14-3-3ε binding to RIG-I. By identifying the precise sites of UFMylation on 14-3-3ε and their functional consequences, we provide insights into the regulatory layers governing antiviral innate immunity. These findings complement emerging evidence that UFMylation serves as a versatile modulator across diverse immune pathways. Furthermore, our work highlights how protein chaperones like 14-3-3ε can be dynamically modified to orchestrate complex signaling cascades, suggesting potential therapeutic approaches for targeting dysregulated innate immunity.
Collapse
|
6
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
7
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
8
|
Liang Z, Ning R, Wang Z, Kong X, Yan Y, Cai Y, He Z, Liu X, Zou Y, Zhou J. The emerging roles of UFMylation in the modulation of immune responses. Clin Transl Med 2024; 14:e70019. [PMID: 39259506 PMCID: PMC11389534 DOI: 10.1002/ctm2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Post-translational modification is a rite of passage for cellular functional proteins and ultimately regulate almost all aspects of life. Ubiquitin-fold modifier 1 (UFM1) system represents a newly identified ubiquitin-like modification system with indispensable biological functions, and the underlying biological mechanisms remain largely undiscovered. The field has recently experienced a rapid growth of research revealing that UFMylation directly or indirectly regulates multiple immune processes. Here, we summarised important advances that how UFMylation system responds to intrinsic and extrinsic stresses under certain physiological or pathological conditions and safeguards immune homeostasis, providing novel perspectives into the regulatory framework and functions of UFMylation system, and its therapeutic applications in human diseases.
Collapse
Affiliation(s)
- Zhengyan Liang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Rongxuan Ning
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Zhaoxiang Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Xia Kong
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yubin Yan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yafei Cai
- Key Laboratory for Epigenetics of Dongguan City, China‐America Cancer Research InstituteGuangdong Medical UniversityDongguanChina
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| | - Xin‐guang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yongkang Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Junzhi Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
9
|
Wang X, Lv X, Ma J, Xu G. UFMylation: An integral post-translational modification for the regulation of proteostasis and cellular functions. Pharmacol Ther 2024; 260:108680. [PMID: 38878974 DOI: 10.1016/j.pharmthera.2024.108680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is covalently conjugated to protein substrates via a cascade of enzymatic reactions, a process known as UFMylation. UFMylation orchestrates an array of vital biological functions, including maintaining endoplasmic reticulum (ER) homeostasis, facilitating protein biogenesis, promoting cellular differentiation, regulating DNA damage response, and participating in cancer-associated signaling pathways. UFMylation has rapidly evolved into one of the forefront research areas within the last few years, yet much remains to be uncovered. In this review, first, UFMylation and its cellular functions associated with diseases are briefly introduced. Then, we summarize the proteomic approaches for identifying UFMylation substrates and explore the impact of UFMylation on gene transcription, protein translation, and maintenance of ER homeostasis. Next, we highlight the intricate regulation between UFMylation and two protein degradation pathways, the ubiquitin-proteasome system and the autophagy-lysosome pathway, and explore the potential of UFMylation system as a drug target. Finally, we discuss emerging perspectives in the UFMylation field. This review may provide valuable insights for drug discovery targeting the UFMylation system.
Collapse
Affiliation(s)
- Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaowei Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
10
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
11
|
Tian T, Chen J, Zhao H, Li Y, Xia F, Huang J, Han J, Liu T. UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat Chem Biol 2024:10.1038/s41589-024-01611-7. [PMID: 38649452 DOI: 10.1038/s41589-024-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The stabilization of stalled forks has emerged as a crucial mechanism driving resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient tumors. Here, we identify UFL1, a UFM1-specific E3 ligase, as a pivotal regulator of fork stability and the response to PARP inhibitors in BRCA1/2-deficient cells. On replication stress, UFL1 localizes to stalled forks and catalyzes the UFMylation of PTIP, a component of the MLL3/4 methyltransferase complex, specifically at lysine 148. This modification facilitates the assembly of the PTIP-MLL3/4 complex, resulting in the enrichment of H3K4me1 and H3K4me3 at stalled forks and subsequent recruitment of the MRE11 nuclease. Consequently, loss of UFL1, disruption of PTIP UFMylation or overexpression of the UFM1 protease UFSP2 protects nascent DNA strands from extensive degradation and confers resistance to PARP inhibitors in BRCA1/2-deficient cells. These findings provide mechanistic insights into the processes underlying fork instability in BRCA1/2-deficient cells and offer potential therapeutic avenues for the treatment of BRCA1/2-deficient tumors.
Collapse
Affiliation(s)
- Tian Tian
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Huacun Zhao
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feiyu Xia
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
He C, Xing X, Chen HY, Gao M, Shi J, Xiang B, Xiao X, Sun Y, Yu H, Xu G, Yao Y, Xie Z, Xing Y, Budiarto BR, Chen SY, Gao Y, Lee YR, Zhang J. UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity. Mol Cell 2024; 84:1120-1138.e8. [PMID: 38377992 DOI: 10.1016/j.molcel.2024.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zuosong Xie
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yujie Xing
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yang Gao
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
14
|
Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci 2024; 49:52-67. [PMID: 37945409 DOI: 10.1016/j.tibs.2023.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.
Collapse
Affiliation(s)
- Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sayyed J Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
15
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
16
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
17
|
Lu Y, Jiang X, Ai H, Li D, Khattak A, Zhang B, Liu X, Zhang H, Huang S. Characterization of a silkworm UFM1 homolog in regulating Bombyx mori unfolded protein response and nucleopolyhedrovirus replication. Biochem Biophys Res Commun 2023; 675:162-169. [PMID: 37478772 DOI: 10.1016/j.bbrc.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The Ubiquitin (Ub)-like molecules is essential for animal development and the physiopathology of multiple tissues in the vertebrate. Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified UBL, which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. However, there are no studies on UFMylation and the effect of UFMylation on BmNPV replication in silkworm. In this study, we identified BmUFM1 in the B. mori genome. Spatio-Temporal expression profiles showed that BmUFM1 expression was highly in hemocytes and response to various pathogenic stimuli. Furthermore, BmUFM1 is involved in the regulation of ER stress induced Unfolded Protein Response (UPR) and knockdown of BmUFM1 inhibited BmNPV replication. Overall, these results suggest that BmUFM1 plays an important role in facilitating BmNPV proliferation in silkworm. Our findings advance the understanding of UFM1's conjugation machinery, and also provides a potentially molecular target for BmNPV prevention and silkworm breeding.
Collapse
Affiliation(s)
- Yiting Lu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Xiaochun Jiang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Heng Ai
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Danting Li
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Afrasiyab Khattak
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Bei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Liu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, 611130, China
| | - Hualing Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, 611130, China
| | - Shoujun Huang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China.
| |
Collapse
|
18
|
Li R, Teng Y, Guo Y, Ren J, Li R, Luo H, Chen D, Feng Z, Fu Z, Zou X, Wang W, Zhou C. Aging-related decrease of histone methyltransferase SUV39H1 in adipose-derived stem cells enhanced SASP. Mech Ageing Dev 2023; 215:111868. [PMID: 37666472 DOI: 10.1016/j.mad.2023.111868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhicai Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zheng Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
19
|
Fukasawa T, Enomoto A, Yoshizaki-Ogawa A, Sato S, Miyagawa K, Yoshizaki A. The Role of Mammalian STK38 in DNA Damage Response and Targeting for Radio-Sensitization. Cancers (Basel) 2023; 15:cancers15072054. [PMID: 37046714 PMCID: PMC10093458 DOI: 10.3390/cancers15072054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Protein kinases, found in the nucleus and cytoplasm, play essential roles in a multitude of cellular processes, including cell division, proliferation, apoptosis, and signal transduction. STK38 is a member of the protein kinase A (PKA)/PKG/PKC family implicated in regulating cell division and morphogenesis in yeast and C. elegans. However, its function remained largely unknown in mammals. In recent years, advances in research on STK38 and the identification of its substrates has led to a better understanding of its function and role in mammals. This review discusses the structure, expression, and regulation of activity as a kinase, its role in the DNA damage response, cross-talk with other signaling pathways, and its application for radio-sensitization.
Collapse
|
20
|
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang X, Guo SM, Ma JQ, Xu FF, Sun HM, Li QQ, Zhang WY, Ye LH. Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol Sin 2023; 44:622-634. [PMID: 36109580 PMCID: PMC9958095 DOI: 10.1038/s41401-022-00981-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022]
Abstract
Sorafenib, which inhibits multiple kinases, is an effective frontline therapy for hepatocellular carcinoma (HCC). Ferroptosis is a form of iron-dependent programmed cell death regulated by lipid peroxidation, which can be induced by sorafenib treatment. Oncoprotein hepatitis B X-interacting protein (HBXIP) participates in multiple biological pro-tumor processes, including growth, metastasis, drug resistance, and metabolic reprogramming. However, the role of HBXIP in sorafenib-induced ferroptotic cell death remains unclear. In this study, we demonstrated that HBXIP prevents sorafenib-induced ferroptosis in HCC cells. Sorafenib decreased HBXIP expression, and overexpression of HBXIP blocked sorafenib-induced HCC cell death. Interestingly, suppression of HBXIP increased malondialdehyde (MDA) production and glutathione (GSH) depletion to promote sorafenib-mediated ferroptosis and cell death. Ferrostatin-1, a ferroptosis inhibitor, reversed the enhanced anticancer effect of sorafenib caused by HBXIP silencing in HCC cells. Regarding the molecular mechanism, HBXIP transcriptionally induced the expression of stearoyl-CoA desaturase (SCD) via coactivating the transcriptional factor ZNF263, resulting in the accumulation of free fatty acids and suppression of ferroptosis. Functionally, activation of the HBXIP/SCD axis reduced the anticancer activity of sorafenib and suppressed ferroptotic cell death in vivo and in vitro. HBXIP/SCD axis-mediated ferroptosis can serve as a novel downstream effector of sorafenib. Our results provide new evidence for clinical decisions in HCC therapy.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xian-Meng Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xu-He Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue-Li Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Man Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fei-Fei Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui-Min Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian-Qian Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei-Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
21
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
22
|
Ahn HW, Worman ZF, Lechsinska A, Payer LM, Wang T, Malik N, Li W, Burns KH, Nath A, Levin HL. Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Rep 2023; 24:e55197. [PMID: 36367221 PMCID: PMC9827563 DOI: 10.15252/embr.202255197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Hyo Won Ahn
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Zelia F Worman
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
- Present address:
Seven BridgesCharlestownMAUSA
| | - Arianna Lechsinska
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Lindsay M Payer
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tongguang Wang
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Nasir Malik
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Wenxue Li
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Kathleen H Burns
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Avindra Nath
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Henry L Levin
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
23
|
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, Mohamed TM, Yokomizo T, Ueno T, Sakimura K, Natsume T, Sorimachi H, Inada T, Waguri S, Noda NN, Komatsu M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun 2022; 13:7857. [PMID: 36543799 PMCID: PMC9772183 DOI: 10.1038/s41467-022-35501-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Afnan H El-Gowily
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Daisuke Noshiro
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuko Ono
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mayumi Shindo
- Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tomohisa Hatta
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Nobuo N Noda
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
24
|
Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR, Kulathu Y. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J 2022; 41:e111015. [PMID: 36121123 PMCID: PMC9627666 DOI: 10.15252/embj.2022111015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold-type E3 ligase mechanism that activates the UFM1-conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex.
Collapse
Affiliation(s)
- Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Paul A DaRosa
- Department of BiologyStanford UniversityStanfordCAUSA
| | - David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Ron R Kopito
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
25
|
Qin B, Yu J, Zhao F, Huang J, Zhou Q, Lou Z. Dynamic recruitment of UFM1-specific peptidase 2 to the DNA double-strand breaks regulated by WIP1. GENOME INSTABILITY & DISEASE 2022; 3:217-226. [PMID: 36042814 PMCID: PMC9418083 DOI: 10.1007/s42764-022-00076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 10/29/2022]
Abstract
The ufmylation ligase-UFL1 promotes ATM activation by monoufmylating H4 at K31 in a positive-feedback loop after double-strand breaks (DSB) occur, whereas UFM1 Specific Peptidase 2 (UfSP2) suppresses ATM activation, but the mechanism of recruitment of UfSP2 to the DSB finetuning DNA damage response is still not clear. Here, we report that UfSP2 foci formation is delayed compared to UFL1 foci formation following the radiation insult. Mechanistically, UfSP2 binds to the MRN complex in absence of DSB. Irradiation-induced phosphorylation of UfSP2 by ATM leads to the dissociation of UfSP2 from the MRN complex. This phosphorylation can be removed by the phosphatase WIP1, thereby UfSP2 is recruited to the DSBs, deufmylating H4 and suppressing ATM activation. In summary, we identify a mechanism of delicately negative modulation of ATM activation by UfSP2 and rewires ATM activation pathways.
Collapse
Affiliation(s)
- Bo Qin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
26
|
Chen Z, Tyler JK. The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Front Cell Dev Biol 2022; 10:909696. [PMID: 35757003 PMCID: PMC9213757 DOI: 10.3389/fcell.2022.909696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs), the most deleterious DNA lesions, are primarily repaired by two pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ), the choice of which is largely dependent on cell cycle phase and the local chromatin landscape. Recent studies have revealed that post-translational modifications on histones play pivotal roles in regulating DSB repair pathways including repair pathway choice. In this review, we present our current understanding of how these DSB repair pathways are employed in various chromatin landscapes to safeguard genomic integrity. We place an emphasis on the impact of different histone post-translational modifications, characteristic of euchromatin or heterochromatin regions, on DSB repair pathway choice. We discuss the potential roles of damage-induced chromatin modifications in the maintenance of genome and epigenome integrity. Finally, we discuss how RNA transcripts from the vicinity of DSBs at actively transcribed regions also regulate DSB repair pathway choice.
Collapse
Affiliation(s)
- Zulong Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| |
Collapse
|
27
|
Lashgari A, Kougnassoukou Tchara PE, Lambert JP, Côté J. New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair (Amst) 2022; 113:103315. [PMID: 35278769 DOI: 10.1016/j.dnarep.2022.103315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In eukaryotic cells, DNA double-strand breaks (DSBs) can be repaired through two main pathways, non-homologous end-joining (NHEJ) or homologous recombination (HR). The selection of the repair pathway choice is governed by an antagonistic relationship between repair factors specific to each pathway, in a cell cycle-dependent manner. The molecular mechanisms of this decision implicate post-translational modifications of chromatin surrounding the break. Here, we discuss the recent advances regarding the function of the NuA4/TIP60 histone acetyltransferase/chromatin remodeling complex during DSBs repair. In particular, we emphasise the contribution of NuA4/TIP60 in repair pathway choice, in collaboration with the SAGA acetyltransferase complex, and how they regulate chromatin dynamics, modify non-histone substrates to allow DNA end resection and recombination.
Collapse
Affiliation(s)
- Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Jean-Philippe Lambert
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada.
| |
Collapse
|
28
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
29
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
30
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
31
|
Likhatcheva M, Gieling RG, Brown JAL, Demonacos C, Williams KJ. A Novel Mechanism of Ataxia Telangiectasia Mutated Mediated Regulation of Chromatin Remodeling in Hypoxic Conditions. Front Cell Dev Biol 2021; 9:720194. [PMID: 34621741 PMCID: PMC8491615 DOI: 10.3389/fcell.2021.720194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
The effects of genotoxic stress can be mediated by activation of the Ataxia Telangiectasia Mutated (ATM) kinase, under both DNA damage-dependent (including ionizing radiation), and independent (including hypoxic stress) conditions. ATM activation is complex, and primarily mediated by the lysine acetyltransferase Tip60. Epigenetic changes can regulate this Tip60-dependent activation of ATM, requiring the interaction of Tip60 with tri-methylated histone 3 lysine 9 (H3K9me3). Under hypoxic stress, the role of Tip60 in DNA damage-independent ATM activation is unknown. However, epigenetic changes dependent on the methyltransferase Suv39H1, which generates H3K9me3, have been implicated. Our results demonstrate severe hypoxic stress (0.1% oxygen) caused ATM auto-phosphorylation and activation (pS1981), H3K9me3, and elevated both Suv39H1 and Tip60 protein levels in FTC133 and HCT116 cell lines. Exploring the mechanism of ATM activation under these hypoxic conditions, siRNA-mediated Suv39H1 depletion prevented H3K9me3 induction, and Tip60 inhibition (by TH1834) blocked ATM auto-phosphorylation. While MDM2 (Mouse double minute 2) can target Suv39H1 for degradation, it can be blocked by sirtuin-1 (Sirt1). Under severe hypoxia MDM2 protein levels were unchanged, and Sirt1 levels depleted. SiRNA-mediated depletion of MDM2 revealed MDM2 dependent regulation of Suv39H1 protein stability under these conditions. We describe a novel molecular circuit regulating the heterochromatic state (H3K9me3 positive) under severe hypoxic conditions, showing that severe hypoxia-induced ATM activation maintains H3K9me3 levels by downregulating MDM2 and preventing MDM2-mediated degradation of Suv39H1. This novel mechanism is a potential anti-cancer therapeutic opportunity, which if exploited could target the hypoxic tumor cells known to drive both tumor progression and treatment resistance.
Collapse
Affiliation(s)
- Maria Likhatcheva
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Roben G Gieling
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom.,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - James A L Brown
- Department of Biological Science, University of Limerick, Limerick, Ireland.,Discipline of Biochemistry, Centre for Chromosome Biology, School of Science, National University of Ireland Galway, Galway, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Caron P, Pobega E, Polo SE. DNA Double-Strand Break Repair: All Roads Lead to HeterochROMAtin Marks. Front Genet 2021; 12:730696. [PMID: 34539757 PMCID: PMC8440905 DOI: 10.3389/fgene.2021.730696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), chromatin modifications orchestrate DNA repair pathways thus safeguarding genome integrity. Recent studies have uncovered a key role for heterochromatin marks and associated factors in shaping DSB repair within the nucleus. In this review, we present our current knowledge of the interplay between heterochromatin marks and DSB repair. We discuss the impact of heterochromatin features, either pre-existing in heterochromatin domains or de novo established in euchromatin, on DSB repair pathway choice. We emphasize how heterochromatin decompaction and mobility further support DSB repair, focusing on recent mechanistic insights into these processes. Finally, we speculate about potential molecular players involved in the maintenance or the erasure of heterochromatin marks following DSB repair, and their implications for restoring epigenome function and integrity.
Collapse
Affiliation(s)
- Pierre Caron
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Enrico Pobega
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| |
Collapse
|
33
|
Mattiroli F, Penengo L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet 2021; 37:566-581. [DOI: 10.1016/j.tig.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023]
|
34
|
UFMylation inhibits the proinflammatory capacity of interferon-γ-activated macrophages. Proc Natl Acad Sci U S A 2021; 118:2011763118. [PMID: 33372156 DOI: 10.1073/pnas.2011763118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.
Collapse
|
35
|
Witting KF, Mulder MP. Highly Specialized Ubiquitin-Like Modifications: Shedding Light into the UFM1 Enigma. Biomolecules 2021; 11:biom11020255. [PMID: 33578803 PMCID: PMC7916544 DOI: 10.3390/biom11020255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.
Collapse
|
36
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|