1
|
Yuan X, Wang S, Yuan Z, Wan Z, Zhang L, Song R, Ge L, Zhao Y. Boosting the angiogenesis potential of self-assembled mesenchymal stem cell spheroids by size mediated physiological hypoxia for vascularized pulp regeneration. Acta Biomater 2025; 198:102-114. [PMID: 40216320 DOI: 10.1016/j.actbio.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/22/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Hypoxia is a pivotal factor in enhancing the vascularization potential of both two-dimensional (2D) cultured cells and three-dimensional (3D) cellular spheroids. Nevertheless, spheroids that closely mimic the in vivo microenvironment often experience excessive hypoxia, leading to the necrotic core and the release of toxic byproducts, ultimately impeding the regenerative process. To balance cell vitality and pro-angiogenic properties of cellular spheroids, this study investigates size-dependent hypoxia in stem cell spheroids utilizing an oxygen transfer finite element model. Subsequently, we develop 3D cultured stem cells from human exfoliated deciduous teeth (SHED) spheroids with regulated size-dependent hypoxia. Comprehensive assessments indicate that SHED spheroids, inoculated at a density of 50,000 cells, display moderate physiological hypoxia, which optimizes their pro-angiogenic potential, fusion capacity, and reattachment ability. Compared with SHED sheets, SHED spheroids enhance vascularized pulp regeneration more effectively with a tightly connected odontoblastic-like layer. Moreover, high-throughput transcriptome sequencing and RT-qPCR analysis further confirm the spheroids' ability to promote angiogenesis and odontogenic differentiation. This study not only introduces a practical and effective approach for regulating size-dependent hypoxia in cellular spheroids, and simultaneously enhancing cell vitality and angiogenic potential, but also paves the way for the clinical application of SHED spheroids in regenerative dental pulp therapies. STATEMENT OF SIGNIFICANCE: The core of three-dimensionally cultured cellular spheroids often experiences hypoxia, and maintaining a balance between the activity and functionality of long-term cultured spheroids in the inevitably hypoxic microenvironment remains a significant challenge. This study introduces a method to optimize the hypoxic conditions of SHED spheroids by employing a reaction-diffusion model, which modulates internal hypoxia to balance cellular viability and angiogenic potential. Compared to two-dimensional cell sheets, the optimized SHED spheroids with high cell vitality, angiogenesis potential, tissue integration and reattatchment ability show superior efficacy in promoting the formation of vascularized pulp-like tissue. This work offers valuable insights into the role of hypoxia in stem cell spheroids functionality and provides a foundation for further research into the optimization of stem cell-based therapies for multiple clinical applications.
Collapse
Affiliation(s)
- Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, PR China
| | - Zuoying Yuan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, PR China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, PR China.
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, PR China
| | - Linxue Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Rui Song
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Li Z, Wan M, Cui D, Tian Q, Li Y, Yu S, Zheng L, Ye L. DNMTi@ZIF-8 Enhances Biomimetic Pulp Regeneration via Epigenetic Regulation. J Dent Res 2025:220345251315468. [PMID: 40143798 DOI: 10.1177/00220345251315468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Regenerating the functional dentin-pulp complex remains a significant challenge in endodontics. Conventional regenerative endodontic therapies often result in the formation of non-pulp-like tissue due to the uncontrolled induction of stem cells and cytokines. Mimicking developmental processes to promote regeneration represents a promising yet challenging approach in regenerative medicine. This study aimed to develop a biomimetic regenerative therapy that integrates a DNMTi@ZIF-8 nanoplatform with dental pulp stem cell (DPSC) spheroids to effectively regenerate the dentin-pulp complex. First, a progressive reduction in 5-methylcytosine content was revealed to be a core signal in the odontogenic differentiation process. Based on this discovery, DNA methyltransferase inhibitors (DNMTi) were further used to simulate this regulatory process. The results showed that DNMTi not only significantly promoted odontogenic differentiation but also inhibited the angiogenesis process. To address this dual effect, in situ synthesized zeolitic imidazolate framework-8 (ZIF-8) was used for the delivery of DNMTi. This DNMTi@ZIF-8 system not only prolonged drug activity but also enhanced angiogenesis-promoting efficacy by activating the PI3K-AKT signaling pathway through the sustained release of zinc ions, assessed via angiogenic assays including scratch assays, tube formation assay, and chick chorioallantoic membrane assay. When integrated with DPSC spheroids engineered via agarose microwells, analyzed through odontogenic differentiation assays, this system demonstrated significantly enhanced odontogenic differentiation capabilities. Moreover, the introduced biomimetic regenerative therapy successfully regenerated the dentin-pulp complex in a semi-orthotopic in vivo model. This biomimetic developmental approach not only addresses critical gaps in dental tissue engineering but also highlights a new direction for treating pulp and periapical diseases, underscoring its broader implications in regenerative medicine.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - M Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Cui
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Shinan District, Qingdao Shandong Province, China
| | - Q Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Wang Y, Mao J, Wang Y, Wang R, Jiang N, Hu X, Shi X. Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo. J Adv Res 2025:S2090-1232(24)00626-X. [PMID: 39765328 DOI: 10.1016/j.jare.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration. OBJECTIVES This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration. METHODS Differential centrifugation was performed to isolate exosomes from normal DPSCs (DPSC-Exos) and DPSCs that initially triggered odontogenic differentiation (DPSC-Od-Exos). The impact of these exosomes on the biological behavior of DPSCs and human umbilical vein endothelial cells (HUVECs) was examined in vitro through CCK-8 assay and Transwell migration assay, as well as assays dedicated to assessing odontogenic, angiogenic, and neurogenic capabilities. In vivo, Matrigel plugs and human tooth root fragments incorporating either DPSC-Exos or DPSC-Od-Exos were subcutaneously transplanted into mouse models. Subsequent histological, immunohistochemical, and immunofluorescent analyses were conducted to determine the regenerative outcomes. RESULTS DPSC-Exos and DPSC-Od-Exos revealed no remarkable difference in their characteristics. In vitro analyses indicated that DPSC-Od-Exos significantly facilitated the proliferation, migration, and multilineage differentiation of DPSCs compared with DPSC-Exos. Furthermore, DPSC-Od-Exos elicited a more pronounced effect on the tubular structure formation of HUVECs. Consistently, Matrigel plug assays confirmed that DPSC-Od-Exos exhibited superior performance in promoting endothelial differentiation of DPSCs and stimulating angiogenesis in HUVECs. Notably, DPSC-Od-Exos contributed to complete pulp-dentin complex regeneration in human tooth root fragments, characterized by enriched neurovascular structures and a continuous layer of odontoblast-like cells, which extended cytoplasmic projections into the newly formed dentinal tubules. CONCLUSION By simulating the developmental microenvironment, multifunctional DPSC-Od-Exos demonstrated promising potential for reconstructing dentin-like tissue, vascular networks, and neural architectures, thereby enhancing our understanding of the therapeutic implications of DPSC-Od-Exos in regenerative endodontic treatment.
Collapse
Affiliation(s)
- Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China
| | - Rui Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China.
| |
Collapse
|
5
|
Ding J, Sun Z, Ma L, Wang L, Liao Z, Liang L, Yang H, Mao R. Microspheres of stem cells from human exfoliated deciduous teeth exhibit superior pulp regeneration capacity. Dent Mater 2025; 41:70-80. [PMID: 39500639 DOI: 10.1016/j.dental.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Engineering spheroids to create three-dimensional (3D) cell cultures has gained increasing attention in recent years due to their potential advantages over traditional two-dimensional (2D) tissue culture methods. Stem cells derived from human exfoliated deciduous teeth (SHEDs) demonstrate significant potential for pulpal regeneration applications. Nevertheless, the feasibility of microsphere formation of SHEDs and its impact on pulpal regeneration remain unclear. METHODS In this study, SHEDs were isolated, identified, and cultured in ultra-low attachment six-well plates to produce SHED microspheres. The biological properties of SHED microspheres were compared to those of traditional 2D culture using live-dead staining, Alizarin red staining, Oil-red O staining, scratch experiments, Immunofluorescence, Transmission electron microscopy scan, Western blotting, RNA sequencing, and a nude mice subcutaneous transplantation model. RESULTS We found SHED cells can form microspheres with a dense internal structure. SHED microspheres exhibited notable advantages over SHED cells in terms of biological properties, maintaining cell activity and enhancing cell differentiation, migration, and stemness in vitro. RNA-seq revealed that the SHED microspheres potentially influenced cell development, regulation of neurogenesis, skeletal system development, tissue morphogenesis singling pathway. In vivo, SHED microspheres promoted the generation of pulp tissue in dental pulp compared to traditional 2D culture. CONCLUSIONS Microsphereization of SHED through 3D cell culture enhances its pulp regeneration capacity, presenting a novel strategy for dental pulp regeneration and the clinical treatment of dental pulp diseases.
Collapse
Affiliation(s)
- Jianzhao Ding
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; The First People's Hospital of Yunnan, Kunming 650032, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; Department of Endodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China.
| | - Rui Mao
- Department of Pediatric Dentistry, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China.
| |
Collapse
|
6
|
Shi Y, Xiao T, Weng Y, Xiao Y, Wu J, Wang J, Wang W, Yan M, Yan M, Li Z, Yu J. 3D culture inhibits replicative senescence of SCAPs via UQCRC2-mediated mitochondrial oxidative phosphorylation. J Transl Med 2024; 22:1129. [PMID: 39707408 DOI: 10.1186/s12967-024-05953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
Stem cells derived from the apical papilla (SCAPs) play a crucial role in tooth root development and dental pulp regeneration. They are important seed cells for bone/tooth tissue engineering. However, replicative senescence remains an unavoidable issue as in vitro amplification increases. This study investigated the effect of a three-dimensional (3D) culture environment constructed with methylcellulose on SCAPs senescence. It was observed that 3D culture conditions can delay cellular senescence, potentially due to changes in mitochondrial function and oxidative phosphorylation. Transcriptome high-throughput sequencing technology revealed that the different mitochondrial states may be related to UQCRC2. Knocking down UQCRC2 expression in the 3D culture group resulted in increased production of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and a decline in the oxygen consumption rate for oxidative phosphorylation, accelerating cell senescence. The results of this study indicated that 3D culture can mitigate SCAPs aging by maintaining UQCRC2-mediated mitochondrial homeostasis. These findings provide a new solution for the senescence of SCAPs during in vitro amplification and can promote the applications of SCAPs-based clinical translation.
Collapse
Affiliation(s)
- Yijia Shi
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Xiao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Weng
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Xiao
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jintao Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenmin Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maoshen Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Eldeeb D, Ikeda Y, Hojo H, Ohba S. Unraveling the hidden complexity: Exploring dental tissues through single-cell transcriptional profiling. Regen Ther 2024; 27:218-229. [PMID: 38596822 PMCID: PMC11002530 DOI: 10.1016/j.reth.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding the composition and function of cells constituting tissues and organs is vital for unraveling biological processes. Single-cell analysis has allowed us to move beyond traditional methods of categorizing cell types. This innovative technology allows the transcriptional and epigenetic profiling of numerous individual cells, leading to significant insights into the development, homeostasis, and pathology of various organs and tissues in both animal models and human samples. In this review, we delve into the outcomes of major investigations using single-cell transcriptomics to decipher the cellular composition of mammalian teeth and periodontal tissues. The recent single-cell transcriptome-based studies have traced in detail the dental epithelium-ameloblast lineage and dental mesenchyme lineages in the mouse incisors and the tooth germ of both mice and humans; unraveled the microenvironment, the identity of niche cells, and cellular intricacies in the dental pulp; shed light on the molecular mechanisms orchestrating root formation; and characterized cellular dynamics of the periodontal ligament. Additionally, cellular components in dental pulps were compared between healthy and carious teeth at a single-cell level. Each section of this review contributes to a comprehensive understanding of tooth biology, offering valuable insights into developmental processes, niche cell identification, and the molecular secrets of the dental environment.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physiology, Division of Biomedical Sciences, Nihon University School of Medicine, Japan
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Yuki Ikeda
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| |
Collapse
|
8
|
Xu R, Zhang X, Lin W, Wang Y, Zhang D, Jiang S, Liu L, Wang J, Luo X, Zhang X, Jing J, Yuan Q, Zhou C. Cathepsin K-Positive Cell Lineage Promotes In Situ Dentin Formation Controlled by Nociceptive Sonic Hedgehog. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310048. [PMID: 39474995 DOI: 10.1002/advs.202310048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/23/2024] [Indexed: 12/19/2024]
Abstract
Oral diseases affect nearly half of the global population throughout their lifetime causing pain, as estimated by the World Health Organization. Preservation of vital pulp is the therapeutic core as well as a challenge to protect natural teeth. Current bottleneck lies in that the regenerative capacity of injured pulp is undetermined. In this study, we identified a lifelong lineage that is labelled by cathepsin K (Ctsk) contributing to the physiological, reactionary and reparative odontogenesis of mouse molars. Ctsk+ cell-mediated dentin formation is regulated by nociceptive nerve-derived Sonic Hedgehog (Shh), especially rapidly responsive to acute injury. Notably, exogenous Shh protein to the injury pulp can preserve Ctsk+ cell capacity of odontogenesis for the nearby crown pulp and even remote root apex growth, alleviating conventionally developmental arrest in youth pulpitis. Exposed to chronical attrition, aged pulp Ctsk+ cells still hold the capacity to respond to acute stimuli and promote reparative odontogenesis, also enhanced by exogenous Shh capping. Therefore, Ctsk+ cells may be one of the lineages for accelerating precision medicine for efficient pulp treatment across ages. Shh application can be a candidate for vital pulp preservation and pulp injury repair by promoting regenerative odontogenesis to a certain extent from young adults to older individuals.
Collapse
Affiliation(s)
- Ruoshi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaohan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yushun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xutao Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Wu J, Li J, Mao S, Li B, Zhu L, Jia P, Huang G, Yang X, Xu L, Qiu D, Wang S, Dong Y. Heparin-Functionalized Bioactive Glass to Harvest Endogenous Growth Factors for Pulp Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30715-30727. [PMID: 38833722 DOI: 10.1021/acsami.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jingyi Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Sicong Mao
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Baokui Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Lin Zhu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Peipei Jia
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Sainan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
10
|
Wang Y, Xie Y, Xue N, Xu H, Zhang D, Ji N, Chen Q. TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment. Biomolecules 2024; 14:368. [PMID: 38540786 PMCID: PMC10968114 DOI: 10.3390/biom14030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2025] Open
Abstract
In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were performed to measure the expression levels of nuclear factor kappa B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced the anti-inflammatory properties of DPSCs and partially restored their mineralization function by inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide a basis for the treatment of pulpitis.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yulang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ningning Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Chung E, Park JS, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci Rep 2024; 14:439. [PMID: 38172172 PMCID: PMC10764314 DOI: 10.1038/s41598-023-50195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Mike Adam
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - S Steven Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Svandova E, Vesela B, Kratochvilova A, Holomkova K, Oralova V, Dadakova K, Burger T, Sharpe P, Lesot H, Matalova E. Markers of dental pulp stem cells in in vivo developmental context. Ann Anat 2023; 250:152149. [PMID: 37574172 DOI: 10.1016/j.aanat.2023.152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Masaryk University, Brno, Czech Republic
| | - Barbora Vesela
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| | | | | | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | | | - Tom Burger
- Veterinary University, Brno, Czech Republic
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; King's College London, London, United Kingdom.
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| |
Collapse
|
14
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Luo N, Deng YW, Wen J, Xu XC, Jiang RX, Zhan JY, Zhang Y, Lu BQ, Chen F, Chen X. Wnt3a-Loaded Hydroxyapatite Nanowire@Mesoporous Silica Core-Shell Nanocomposite Promotes the Regeneration of Dentin-Pulp Complex via Angiogenesis, Oxidative Stress Resistance, and Odontogenic Induction of Stem Cells. Adv Healthc Mater 2023; 12:e2300229. [PMID: 37186211 DOI: 10.1002/adhm.202300229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Rui-Xue Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Bing-Qiang Lu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
16
|
Liu L, Zheng CX, Zhao N, Zhu T, Hu CB, Zhang N, Chen J, Zhang KC, Zhang S, Liu JX, Zhang K, Jing H, Sui BD, Jin Y, Jin F. Mesenchymal Stem Cell Aggregation-Released Extracellular Vesicles Induce CD31 + EMCN + Vessels in Skin Regeneration and Improve Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2300019. [PMID: 36999744 DOI: 10.1002/adhm.202300019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/01/2023]
Abstract
The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds. Moreover, enlightened by the developmental process that mesenchymal condensation induces angiogenesis, it is demonstrated that mesenchymal stem/stromal cell aggregates (CAs) provide an efficacious therapy to enhance regrowth of CD31+ EMCN+ vessels in diabetic wounds, which is surprisingly suppressed by pharmacological inhibition of extracellular vesicle (EV) release. It is further shown that CAs promote secretion of angiogenic protein-enriched EVs by proteomic analysis, which directly exert high efficacy in boosting CD31+ EMCN+ vessels and treating nonhealing diabetic wounds. These results add to the current knowledge on skin vasculature and help establish feasible strategies to benefit wound healing under diabetic condition.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Histopathology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ting Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Cheng-Biao Hu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Nan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai-Chao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Sha Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
17
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Wang Y, Yu H, Yu M, Liu H, Zhang B, Wang Y, Zhao S, Xia Q. CD24 blockade as a novel strategy for cancer treatment. Int Immunopharmacol 2023; 121:110557. [PMID: 37379708 DOI: 10.1016/j.intimp.2023.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The CD24 protein is a heat-stable protein with a small core that undergoes extensive glycosylation. It is expressed on the surface of various normal cells, including lymphocytes, epithelial cells, and inflammatory cells. CD24 exerts its function by binding to different ligands. Numerous studies have demonstrated the close association of CD24 with tumor occurrence and progression. CD24 not only facilitates tumor cell proliferation, metastasis, and immune evasion but also plays a role in tumor initiation, thus, serving as a marker on the surface of cancer stem cells (CSCs). Additionally, CD24 induces drug resistance in various tumor cells following chemotherapy. To counteract the tumor-promoting effects of CD24, several treatment strategies targeting CD24 have been explored, such as the use of CD24 monoclonal antibodies (mAb) alone, the combination of CD24 and chemotoxic drugs, or the combination of these drugs with other targeted immunotherapeutic techniques. Regardless of the approach, targeting CD24 has demonstrated significant anti-tumor effects. Therefore, the present study focuses on anti-tumor therapy and provides a comprehensive review of the structure and fundamental physiological function of CD24 and its impact on tumor development, and suggests that targeting CD24 may represent an effective strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Haoran Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Mengyuan Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Hui Liu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Bing Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Yuanyuan Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Simin Zhao
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China.
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China.
| |
Collapse
|
19
|
Wang Y, He Y, Dong W, Jia M, Yang C, Wang J. DDIT3 aggravates pulpitis by modulating M1 polarization through EGR1 in macrophages. Int Immunopharmacol 2023; 120:110328. [PMID: 37235961 DOI: 10.1016/j.intimp.2023.110328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3), a stress response gene, engages in the physiological and pathological processes of organisms, whereas its impact on pulpitis has not been defined yet. It has been demonstrated that macrophage polarization has a significant impact on inflammation. This research intends to investigate the effect of DDIT3 on the inflammation of pulpitis and macrophage polarization. C57BL/6J mice were used to model experimental pulpitis at 6, 12, 24, and 72 h after pulp exposure, with untreated mice as the control. The progression of pulpitis was visible histologically, and DDIT3 showed a trend of initially upward and downward later. Compared with wild-type mice, inflammatory cytokines and M1 macrophages were reduced, while M2 macrophages were increased in DDIT3 knockout mice. In RAW264.7 cells and bone borrow-derived macrophages, DDIT3 was found to enhance M1 polarization while impair M2 polarization. Targeted knockdown of early growth response 1 (EGR1) could rescue the blocking effect of DDIT3 deletion on M1 polarization. In conclusion, our results indicated that DDIT3 could exacerbate inflammation of pulpitis through the regulation of macrophage polarization, and DDIT3 could promote M1 polarization by inhibiting EGR1. It provides a new target for pulpitis treatment and tissue regeneration in the future.
Collapse
Affiliation(s)
- Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
20
|
Santos LRKD, Pelegrine AA, da Silveira Bueno CE, Muniz Ferreira JR, Aloise AC, Stringheta CP, Martinez EF, Pelegrine RA. Pulp-Dentin Complex Regeneration with Cell Transplantation Technique Using Stem Cells Derived from Human Deciduous Teeth: Histological and Immunohistochemical Study in Immunosuppressed Rats. Bioengineering (Basel) 2023; 10:bioengineering10050610. [PMID: 37237680 DOI: 10.3390/bioengineering10050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to histologically verify the performance of pulp-derived stem cells used in the pulp-dentin complex regeneration. Maxillary molars of 12 immunosuppressed rats were divided into two groups: the SC (stem cells) group, and the PBS (just standard phosphate-buffered saline) group. After pulpectomy and canal preparation, the teeth received the designated materials, and the cavities were sealed. After 12 weeks, the animals were euthanized, and the specimens underwent histological processing and qualitative evaluation of intracanal connective tissue, odontoblast-like cells, intracanal mineralized tissue, and periapical inflammatory infiltrate. Immunohistochemical evaluation was performed to detect dentin matrix protein 1 (DMP1). In the PBS group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal, and abundant inflammatory cells were observed in the periapical region. In the SC group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal; odontoblasts-like cells immunopositive for DMP1 and mineral plug were observed in the apical region of the canal; and a mild inflammatory infiltrate, intense vascularization, and neoformation of organized connective tissue were observed in the periapical region. In conclusion, the transplantation of human pulp stem cells promoted partial pulp tissue neoformation in adult rat molars.
Collapse
Affiliation(s)
| | - André Antonio Pelegrine
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantodontia, Campinas 13045-755, Brazil
| | | | | | - Antonio Carlos Aloise
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantodontia, Campinas 13045-755, Brazil
| | - Carolina Pessoa Stringheta
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Endodontia, Campinas 13045-755, Brazil
| | - Elizabeth Ferreira Martinez
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Patologia Oral, Campinas 13045-755, Brazil
| | - Rina Andréa Pelegrine
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Endodontia, Campinas 13045-755, Brazil
| |
Collapse
|
21
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
22
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2880248. [PMID: 37293022 PMCID: PMC10246229 DOI: 10.21203/rs.3.rs-2880248/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8, while the surviving proximal tubules (PTs) showed restored transcriptional signature. Furthermore, we found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
| | - Mike Adam
- Cincinnati Children's Hospital Medical Center
| | | | | | - Qing Ma
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol 2023; 20:558-569. [PMID: 36973490 PMCID: PMC10040934 DOI: 10.1038/s41423-023-00998-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely distributed in the body and play essential roles in tissue regeneration and homeostasis. MSCs can be isolated from discarded tissues, expanded in vitro and used as therapeutics for autoimmune diseases and other chronic disorders. MSCs promote tissue regeneration and homeostasis by primarily acting on immune cells. At least six different types of MSCs have been isolated from postnatal dental tissues and have remarkable immunomodulatory properties. Dental stem cells (DSCs) have been demonstrated to have therapeutic effects on several systemic inflammatory diseases. Conversely, MSCs derived from nondental tissues such as the umbilical cord exhibit great benefits in the management of periodontitis in preclinical studies. Here, we discuss the main therapeutic uses of MSCs/DSCs, their mechanisms, extrinsic inflammatory cues and the intrinsic metabolic circuitries that govern the immunomodulatory functions of MSCs/DSCs. Increased understanding of the mechanisms underpinning the immunomodulatory functions of MSCs/DSCs is expected to aid in the development of more potent and precise MSC/DSC-based therapeutics.
Collapse
Affiliation(s)
- Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China.
| |
Collapse
|
24
|
Zafari J, Jouni FJ, Nikzad F, Esmailnasab S, Javan ZA, Karkehabadi H. Combination of Dental-Capping Agents with Low Level Laser Therapy Promotes Proliferation of Stem Cells from Apical Papilla. Photobiomodul Photomed Laser Surg 2023; 41:3-9. [PMID: 36577035 DOI: 10.1089/photob.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Direct pulp capping is a vital pulp therapy, which stimulates differentiation of stem cells from apical papilla (SCAPs). SCAPs have multipotential capacity to differentiate into types of cells, contributing to the regeneration of tissues. Objective: Considering the promising effects of dental-capping materials, we aim to investigate the effect of dental dressing materials combined with laser therapy on the percentage of SCAP viability and the consequent dental regeneration capacity. Methods: We collected two immature third molar teeth and isolated SCAPs through collagenase type I enzymatic activity. Isolated SCAPs were then cultured with Dulbecco's modified Eagle's medium and α-minimum essential medium enriched with 15% and 10% fetal bovine serum, respectively. After reaching 70-80% confluency, cells were seeded in a 96-well plate and then treated with mineral trioxide aggregate (MTA), enamel matrix derivative (EMD), biodentine, and low level laser therapy (LLLT) alone and in combination for 24, 48, and 168 h. After that, cell survival rate was assessed using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Results: We found that combination of MTA, EMD, and LLLT as well as that of biodentine, EMD, and LLLT could lead to significant increase of SCAP viability as compared with other treatment groups. Combination of MTA and biodentine with EMD could also show increased level of SCAP proliferation and viability. However, MTA and biodentine alone reduced SCAP survival rate in all time points. Conclusions: Our conclusion is that LLLT can serve as an enhancer of SCAP proliferation and differentiation rate when added to dental-capping agents such as MTA, EMD, and biodentine. Thus, LLLT combination with effective capping materials will serve as a promising option for dental tissue repair.
Collapse
Affiliation(s)
- Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Forough Nikzad
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Sogand Esmailnasab
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Zahra Abbasi Javan
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
25
|
Hu H, Duan Y, Wang K, Fu H, Liao Y, Wang T, Zhang Z, Kang F, Zhang B, Zhang H, Huo F, Yin Y, Chen G, Hu H, Cai H, Tian W, Li Z. Dental niche cells directly contribute to tooth reconstitution and morphogenesis. Cell Rep 2022; 41:111737. [PMID: 36476878 DOI: 10.1016/j.celrep.2022.111737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Mammalian teeth develop from the inductive epithelial-mesenchymal interaction, an important mechanism shared by many organs. The cellular basis for such interaction remains elusive. Here, we generate a dual-fluorescence model to track and analyze dental cells from embryonic to postnatal stages, in which Pitx2+ epithelium and Msx1+ mesenchyme are sufficient for tooth reconstitution. Single-cell RNA sequencing and spatial mapping further revealed critical cellular dynamics during molar development, where tooth germs are organized by Msx1+Sdc1+ dental papilla and surrounding dental niche. Surprisingly, niche cells are more efficient in tooth reconstitution and can directly regenerate papilla cells through interaction with dental epithelium. Finally, from the dental niche, we identify a group of previously unappreciated migratory Msx1+ Sox9+ cells as the potential cell origin for dental papilla. Our results indicate that the dental niche cells directly contribute to tooth organogenesis and provide critical insights into the essential cell composition for tooth engineering.
Collapse
Affiliation(s)
- Hong Hu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yufeng Duan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huancheng Fu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuansong Liao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianshu Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ziwei Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fanchen Kang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baiquan Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haiying Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yike Yin
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Department of Urology, Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Haoyang Cai
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Li Z, Wu M, Liu S, Liu X, Huan Y, Ye Q, Yang X, Guo H, Liu A, Huang X, Yang X, Ding F, Xu H, Zhou J, Liu P, Liu S, Jin Y, Xuan K. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther 2022; 30:3193-3208. [PMID: 35538661 PMCID: PMC9552912 DOI: 10.1016/j.ymthe.2022.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from living cells play important roles in donor cell-induced recipient tissue regeneration. Although numerous studies have found that cells undergo apoptosis after implantation in an ischemic-hypoxic environment, the roles played by the EVs released by apoptotic cells are largely unknown. In this study, we obtained apoptotic vesicles (apoVs) derived from human deciduous pulp stem cells and explored their effects on the dental pulp regeneration process. Our work showed that apoVs were ingested by endothelial cells (ECs) and elevated the expression of angiogenesis-related genes, leading to pulp revascularization and tissue regeneration. Furthermore, we found that, at the molecular level, apoV-carried mitochondrial Tu translation elongation factor was transported and regulated the angiogenic activation of ECs via the transcription factor EB-autophagy pathway. In a beagle model of dental pulp regeneration in situ, apoVs recruited endogenous ECs and facilitated the formation of dental-pulp-like tissue rich in blood vessels. These findings revealed the significance of apoptosis in tissue regeneration and demonstrated the potential of using apoVs to promote angiogenesis in clinical applications.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; Stomatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Ding
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Peisheng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Sugiaman VK, Djuanda R, Pranata N, Naliani S, Demolsky WL. Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers (Basel) 2022; 14:polym14183712. [PMID: 36145860 PMCID: PMC9503223 DOI: 10.3390/polym14183712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Maintaining dental pulp vitality and preventing tooth loss are two challenges in endodontic treatment. A tooth lacking a viable pulp loses its defense mechanism and regenerative ability, making it more vulnerable to severe damage and eventually necessitating extraction. The tissue engineering approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules are triad components of this approach. Stem cells from human exfoliated deciduous teeth (SHED) are a promising, noninvasive source of stem cells for tissue regeneration. Not only can SHEDs regenerate dentin-pulp tissues (comprised of fibroblasts, odontoblasts, endothelial cells, and nerve cells), but SHEDs also possess immunomodulatory and immunosuppressive properties. The collagen matrix is a material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp tissue differentiation. Growth factors regulate cell proliferation, migration, and differentiation into specific phenotypes via signal-transduction pathways. This review provides current concepts and applications of the tissue engineering approach, especially SHEDs, in endodontic treatment.
Collapse
Affiliation(s)
- Vinna K Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Wayan L Demolsky
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| |
Collapse
|
28
|
Lorencetti-Silva F, Sales LS, Lamarque GDCC, Caixeta GA, Arnez MFM, Faccioli LH, Paula-Silva FWG. Effects of inflammation in dental pulp cell differentiation and reparative response. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.942714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The responsiveness of the dentin-pulp complex is possible due to the stimulation of dental pulp cells, which begin to synthesize and secrete dentin matrix. The inflammatory process generated by harmful stimuli should be understood as a natural event of the immune response, resulting in the recruitment of hematopoietic cells, which cross the endothelial barrier and reach the site affected by the injury in order to eliminate the damage and provide an appropriate environment for the restoration of homeostasis. The repair process occurs in the presence of adequate blood supply, absence of infection, and with the participation of pro-inflammatory cytokines, growth factors, extracellular matrix components, and other biologically active molecules. Prostaglandins and leukotrienes are bioactive molecules derived from the metabolism of arachidonic acid, as a result of a variable range of cellular stimuli. The aim of this review is to describe the process of formation and biomineralization of the dentin-pulp complex and how pro-inflammatory events can modify this response, with emphasis on the lipid mediators prostaglandins and leukotrienes derived from arachidonic acid metabolism.
Collapse
|
29
|
Bioinductive and anti-inflammatory properties of Propolis and Biodentine on SHED. Saudi Dent J 2022; 34:544-552. [PMID: 36267530 PMCID: PMC9577971 DOI: 10.1016/j.sdentj.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives This study aimed to evaluate and compare the cell viability, differentiation potential and anti-inflammatory potential of propolis and Biodentine™ on stem cells isolated from human exfoliated deciduous teeth (SHED). Materials and methods SHED were segregated and cultured from the dental pulp of children after therapeutic extraction. Microculture Tetrazolium Assay (MTT) assay was carried out for assessing cell proliferation potential of propolis and Biodentine at different concentrations. As per the results from cell proliferation assay, cell differentiation potential of SHED was evaluated at concentration of 12.5 μg/ml using Alizarin Red staining. The anti-inflammatory potential of test materials was evaluated using gelatin zymography by detecting MMP-2 and MMP-9. Results The maximum cell proliferation percentage of SHED treated with propolis and Biodentine was observed at a concentration of 12.5 μg/ml, on day 7, 14 and 21 with Biodentine having maximum cell proliferation potential followed by propolis. SHED treated with Biodentine showed maximum cell differentiation on day 7 (107.16), 14 (106.29) and 21 (107.72). However, anti-inflammatory activity against MMP-2 was 95 % with propolis and 85 % with Biodentine and whereas, against MMP-9 it was 65 % for propolis and 47 % for Biodentine. Conclusion Propolis shows comparable cell viability, cell proliferation and differentiation potential on SHED when compared to Biodentine. It also exhibits better invitro anti-inflammatory activity on SHED compared to Biodentine. Further studies are warranted to validate the application of propolis as an effective and economical alternative biocompatible agent to Biodentine for vital pulp therapies.
Collapse
|
30
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
31
|
Li X, Yang S, Yuan G, Jing D, Qin L, Zhao H, Yang S. Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Res 2022; 10:46. [PMID: 35739091 PMCID: PMC9226163 DOI: 10.1038/s41413-022-00214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Type II collagen-positive (Col2+) cells have been reported as skeletal stem cells (SSCs), but the contribution of Col2+ progenitors to skeletal development both prenatally and postnatally during aging remains unclear. To address this question, we generated new mouse models with ablation of Col2+ cells at either the embryonic or postnatal stages. The embryonic ablation of Col2+ progenitors resulted in the death of newborn mice due to a decrease in skeletal blood vessels, loss of all vertebral bones and absence of most other bones except part of the craniofacial bone, the clavicle bone and a small piece of the long bone and ribs, which suggested that intramembranous ossification is involved in long bone development but does not participate in spine development. The postnatal ablation of Col2+ cells resulted in mouse growth retardation and a collagenopathy phenotype. Lineage tracing experiments with embryonic or postnatal mice revealed that Col2+ progenitors occurred predominantly in the growth plate (GP) and articular cartilage, but a limited number of Col2+ cells were detected in the bone marrow. Moreover, the number and differentiation ability of Col2+ progenitors in the long bone and knee joints decreased with increasing age. The fate-mapping study further revealed Col2+ lineage cells contributed to, in addition to osteoblasts and chondrocytes, CD31+ blood vessels in both the calvarial bone and long bone. Specifically, almost all blood vessels in calvarial bone and 25.4% of blood vessels in long bone were Col2+ lineage cells. However, during fracture healing, 95.5% of CD31+ blood vessels in long bone were Col2+ lineage cells. In vitro studies further confirmed that Col2+ progenitors from calvarial bone and GP could form CD31+ vascular lumens. Thus, this study provides the first demonstration that intramembranous ossification is involved in long bone and rib development but not spine development. Col2+ progenitors contribute to CD31+ skeletal blood vessel formation, but the percentage differs between long bone and skull bone. The number and differentiation ability of Col2+ progenitors decreases with increasing age.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, P. R. China
- Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai, 200120, China
| | - Shuting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dian Jing
- Department of Restorative Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Zhao
- Department of Restorative Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Abe S, Kaida A, Kanemaru K, Nakazato K, Yokomizo N, Kobayashi Y, Miura M, Miki T, Hidai C, Kitano H, Yoda T. Differences in the stemness characteristics and molecular markers of distinct human oral tissue neural crest-derived multilineage cells. Cell Prolif 2022; 55:e13286. [PMID: 35716037 PMCID: PMC9528771 DOI: 10.1111/cpr.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Although multilineage cells derived from oral tissues, especially the dental pulp, apical papilla, periodontal ligament, and oral mucosa, have neural crest‐derived stem cell (NCSC)‐like properties, the differences in the characteristics of these progenitor cell compartments remain unknown. The current study aimed to elucidate these differences. Material and methods Sphere‐forming apical papilla‐derived cells (APDCs), periodontal ligament‐derived cells (PDLDCs), and oral mucosa stroma‐derived cells (OMSDCs) from the same individuals were isolated from impacted developing teeth. All sphere‐forming cells were characterized through biological analyses of stem cells. Results All sphere‐forming cells expressed neural crest‐related markers. The expression of certain tissue‐specific markers such as CD24 and CD56 (NCAM1) differed among tissue‐derived cells. Surprisingly, the expression of only CD24 and CD56 could be discriminated in human tissues. Although APDCs and PDLDCs exhibited greater mineralized cell differentiation than OMSDCs, they exhibited poorer differentiation into adipocytes in vitro. In immunocompromised mice, APDCs formed hard tissues better than PDLDCs and OMSDCs. Conclusions Although cells with NCSC‐like properties present the same phenotype, they differ in the expression of certain markers and differentiation abilities. This study is the first to demonstrate the differences in the differentiation ability and molecular markers among multilineage human APDCs, PDLDCs, and OMSDCs obtained from the same patients, and to identify tissue‐specific markers that distinguish tissues in the developing stage of the human tooth with immature apex.
Collapse
Affiliation(s)
- Shigehiro Abe
- Division of Oral Surgery, Faculty of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan.,Department of Dentistry and Oral Surgery, Tokyo Metropolitan Hiroo Hospital, Shibuya-ku, Tokyo, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Physiology, Graduate School of Medicine and Faculty of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan
| | - Keiichiro Nakazato
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Naoko Yokomizo
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Hiroo Hospital, Shibuya-ku, Tokyo, Japan
| | - Yutaka Kobayashi
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Hiroo Hospital, Shibuya-ku, Tokyo, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Graduate School of Medicine and Faculty of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan
| | - Chiaki Hidai
- Department of Physiology, Graduate School of Medicine and Faculty of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan
| | - Hisataka Kitano
- Division of Oral Surgery, Faculty of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
33
|
Wang Y, Zhao Y, Chen S, Chen X, Zhang Y, Chen H, Liao Y, Zhang J, Wu D, Chu H, Huang H, Wu C, Huang S, Xu H, Jia B, Liu J, Feng B, Li Z, Qin D, Pei D, Cai J. Single cell atlas of developing mouse dental germs reveals populations of CD24 + and Plac8 + odontogenic cells. Sci Bull (Beijing) 2022; 67:1154-1169. [PMID: 36545982 DOI: 10.1016/j.scib.2022.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.
Collapse
Affiliation(s)
- Yaofeng Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou 341099, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Hong Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Yuansong Liao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jiashu Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Hongxing Chu
- Department of Periodontics and Implantology, Stomatological Hospital, Southern Medical University (Guangdong Provincial Stomatological Hospital), Guangzhou 510515, China
| | - Hongying Huang
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Caixia Wu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shijuan Huang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huichao Xu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Dajiang Qin
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| |
Collapse
|
34
|
Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, Ghosh A, Biswas NK, Sharan R, Arun P, Jolly MK, Singh S. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. iScience 2022; 25:104317. [PMID: 35602941 PMCID: PMC9114525 DOI: 10.1016/j.isci.2022.104317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cell state transitions emerged as powerful mechanisms responsible for drug tolerance and overall poor prognosis; however, evidences were largely missing in oral cancer. Here, by multiplexing phenotypic markers of stem-like cancer cells (SLCCs); CD44, CD24 and aldehyde dehydrogenase (ALDH), we characterized diversity among multiple oral tumor tissues and cell lines. Two distinct patterns of spontaneous transitions with stochastic bidirectional interconversions on ‘ALDH-axis’, and unidirectional non-interconvertible transitions on ‘CD24-axis’ were observed. Interestingly, plastic ‘ALDH-axis’ was harnessed by cells to adapt to a Cisplatin tolerant state. Furthermore, phenotype-specific RNA sequencing suggested the possible maintenance of intermediate hybrid cell states maintaining stemness within the differentiating subpopulations. Importantly, survival analysis with subpopulation-specific gene sets strongly suggested that cell-state transitions may drive non-genetic heterogeneity, resulting in poor prognosis. Therefore, we have described the phenotypic-composition of heterogeneous subpopulations critical for global tumor behavior in oral cancer; which may provide prerequisite knowledge for treatment strategies. Demonstrated population trajectory driven non-genetic heterogeneity in oral cancer Created transition maps for subpopulations using discrete time Markov chain model Demonstrated maintenance of stemness in cells undergoing differentiation Uniquely expressed genes of these subpopulations associated with disease prognosis
Collapse
Affiliation(s)
- Kavya Vipparthi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankit Kumar Patel
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan Kumar Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Rajeev Sharan
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Pattatheyil Arun
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
35
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Zhang X, Caetano AJ, Sharpe PT, Volponi AA. Oral stem cells, decoding and mapping the resident cells populations. BIOMATERIALS TRANSLATIONAL 2022; 3:24-30. [PMID: 35837342 PMCID: PMC9255788 DOI: 10.12336/biomatertransl.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
The teeth and their supporting tissues provide an easily accessible source of oral stem cells. These different stem cell populations have been extensively studied for their properties, such as high plasticity and clonogenicity, expressing stem cell markers and potency for multilineage differentiation in vitro. Such cells with stem cell properties have been derived and characterised from the dental pulp tissue, the apical papilla region of roots in development, as well as the supporting tissue of periodontal ligament that anchors the tooth within the alveolar socket and the soft gingival tissue. Studying the dental pulp stem cell populations in a continuously growing mouse incisor model, as a traceable in vivo model, enables the researchers to study the properties, origin and behaviour of mesenchymal stem cells. On the other side, the oral mucosa with its remarkable scarless wound healing phenotype, offers a model to study a well-coordinated system of healing because of coordinated actions between epithelial, mesenchymal and immune cells populations. Although described as homogeneous cell populations following their in vitro expansion, the increasing application of approaches that allow tracing of individual cells over time, along with single-cell RNA-sequencing, reveal that different oral stem cells are indeed diverse populations and there is a highly organised map of cell populations according to their location in resident tissues, elucidating diverse stem cell niches within the oral tissues. This review covers the current knowledge of diverse oral stem cells, focusing on the new approaches in studying these cells. These approaches "decode" and "map" the resident cells populations of diverse oral tissues and contribute to a better understanding of the "stem cells niche architecture and interactions. Considering the high accessibility and simplicity in obtaining these diverse stem cells, the new findings offer potential in development of translational tissue engineering approaches and innovative therapeutic solutions.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Ana Justo Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Paul T. Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, CAS, v.v.i., Brno, Czech Republic,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| |
Collapse
|
37
|
Wang D, Lyu Y, Yang Y, Zhang S, Chen G, Pan J, Tian W. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater 2022; 140:610-624. [PMID: 34852303 DOI: 10.1016/j.actbio.2021.11.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The dental pulp is critical for physiological vitality of the tooth, and dental pulp regeneration has great potential for rebuilding live pulp tissue after pulp disease. Schwann cells (SCs) play a critical role in the support, maintenance, and regeneration of nerve fibers in dental pulp. Extracellular vesicles (EVs), which possess cell homing and tissue repair potential, derived from SCs (SC-EVs), can regulate dental mesenchymal stem cells (MSCs) proliferation, multipotency, and self-renewal. However, the role of SC-EVs in dental pulp tissue regeneration remains unclear. To address this question, we treated dental pulp stem cells (DPSCs) and bone marrow stem cells (BMSCs) with SC-EVs, and the results showed an obvious increase in the proliferation, migration, and osteogenic differentiation of both cell types. SC-EVs also promoted neurite outgrowth and neuron migration of rat dorsal root ganglia, as well as vessel formation in vitro. In an in vivo model of subcutaneous, SC-EVs enhanced the recruitment of endogenous vascular endothelioid-like cells and MSCs, and promoted the formation of a pulpo-dentinal complex-like structure. Finally, mass spectrometry analyses and western blot revealed that stromal cell-derived factor 1 (SDF-1, also known as CXCL12) plays a dominant role in SC-EVs. Together, these data suggest that SC-EVs successfully recruit endogenous stem cells to promote dental pulp regeneration. Our results provide a cell-free strategy for pulp regeneration that avoids the risks associated with stem cell transplantation. STATEMENT OF SIGNIFICANCE: Dental pulp is vulnerable to infections resulting from dental care, trauma, and multiple restorations, with such infections resulting in pulpitis and pulp necrosis. The current endodontic treatment of irreversible pulp disease cannot restore the function of dental pulp and tissue engineering strategies using cell-based approaches are limited by several disadvantages, including immune rejection and limited cell sources. In this study, we found that schwann cells-derived EVs facilitated dental pulp regeneration through endogenous stem cells recruitment via SDF-1/CXCR4 axis without exogenous cell transplantation. We believe that our study makes a significant contribution to describe a cell-free strategy to promote dental pulp regeneration.
Collapse
|
38
|
Y Baena AR, Casasco A, Monti M. Hypes and Hopes of Stem Cell Therapies in Dentistry: a Review. Stem Cell Rev Rep 2022; 18:1294-1308. [PMID: 35015212 PMCID: PMC8748526 DOI: 10.1007/s12015-021-10326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
One of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andrea Casasco
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy.,Dental & Face Center, CDI, Milan, Italy
| | - Manuela Monti
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy. .,Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
39
|
Wei X, Li J, Liu H, Niu C, Chen D. Salidroside promotes the osteogenic and odontogenic differentiation of human dental pulp stem cells through the BMP signaling pathway. Exp Ther Med 2021; 23:55. [PMID: 34917181 PMCID: PMC8630442 DOI: 10.3892/etm.2021.10977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Regenerative endodontics, as an alternative approach, aims to regenerate dental pulp-like tissues and is garnering the attention of clinical dentists. This is due to its reported biological benefits for dental therapeutics. Stem cells and their microenvironment serve an important role in the process of pulp regeneration. Regulation of the stem cell microenvironment and the directed differentiation of stem cells is becoming a topic of intensive research. Salidroside (SAL) is extracted from the root of Rhodiola rosea and it has been reported that SAL exerts antiaging, neuroprotective, hepatoprotective, cardioprotective and anticancer effects. However, the ability of SAL to regulate the osteo/odontogenic differentiation of hDPSCs remains to be elucidated. In the present study, the effect of SAL on the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) was investigated. This was achieved by performing CCK-8 ARS staining assay, reverse transcription-quantitative PCR to detect mRNA of ALP, OSX, RUNX2, OCN, DSPP and BSP, western blotting to detect the protein of MAPK, Smad1/5/8, OSX, RUNX2, BSP and GAPDH and immunofluorescence assays to detect DSPP. The results indicated that SAL promoted the cell viability and the osteogenic/odontogenic differentiation of hDPSCs whilst increasing the expression of genes associated with osteogenic/odontogenic differentiation by ARS staining assay. In addition, SAL promoted osteogenic and odontogenic differentiation by activating the phosphorylation of Smad1/5/8. Collectively, these findings suggest that SAL promoted the osteogenic and odontogenic differentiation of hDPSCs activating the BMP signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Jiayang Li
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Hui Liu
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Chenguang Niu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Dong Chen
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| |
Collapse
|
40
|
Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int 2021; 2021:9477332. [PMID: 34671401 PMCID: PMC8523294 DOI: 10.1155/2021/9477332] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.
Collapse
|
41
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
42
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
43
|
Capparè P, Tetè G, Sberna MT, Panina-Bordignon P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr Gene Ther 2021; 20:259-268. [PMID: 32811413 DOI: 10.2174/1566523220999200818115803] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.
Collapse
Affiliation(s)
- Paolo Capparè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paola Panina-Bordignon
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
44
|
Han X, Tang S, Wang L, Xu X, Yan R, Yan S, Guo Z, Hu K, Yu T, Li M, Li Y, Zhang F, Gu N. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int J Nanomedicine 2021; 16:5101-5115. [PMID: 34349510 PMCID: PMC8327189 DOI: 10.2147/ijn.s318991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. Methods Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. Results MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. Conclusion Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shijia Tang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xueqin Xu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruhan Yan
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sen Yan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ke Hu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mengping Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuqin Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Gu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. Notch signaling in the dynamics of perivascular stem cells and their niches. Stem Cells Transl Med 2021; 10:1433-1445. [PMID: 34227747 PMCID: PMC8459638 DOI: 10.1002/sctm.21-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway is a fundamental regulator of cell fate determination in homeostasis and regeneration. In this work, we aimed to determine how Notch signaling mediates the interactions between perivascular stem cells and their niches in human dental mesenchymal tissues, both in homeostatic and regenerative conditions. By single cell RNA sequencing analysis, we showed that perivascular cells across the dental pulp and periodontal human tissues all express NOTCH3, and that these cells are important for the response to traumatic injuries in vivo in a transgenic mouse model. We further showed that the behavior of perivascular NOTCH3‐expressing stem cells could be modulated by cellular and molecular cues deriving from their microenvironments. Taken together, the present studies, reinforced by single‐cell analysis, reveal the pivotal importance of Notch signaling in the crosstalk between perivascular stem cells and their niches in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Laura de Vargas Roditi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021. [PMID: 33689817 DOI: 10.1016/j.actbio.2021.1003.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
47
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021; 126:109-118. [PMID: 33689817 PMCID: PMC8096688 DOI: 10.1016/j.actbio.2021.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
48
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. A single-cell atlas of human teeth. iScience 2021; 24:102405. [PMID: 33997688 PMCID: PMC8099559 DOI: 10.1016/j.isci.2021.102405] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Teeth exert fundamental functions related to mastication and speech. Despite their great biomedical importance, an overall picture of their cellular and molecular composition is still missing. In this study, we have mapped the transcriptional landscape of the various cell populations that compose human teeth at single-cell resolution, and we analyzed in deeper detail their stem cell populations and their microenvironment. Our study identified great cellular heterogeneity in the dental pulp and the periodontium. Unexpectedly, we found that the molecular signatures of the stem cell populations were very similar, while their respective microenvironments strongly diverged. Our findings suggest that the microenvironmental specificity is a potential source for functional differences between highly similar stem cells located in the various tooth compartments and open new perspectives toward cell-based dental therapeutic approaches. Dental atlas of the pulp and periodontal tissues of human teeth Identification of three common MSC subclusters between dental pulp and periodontium Dental pulp and periodontal MSCs are similar, and their niches diverge
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | | | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
| | - Andreas E. Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Corresponding author
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
- Corresponding author
| |
Collapse
|
49
|
Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. Int J Mol Sci 2021; 22:ijms22063024. [PMID: 33809663 PMCID: PMC8002260 DOI: 10.3390/ijms22063024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Specific stem cell populations within dental mesenchymal tissues guarantee tooth homeostasis and regeneration throughout life. The decision between renewal and differentiation of stem cells is greatly influenced by interactions with stromal cells and extracellular matrix molecules that form the tissue specific stem cell niches. The Cxcl12 chemokine is a general marker of stromal cells and plays fundamental roles in the maintenance, mobilization and migration of stem cells. The aim of this study was to exploit Cxcl12-GFP transgenic mice to study the expression patterns of Cxcl12 in putative dental niches of intact and injured teeth. We showed that endothelial and stromal cells expressed Cxcl12 in the dental pulp tissue of both intact molars and incisors. Isolated non-endothelial Cxcl12+ dental pulp cells cultured in different conditions in vitro exhibited expression of both adipogenic and osteogenic markers, thus suggesting that these cells possess multipotent fates. Taken together, our results show that Cxcl12 is widely expressed in intact and injured teeth and highlight its importance as a key component of the various dental mesenchymal stem cell niches.
Collapse
|
50
|
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang CY, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12:1293. [PMID: 33637721 PMCID: PMC7910464 DOI: 10.1038/s41467-021-21545-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration. We show that recombinant periostin (rPOSTN) promotes the proliferation and stemness of TSPCs, and maintains the tenogenic potentials of TSPCs in vitro. We also find that rPOSTN protects TSPCs against functional impairment during long-term passage in vitro. For in vivo tendon formation, we construct a biomimetic parallel-aligned collagen scaffold to facilitate TSPC tenogenesis. Using a rat full-cut Achilles tendon defect model, we demonstrate that scaffolds loaded with rPOSTN promote endogenous TSPC recruitment, tendon regeneration and repair with native-like hierarchically organized collagen fibers. Moreover, newly regenerated tendons show recovery of mechanical properties and locomotion functions. The regeneration of functional tendons remains a clinical challenge. Here the authors develop a biomimetic scaffold loaded with recombinant periostin and demonstrate its functionality in promoting tendon stem/progenitor cell recruitment and tenogenic differentiation, and tendon regeneration in a rat full-cut Achilles tendon defect model.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung & Vascular Diseases, Capital Medical University, Beijing, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|