1
|
Chen L, Yin J, Xu K, Cui Y, Zhu S, Li T, Lv T, Song Y, Zhan P. Novel bioengineered drugs with immunotherapies for malignant pleural effusion: Remodulate tumor immune microenvironment and activate immune system. Crit Rev Oncol Hematol 2025; 211:104717. [PMID: 40194717 DOI: 10.1016/j.critrevonc.2025.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Malignant pleural effusion (MPE) remains a clinical issue since it is associated with advanced-stage cancers and dismal survival, with immunosuppressive tumor microenvironment (TME) and ineffective drug delivery. Conventional therapies such as thoracentesis and pleurodesis are for symptom relief but palliative, without inducing immunity and prolonging survival. Emerging new bioengineered drugs, synergizing with immunotherapies, offer a new paradigm by dual-targeting TME remodeling and immune activation. These technologies leverage nanotechnology, gene editing, and biomaterials to offer precise spatiotemporal control. This review illustrates the molecular mechanism of the immunosuppressive TME in MPE. It examines the newest bioengineering platforms-such as cytokine-encapsulated nanoparticles and oncolytic viruses-that can reactivate immune mechanisms. We highlight preclinical and clinical evidence of the effectiveness of combinatorial strategies in overcoming local immune tolerance and potential risks in adverse events. While the clinical transformation challenge remains, future directions necessitate cross-disciplinary convergence to engineer intelligent delivery vehicles and predictive biomarkers for patient stratification. By integrating immunotherapy with bioengineering, this strategy not only restores antitumor immunity but also portends a new epoch of precision medicine for MPE.
Collapse
Affiliation(s)
- Lu Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - YuTing Cui
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - SuHua Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Lan J, Cai D, Gou S, Bai Y, Lei H, Li Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Zhang Y, Zheng X, Xiao Z, Du F. The dynamic role of ferroptosis in cancer immunoediting: Implications for immunotherapy. Pharmacol Res 2025; 214:107674. [PMID: 40020885 DOI: 10.1016/j.phrs.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Currently, cancer immunotherapy strategies are primarily formulated based on the patient's present condition, representing a "static" treatment approach. However, cancer progression is inherently "dynamic," as the immune environment is not fixed but undergoes continuous changes. This dynamism is characterized by the ongoing interactions between tumor cells and immune cells, which ultimately lead to alterations in the tumor immune microenvironment. This process can be effectively elucidated by the concept of cancer immunoediting, which divides tumor development into three phases: "elimination," "equilibrium," and "escape." Consequently, adjusting immunotherapy regimens based on these distinct phases may enhance patient survival and improve prognosis. Targeting ferroptosis is an emerging area in cancer immunotherapy, and our findings reveal that the antioxidant systems associated with ferroptosis possess dual roles, functioning differently across the three phases of cancer immunoediting. Therefore, this review delve into the dual role of the ferroptosis antioxidant system in tumor development and progression. It also propose immunotherapy strategies targeting ferroptosis at different stages, ultimately aiming to illuminate the significant implications of targeting ferroptosis at various phases for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarui Lan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Yulin Bai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Huaqing Lei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China
| | - Xin Zheng
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| |
Collapse
|
3
|
Wang W, Cheng Z, Yu M, Liu K, Duan H, Zhang Y, Huang X, Li M, Li C, Hu Y, Luo Z, Liu M. Injectable ECM-mimetic dynamic hydrogels abolish ferroptosis-induced post-discectomy herniation through delivering nucleus pulposus progenitor cell-derived exosomes. Nat Commun 2025; 16:3131. [PMID: 40169595 PMCID: PMC11961689 DOI: 10.1038/s41467-025-58447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Discectomy-induced ferroptosis of nucleus pulposus cells (NPCs) contributes to postoperative lumbar disc herniation (LDH) recurrence and intervertebral disc degeneration (IDD). We discover that nucleus pulposus progenitor cells (NPPCs) could imprint ferroptosis resistance into NPCs through exosome-dependent intercellular transmission of miR-221-3p. Based on these findings, we first develop synthetically-tailored NPPC-derived exosomes with enhanced miR-221-3p expression and NPC uptake capacity, which are integrated into an injectable hydrogel based on extracellular matrix (ECM) analogues. The ECM-mimetic hydrogel (HACS) serves as a biomimetic filler for the post-operative care of herniated discs, which could be facilely injected into the discectomy-established nucleus pulposus (NP) cavity for localized treatment. HACS-mediated in-situ exosome release in the NP cavity enables marked ferroptosis inhibition in NPCs that not only prevents LDH recurrence but also reverses the IDD symptoms, leading to robust restoration of NP structure and functions. In summary, this study offers a promising approach for treating disc herniation.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, General Hospital of PLA Xizang Military Area Command, Lhasa, Xizang, China
| | - Zhuo Cheng
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongli Duan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xinle Huang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Li M, Lu L, Bao Q, Zhou M, Nie B, Liu Y, Shu K, Lei T, Zhu M. Radiotherapy-derived engineered stem cell exosomes improve anti-glioma immunotherapy by promoting the formation of tertiary lymphoid structure and improve the release of type I interferon. J Nanobiotechnology 2025; 23:239. [PMID: 40121481 PMCID: PMC11929319 DOI: 10.1186/s12951-025-03301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
The absence of signaling pathways related to intrinsic immune activation in tumor cells and the immunosuppressive microenvironment limit lymphocyte infiltration, constitutes an "immune-desert" tumor displaying insensitivity to various immunotherapies. This study investigates strategies to activate intrinsic immune pathways in glioma cells, reverse immunosuppression, and induce tertiary lymphoid structures (TLS) within the glioma microenvironment (GME) to enhance natural and adaptive immune responses. We successfully induced antigen-presenting cell activation, macrophage/microglia polarization, and TLS formation in GME by intracranial delivery of BafA1@Rexo-SC, which comprises exosomes from irradiated bone marrow-derived stem cells overexpressing CD47 nanobodies and STING, loaded with the autophagy inhibitor BafA1. These exosomes efficiently activated the cGAS-STING pathway, leading to the formation of "lymphoid tissue organizer cells (Lto)" cells, VEGFA release for high endothelial microvessel formation, and chemokine release for T and B cell recruitment. BafA1@Rexo-SC also promoted macrophage phagocytosis of tumor cells and enhanced effector T cell function by blocking CD47, while releasing type I interferon. Our findings suggest novel therapeutic approaches for glioma treatment.
Collapse
Affiliation(s)
- Man Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiuhong Bao
- Department of Oncology Medicine, Tiantai People's Hospital of Zhejiang Province, Tiantai, 317200, Zhejiang Province, China
| | - Minghui Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bin Nie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Hu S, Liu J, Jiang H, Wang S, Yang Z. Exosomes: a double-edged sword in cancer immunotherapy. MedComm (Beijing) 2025; 6:e70095. [PMID: 39968497 PMCID: PMC11831209 DOI: 10.1002/mco2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Over the past few decades, immunotherapy has emerged as a powerful strategy to overcome the limitations of conventional cancer treatments. The use of extracellular vesicles, particularly exosomes, which carry cargoes capable of modulating the immune response, has been extensively explored as a potential therapeutic approach in cancer immunotherapy. Exosomes can deliver their cargo to target cells, thereby influencing their phenotype and immunomodulatory functions. They exhibit either immunosuppressive or immune-activating characteristics, depending on their internal contents. These exosomes originate from diverse cell sources, and their internal contents can vary, suggesting that there may be a delicate balance between immune suppression and stimulation when utilizing them for immunotherapy. Therefore, a thorough understanding of the molecular mechanisms underlying the role of exosomes in cancer progression is essential. This review focuses on the molecular mechanisms driving exosome function and their impact on the tumor microenvironment (TME), highlighting the intricate balance between immune suppression and activation that must be navigated in exosome-based therapies. Additionally, it underscores the challenges and ongoing efforts to optimize exosome-based immunotherapies, thereby making a significant contribution to the advancement of cancer immunotherapy research.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life SciencesJilin UniversityChangchunChina
| | - Siyuan Hu
- School of Life SciencesJilin UniversityChangchunChina
| | - Jiayi Liu
- School of Life SciencesJilin UniversityChangchunChina
| | - Hao Jiang
- School of Life SciencesJilin UniversityChangchunChina
| | - Simiao Wang
- School of Life SciencesJilin UniversityChangchunChina
| | - Zhaogang Yang
- School of Life SciencesJilin UniversityChangchunChina
| |
Collapse
|
6
|
Zhao D, Ji H, Zhang W, He A, Guo C, Ma L, Liu Y. miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Genes Genomics 2025; 47:183-195. [PMID: 39567416 DOI: 10.1007/s13258-024-01598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Dry eye disease (DED) is an ocular illness caused by insufficient tear secretion or poor tear quality, and inflammation is a key factor in its pathogenesis. Previous studies have shown that miRNAs are important regulatory factors in DED. OBJECTIVE The purpose of this study was to explore the potential mechanism by which miR-214-3p influenced the DED process by regulating the macrophage inflammatory response. METHODS We induced THP-1 cells to differentiate into M0 macrophages with 100 ng/mL phorbol-12-myristate-13-acetate (PMA) and then added 15 ng/mL lipopolysaccharide (LPS) to induce inflammation. The expression of related genes and proteins was detected via RT‒qPCR, Western blotting, ELISA and immunofluorescence staining; cell viability was measured using the CCK-8 assay; and flow cytometry was used to detect ROS levels. RESULTS In tear and serum samples from DED patients, the levels of miR-214-3p, IL-10, and Arg1 were decreased, and the levels of IL-6, TNF-α, IL-1β, and iNOS expression were increased. Moreover, the overexpression of miR-214-3p attenuated the effect of LPS and inhibited M1 polarization and inflammation in macrophages. Mechanistically, miR-214-3p inhibited macrophage ferroptosis by downregulating TFRC expression, thereby inhibiting macrophage M1 polarization and inflammation and alleviating the progression of DED. CONCLUSIONS Our study indicated that the upregulation of miR-214-3p expression might be a new target for DED therapy.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Hao Ji
- Department of Information, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Weijia Zhang
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Anni He
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Caizhe Guo
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ma
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Liu
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China.
| |
Collapse
|
7
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Luo L, An X, Wang Y, Zheng Q, Lin K, Shi Q, Chen Y. Chemokine CXCL13 facilitates anti-FVIII inhibitory antibody development in hemophilia A patients and murine models. Int Immunopharmacol 2024; 143:113472. [PMID: 39471695 DOI: 10.1016/j.intimp.2024.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
The development of anti-factor VIII (FVIII) neutralizing antibodies (inhibitors) remains challenging complication in hemophilia A (HA) patients undergoing prophylactic FVIII replacement therapy. The pathogenesis of FVIII inhibitor formation remains unclear. Chemokine CXCL13, a key ligand for follicular helper T cells (TFHs), in the context of inhibitor development were assessed in the present study. A total of 113 HA patients, with and without inhibitors, along with 72 healthy volunteers, were enrolled. Results demonstrated abnormally elevated levels of CXCL13 in HA patients, with a 2.0-fold increase in patients with inhibitors compared to those without. Similarly, CXCL13 levels were significantly elevated in both wild-type and HA mice with FVIII inhibitors. The proportions of circulating and splenic TFHs were markedly higher in inhibitor patients and murine models and positively correlated with CXCL13 levels. Moreover, plasma levels of B cell activating factor and the inflammatory biomarker HMGB1 were significantly increased in both human and animal inhibitor cohorts. An increased frequency of germinal center B cells was observed in splenocytes from inhibitor mice. In vitro study revealed human dermal microvascular endothelial cells undergoing immunogenic ferroptosis when conditioned with high levels of CXCL13, which was associated with down-regulation of ferroptosis suppressors SLC7A11 and GPX4, activation of the Nrf2 pathway, and increased intracellular reactive oxygen species. The findings of this study suggest that CXCL13 play a pivotal role in the microenvironment of anti-FVIII antibody development. Targeting CXCL13 may offer a potential therapeutic approach for FVIII inhibitors in HA.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xing An
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yali Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Kehan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA.
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
10
|
Fang J, Rao X, Wang C, Wang Y, Wu C, Zhou R. Role of exosomes in modulating non-small cell lung cancer radiosensitivity. Front Pharmacol 2024; 15:1471476. [PMID: 39737074 PMCID: PMC11683128 DOI: 10.3389/fphar.2024.1471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived exosomes contribute to radioresistance by enhancing DNA repair, modulating immune responses, and altering the tumor microenvironment. We further explore the potential of mesenchymal stem cell-derived exosomes to overcome radiotherapy resistance and their potential as biomarkers for predicting therapeutic outcomes. Understanding the mechanisms by which exosomes affect radiotherapy can provide new avenues for enhancing treatment efficacy and improving the survival rates of patients with NSCLC.
Collapse
Affiliation(s)
- Jincheng Fang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Changjian Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangchenxi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
11
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
12
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:315. [PMID: 39614322 PMCID: PMC11607824 DOI: 10.1186/s13046-024-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China
| | - Kang Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
14
|
Li L, Ren J, Guo M, An Z, Duan W, Lv J, Tan Z, Yang J, Zhu Y, Yang H, Liu Y, Ma Y, Guo H. SAP130 mediates crosstalk between hepatocyte ferroptosis and M1 macrophage polarization in PFOS-induced hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175612. [PMID: 39163934 DOI: 10.1016/j.scitotenv.2024.175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant widely utilized in industrial manufacturing and daily life, leading to significant environmental accumulation and various public health issues. This study aims to characterize spliceosome-associated protein 130 (SAP130) as a key mediator of crosstalk between hepatocytes and macrophages, elucidating its role in PFOS-induced liver inflammation. The data demonstrate that PFOS exposure induces ferroptosis in mouse liver and AML12 cells. During ferroptosis, SAP130 is released from injured hepatocytes into the microenvironment, binding to macrophage-inducible C-type lectin (Mincle) and activating the Mincle/Syk signaling pathway in macrophages, ultimately promoting M1 polarization and exacerbating liver injury. Treatment with the ferroptosis inhibitor Ferrostatin-1 reduces SAP130 release, inhibits Mincle/Syk signaling activation, and mitigates inflammatory response. Furthermore, siSAP130 suppresses the activation of the Mincle signaling pathway and M1 polarization in BMDM cells. Conversely, treatment with the ferroptosis agonist Erastin enhances paracrine secretion of SAP130 and exacerbates inflammation. These findings emphasize the significance of hepatocyte-macrophage crosstalk as a critical pathway for PFOS-induced liver injury in mice while highlighting SAP130 as a pivotal regulator of ferroptosis and inflammation, thereby elucidating the potential mechanism of PFOS-induced liver injury.
Collapse
Affiliation(s)
- Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huiling Yang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, PR China.
| |
Collapse
|
15
|
Hou B, Ye J, Huang L, Cheng W, Chen F, Zhou H, Pan J, Gao J, Lai Y, Zhao Y, Huang W, Yu H, Xu Z. Tumor-specific delivery of clickable inhibitor for PD-L1 degradation and mitigating resistance of radioimmunotherapy. SCIENCE ADVANCES 2024; 10:eadq3940. [PMID: 39546592 PMCID: PMC11567003 DOI: 10.1126/sciadv.adq3940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups. This enables covalently binding of the clickable inhibitor with PD-L1 and subsequent PD-L1 degradation. A pH-activatable nanoparticle responding to extracellular acidic pH of tumor was subsequently used to deliver the clickable PD-L1 inhibitor into extracellular tumor microenvironment for depleting PD-L1 on the surface of tumor cell and macrophage membranes in vivo. We further demonstrated that a combination of the clickable PD-L1 inhibitor with radiotherapy (RT) eradicated the established tumor by inhibiting RT-up-regulated PD-L1 in the tumor tissue. Therefore, selective PD-L1 blockade in tumors via the clickable PD-L1 inhibitor offers a versatile approach to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Hou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Jiayi Ye
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Cheng
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Wang Y, Niu B, Tian Y, Lan H, Zhou Z, Li Y, Zhao S, Zhang Y, Yang C, Kong L, Zhang Z. Mitoxantrone Combined with Engineered TRAIL-Nanovesicles for Enhanced Cancer Immunotherapy Via Converting Apoptosis into Pyroptosis. Adv Healthc Mater 2024; 13:e2401723. [PMID: 39049538 DOI: 10.1002/adhm.202401723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Pyroptosis, a highly inflammatory form of programmed cell death, has emerged as a promising target for cancer immunotherapy. However, in the context of pyroptosis execution, while both caspase-3 and GSDME are essential, it is noteworthy that GSDME is frequently under-expressed in cold tumors. To overcome this limitation, engineered cellular nanovesicles (NVs) presenting TRAIL on their membranes (NVTRAIL) are developed to trigger the upregulation of cleaved caspase-3. When strategically combined with the chemotherapeutic agent mitoxantrone (MTO), known for its ability to enhance GSDME expression, MTO@NVTRAIL can convert cancer cells from apoptosis into pyroptosis, inhibit the tumor growth and metastasis successfully in primary tumor. The microparticles released by pyroptotic tumor cells also exhibited certain cytotoxicity against other tumor cells. In addition, tumor cells exposed to the combination treatment of MTO@NVTRAIL in vitro have also demonstrated potential utility as a novel form of vaccine for cancer immunotherapy. Flow analysis of the tumor microenvironment and draining lymph nodes reveals an increased proportion of matured dendritic cells and activation of T cells. In summary, the research provided a reference and alternative approach to induce cancer pyroptosis for clinical antitumor therapy based on engineered cellular nanovesicles and chemotherapy.
Collapse
Affiliation(s)
- Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhanhao Zhou
- Liyuan Hospital, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siyu Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
17
|
Kim Y, Jeon SH, Kim S, Kang MH, Han MG, Lee SY, Kim IA. In vitro-irradiated cancer vaccine enhances anti-tumor efficacy of radiotherapy and PD-L1 blockade in a syngeneic murine breast cancer model. Radiother Oncol 2024; 200:110480. [PMID: 39159681 DOI: 10.1016/j.radonc.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND PURPOSE Local radiotherapy (RT) exerts immunostimulatory effects by inducing immunogenic cell death. However, it remains unknown whether in vitro-irradiated tumor cells can elicit anti-tumor responses and enhance the efficacy of local RT and immune checkpoint inhibitors when injected in vivo. METHODS AND MATERIALS We tested the "in vitro-irradiated cancer vaccine (ICV)", wherein tumor cells killed by varying doses of irradiation and their supernatants are intravenously injected. We examined the efficacy of combining local RT (24 Gy in three fractions), PD-L1 blockade, and the ICV in a murine breast cancer model. The immune cell profiles were analyzed via flow cytometry and immunohistochemistry. The cytokine levels were measured by multiplex immunoassays. RESULTS The ICV significantly increased the effector memory phenotype and interferon-γ production capacity in splenic CD8+ T cells. The in vitro-irradiated products contained immune response-related molecules. When combined with local RT and PD-L1 blockade, the ICV significantly delayed the growth of irradiated and non-irradiated tumors. The triple combination therapy increased the proportions of CD8+ T cells and effector memory CD8+ T cells while decreasing the proportion of CTLA-4+ exhausted CD8+ T cells within tumor microenvironment. Additionally, plasma level of interferon-γ and proliferation of effector T cells in the spleen and tumor-draining lymph nodes were significantly increased by the triple combination therapy. CONCLUSIONS The ICV enhanced the therapeutic efficacy of local RT and PD-L1 blockade by augmenting anti-tumor immune responses. Our findings suggest a therapeutic potential of in vitro-irradiation products of tumor cells.
Collapse
Affiliation(s)
- Yoomin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seongmin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min Guk Han
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Yup Lee
- Korea Nuclear Engineering Co., Ltd, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Sun Y, Hu Y, Geng Y, Wan C, Liu Y, Liao Y, Shi X, Lovell JF, Yang K, Jin H. A self-assembled, genetically engineered, irradiated tumor cell debris vaccine. EXPLORATION (BEIJING, CHINA) 2024; 4:20220170. [PMID: 39439494 PMCID: PMC11491297 DOI: 10.1002/exp.20220170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/21/2024] [Indexed: 10/25/2024]
Abstract
Vaccine-based therapeutics for cancers face several challenges including lack of immunogenicity and tumor escape pathways for single antigen targets. It has been reported that radiotherapy has an in situ vaccine effect that provides tumor antigens following irradiation, helping to activate antigen-presenting cells (APCs). Herein, a new vaccine approach is developed by combining genetically engineered irradiated tumor cell debris (RTD) and hyaluronic acid (HA), termed HA@RTD. A cancer cell line is developed that overexpresses granulocyte-macrophage colony-stimulating factor (GM-CSF). A hydrogel was developed by covalent conjugation of HA with RTD proteins that acted as a potent vaccine system, the effects which were probed with T cell receptor sequencing. The engineered vaccine activated antitumor immunity responses and prevented tumor growth in mice even with a single immunization. HA@RTD vaccine efficacy was also assessed in therapeutic settings with established tumors and in combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Hu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Wan
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yang Liu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yifei Liao
- Division of Infectious DiseasesDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jonathan F. Lovell
- Department of Chemical and Biological EngineeringState University of New YorkUniversity at BuffaloBuffaloNew YorkUSA
| | - Kunyu Yang
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Honglin Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
19
|
Han S, Wang S, Li Y, He Y, Ma J, Feng Y. HPV-ferroptosis related genes as biomarkers to predict the prognosis of cervical cancer. Discov Oncol 2024; 15:468. [PMID: 39302544 DOI: 10.1007/s12672-024-01291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Ferroptosis can be used as a powerful predictor of cancer prognosis. HPV persistent infection is the main cause of cervical cancer, so it is very important to improve the prognosis of patients. Therefore, it is necessary to explore the value of HPV-ferroptosis related genes as prognostic biomarkers of cervical cancer patients. METHODS In this study, differentially expressed HPV-ferroptosis related genes were obtained from GSE7410, HPV gene set crossed with iron death genes. Five HPV-ferroptosis related genes with prognostic features were finally identified: CYBB, VEGFA, CKB, EFNA1 and HELLS. Multifactorial Cox regression was applied to establish and validate the prognostic model, and drug susceptibility and immune infiltration analyses were also performed. RESULTS The prognostic model was validated in the training set (TCGA) and validation set (GSE44001). Kaplan-Meier curves reveal significant differences in overall survival (OS) between high-risk and low-risk groups. Receiver operating characteristic (ROC) curve reflects the stability and accuracy of the prognostic model established in this study. In terms of immune function, T cell costimulation was better in the low-risk group than in the high-risk group (P < 0.01). The therapeutic effects of cisplatin, paclitaxel, docetaxel and cyclophosphamide, commonly used chemotherapy drugs for cervical cancer, are better in the high-risk group than in the low-risk group (P < 0.001). CONCLUSION HPV-ferroptosis related gene prognostic model not only has good stability and accuracy in predicting the prognosis of cervical cancer patients, but also has certain guiding value for clinicians in terms of drug sensitivity and immune microenvironment.
Collapse
Affiliation(s)
- Songtao Han
- Clinical Laboratory CenterHospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Senyu Wang
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Yuxia Li
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - YuJiao He
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Ma
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Yangchun Feng
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China.
| |
Collapse
|
20
|
Liu X, Song Y, Hu S, Bai Y, Zhang J, Tai G, Shao C, Pan Y. Serum amyloid A contributes to radiation-induced lung injury by activating macrophages through FPR2/Rac1/NF-κB pathway. Int J Biol Sci 2024; 20:4941-4956. [PMID: 39309438 PMCID: PMC11414394 DOI: 10.7150/ijbs.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Patients who receive thoracic radiotherapy may suffer from radiation-induced lung injury, but the treatment options are limited as the underlying mechanisms are unclear. Using a mouse model of right thorax irradiation with fractionated doses of X-rays for three consecutive days (8 Gy/per day), this study found that the thoracic irradiation (Th-IR) induced tissue injury with aberrant infiltration of macrophages, and it significantly increased the secretion of TNF-α, IL-1β, IL-6, TGF-β1 and serum amyloid A (SAA) in mice. Interestingly, SAA could activate macrophages and then induce epithelial-mesenchymal transition (EMT) of lung epithelial cells and fibrosis progression in lung tissue. Mechanistically, SAA enhanced the transient binding of FPR2 to Rac1 protein and further activated NF-κB signaling pathway in macrophages. Inhibition of FPR2 significantly reduced pulmonary fibrosis induced by SAA administration in mice. In addition, cimetidine could reduce the level of SAA release after irradiation and attenuate the lung injury induced by SAA or Th-IR. In conclusion, our results demonstrated that SAA activated macrophages via FPR2/Rac1/NF-κB pathway and might contribute to the Th-IR induced lung injury, which may provide a new strategy to attenuate radiation-induced adverse effects during radiotherapy.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yimeng Song
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Songling Hu
- Department of Preventive Dentistry, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Medical College, Fudan University, Shanghai 200001, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guomei Tai
- Department of Radiotherapy, Nantong Tumor Hospital and the Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu Province, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
He M, Xu W, Dan Y, Pan Y, Li Y, Chen M, Dong CM. Mannosylated Fluoropolypeptide Nanovaccines Remodeling Tumor Immunosuppressive Microenvironment to Achieve Highly Potent Cancer Immunotherapy. Adv Healthc Mater 2024:e2401354. [PMID: 39233541 DOI: 10.1002/adhm.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Indexed: 09/06/2024]
Abstract
It is challenging for nanovaccines (NVs) to effectively deliver antigens/neoantigens to prime specifically potent immunities and remodel immunosuppressive tumor microenvironment (TME) for combating immune "cold" cancers. Herein, a novel kind of mannosylated fluoropolypeptide NVs of MFPCOFG (i.e., mannosylated fluoropoly(D,L-cysteine) ovalbumin-loaded Fe2+-gallic acid) is designed that synergistically integrates triple antigen-metal-thermoimmunity to remodel immunosuppressive TME and achieve highly potent immunities. MFPCOFG plus near-infrared irradiation (NIR) effectively facilitated antigen uptake and escape, induced the maturation and antigen cross-presentations of dendritic cells and macrophages, polarized anti-inflammatory macrophage phenotype M2 into tumoricial M1, primed potent CD4+/CD8+T cells responses, proinflammatory cytokines secretion and immune memory effects, showcasing triple antigen-metal-thermoimmunity outperforming combo/mono-immunity. Importantly, both MFPCOFG + NIR and personalized NVs can remarkably enhance the tumor infiltration of CD4+/CD8+T and NK cells to boost potent immunities and long-lasting memory effects, reduce regulatory T (Tregs) and M2 to remodel immunosuppressive TME in B16-OVA and 4T1 models, achieving superior tumor prevention, ablation, and tumor relapse and metastasis inhibition, as further orchestrated with anti-PD-1. Consequently, this work opens up a new avenue to design biocompatible polypeptide nanovaccines with potent immune-priming and TME-remodeling capabilities, holding great potentials to combat immune "cold" cancers with clinic-used anti-PD-1 for cancer immunotherapy and personalized immunotherapy.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yue Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Yingying Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, 201508, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
22
|
Zhan Z, Cheng J, Liu F, Tao S, Wang L, Lin X, Ye Y. Combination of microparticles vaccine with MSI-1436 exerts a strong immune response for hepatocellular carcinoma. J Leukoc Biol 2024; 116:565-578. [PMID: 39012079 DOI: 10.1093/jleuko/qiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Although tumor cell-derived microparticles (MPs) vaccines have reportedly induced antitumor immune reactions for various cancers, the mechanism by which MPs derived from Hepa1-6 cells are taken up by dendritic cells (DCs) and provide the MPs antigens message to CD8+ T cells to exert their anti-hepatocellular carcinoma (HCC) effects remain unclear. Furthermore, the role of MPs in combination with the small-molecule drug MSI-1436, an inhibitor of protein tyrosine phosphatase 1B (PTP1B), in HCC has not yet been reported. In this study, protein mass spectrometry combined with cytology revealed that MPs are mainly taken up by DCs via the clathrin-mediated endocytosis and phagocytosis pathway and localized mainly in lysosomes. High concentration of tumor necrosis factor-α and interferon-γ was detected in CD8+ T cells stimulated with MPs-loaded DCs. Moreover, MPs combined with MSI-1436 further suppressed the proliferation of HCC cells in C57BL/6 tumor-bearing mice, which was closely correlated with CD4+/CD8+ T cells counts in peripheral blood, spleen, and the tumor microenvironment. Mechanistically, the combination of MPs and MSI-1436 exerts a more powerful anti-HCC effect, which may be related to the further inhibition of the expression of PTP1B. Overall, MPs combined with MSI-1436 exerted stronger antitumor effects than MPs or MSI-1436 alone. Therefore, the combination of MPs and MSI-1436 may be a promising means of treating HCC.
Collapse
Affiliation(s)
- Zhao Zhan
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Jiaqing Cheng
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Fang Liu
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Shili Tao
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Xiandong Lin
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| |
Collapse
|
23
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
24
|
Li J, Bai M, Jia W, Zhai X, Wang M, Yu J, Zhu H. Irradiated tumor cell-released microparticles enhance the therapeutic efficacy of PD-1 inhibitors by promoting M1-TAMs polarization in NSCLC brain metastases. Cancer Lett 2024; 598:217133. [PMID: 39079563 DOI: 10.1016/j.canlet.2024.217133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Brain metastases (BMs) are the most common sites of metastasis in patients with non-small cell lung cancer (NSCLC). However, BMs are not responsive to immunotherapy because of the blood-brain barrier. This is because intracranial immune cells such as M2 tumor-associated macrophages (TAMs) accumulate, creating an immunosuppressive tumor microenvironment. In this study, we focused on irradiated tumor cell-released microparticles (RT-MPs) that can cross the blood-brain barrier and influence the intracranial immune microenvironment. Using animal models of BMs, we observed that RT-MPs could penetrate the blood-brain barrier and be swallowed by TAMs. Then the microenvironment of TAMs is shifted from the M2 phenotype to the M1 phenotype, thereby modulating the interactions between TAMs and tumor cells. Single-cell sequencing analysis demonstrated that TAMs, after internalizing RT-MPs, active chemokine signaling pathways and secrete more chemokines, such as CCL5, CXCL2, CXCL1, CCL3, CCL4, and CCL22, attracting more CD4+ T cells and CD8+ T cells, improving immune-mediated killing, and enhancing subsequent combination anti-PD-1 therapy. These findings provide a preclinical foundation for exploring alternative treatments for patients with immunoresistant NSCLC BMs.
Collapse
Affiliation(s)
- Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Menglin Bai
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
25
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
26
|
Zhao L, Li M, Shen C, Luo Y, Hou X, Qi Y, Huang Z, Li W, Gao L, Wu M, Luo Y. Nano-Assisted Radiotherapy Strategies: New Opportunities for Treatment of Non-Small Cell Lung Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0429. [PMID: 39045421 PMCID: PMC11265788 DOI: 10.34133/research.0429] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Lung cancer is the second most commonly diagnosed cancer and a leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the most prevalent type. Over 70% of lung cancer patients require radiotherapy (RT), which operates through direct and indirect mechanisms to treat cancer. However, RT can damage healthy tissues and encounter radiological resistance, making it crucial to enhance its precision to optimize treatment outcomes, minimize side effects, and overcome radioresistance. Integrating nanotechnology into RT presents a promising method to increase its efficacy. This review explores various nano-assisted RT strategies aimed at achieving precision treatment. These include using nanomaterials as radiosensitizers, applying nanotechnology to modify the tumor microenvironment, and employing nano-based radioprotectors and radiation-treated cell products for indirect cancer RT. We also explore recent advancements in nano-assisted RT for NSCLC, such as biomimetic targeting that alters mesenchymal stromal cells, magnetic targeting strategies, and nanosensitization with high-atomic number nanomaterials. Finally, we address the existing challenges and future directions of precision RT using nanotechnology, highlighting its potential clinical applications.
Collapse
Affiliation(s)
- Lihong Zhao
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Mei Li
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Chen Shen
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yurui Luo
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Xiaoming Hou
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yu Qi
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Wei Li
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Lanyang Gao
- The Affiliated Hospital ofSouthwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Min Wu
- West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Yao Luo
- West China Hospital,
Sichuan University, Chengdu 610041, China
- Zigong First People’s Hospital, Zigong 643000, China
| |
Collapse
|
27
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
29
|
Deng S, Wang J, Hu Y, Sun Y, Yang X, Zhang B, Deng Y, Wei W, Zhang Z, Wen L, Qin Y, Huang F, Sheng Y, Wan C, Yang K. Irradiated tumour cell-derived microparticles upregulate MHC-I expression in cancer cells via DNA double-strand break repair pathway. Cancer Lett 2024; 592:216898. [PMID: 38670306 DOI: 10.1016/j.canlet.2024.216898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Radiotherapy (RT) is used for over 50 % of cancer patients and can promote adaptive immunity against tumour antigens. However, the underlying mechanisms remain unclear. Here, we discovered that RT induces the release of irradiated tumour cell-derived microparticles (RT-MPs), which significantly upregulate MHC-I expression on the membranes of non-irradiated cells, enhancing the recognition and killing of these cells by T cells. Mechanistically, RT-MPs induce DNA double-strand breaks (DSB) in tumour cells, activating the ATM/ATR/CHK1-mediated DNA repair signalling pathway, and upregulating MHC-I expression. Inhibition of ATM/ATR/CHK1 reversed RT-MP-induced upregulation of MHC-I. Furthermore, phosphorylation of STAT1/3 following the activation of ATM/ATR/CHK1 is indispensable for the DSB-dependent upregulation of MHC-I. Therefore, our findings reveal the role of RT-MP-induced DSBs and the subsequent DNA repair signalling pathway in MHC-I expression and provide mechanistic insights into the regulation of MHC-I expression after DSBs.
Collapse
Affiliation(s)
- Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, China.
| |
Collapse
|
30
|
Li X, Zhang C, Yue W, Jiang Y. Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment. Front Immunol 2024; 15:1362120. [PMID: 38962016 PMCID: PMC11219812 DOI: 10.3389/fimmu.2024.1362120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei, China
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
31
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
33
|
Deng Z, Li B, Yang M, Lu L, Shi X, Lovell JF, Zeng X, Hu W, Jin H. Irradiated microparticles suppress prostate cancer by tumor microenvironment reprogramming and ferroptosis. J Nanobiotechnology 2024; 22:225. [PMID: 38705987 PMCID: PMC11070086 DOI: 10.1186/s12951-024-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Immunogenic cell death (ICD) plays a crucial role in triggering the antitumor immune response in the tumor microenvironment (TME). Recently, considerable attention has been dedicated to ferroptosis, a type of ICD that is induced by intracellular iron and has been demonstrated to change the immune desert status of the TME. However, among cancers that are characterized by an immune desert, such as prostate cancer, strategies for inducing high levels of ferroptosis remain limited. Radiated tumor cell-derived microparticles (RMPs) are radiotherapy mimetics that have been shown to activate the cGAS-STING pathway, induce tumor cell ferroptosis, and inhibit M2 macrophage polarization. RMPs can also act as carriers of agents with biocompatibility. In the present study, we designed a therapeutic system wherein the ferroptosis inducer RSL-3 was loaded into RMPs, which were tested in in vitro and in vivo prostate carcinoma models established using RM-1 cells. The apoptosis inducer CT20 peptide (CT20p) was also added to the RMPs to aggravate ferroptosis. Our results showed that RSL-3- and CT20p-loaded RMPs (RC@RMPs) led to ferroptosis and apoptosis of RM-1 cells. Moreover, CT20p had a synergistic effect on ferroptosis by promoting reactive oxygen species (ROS) production, lipid hydroperoxide production, and mitochondrial instability. RC@RMPs elevated dendritic cell (DC) expression of MHCII, CD80, and CD86 and facilitated M1 macrophage polarization. In a subcutaneously transplanted RM-1 tumor model in mice, RC@RMPs inhibited tumor growth and prolonged survival time via DC activation, macrophage reprogramming, enhancement of CD8+ T cell infiltration, and proinflammatory cytokine production in the tumor. Moreover, combination treatment with anti-PD-1 improved RM-1 tumor inhibition. This study provides a strategy for the synergistic enhancement of ferroptosis for prostate cancer immunotherapies.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Binghui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Weidong Hu
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
35
|
Fan Y, Chen A, Zhu J, Liu R, Mei Y, Li L, Sha X, Wang X, Ren W, Wang L, Liu B. Engineered lactococcus lactis intrapleural therapy promotes regression of malignant pleural effusion by enhancing antitumor immunity. Cancer Lett 2024; 588:216777. [PMID: 38432582 DOI: 10.1016/j.canlet.2024.216777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.
Collapse
Affiliation(s)
- Yue Fan
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Aoxing Chen
- The Clinical Cancer Institute of Nanjing University, Nanjing, China; Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Mei
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China; Department of Pathology, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoxuan Sha
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaonan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Ren
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
36
|
Khan A, Huo Y, Guo Y, Shi J, Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med Oncol 2024; 41:124. [PMID: 38652406 DOI: 10.1007/s12032-024-02317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
- , Zhenjiang, People's Republic of China.
| |
Collapse
|
37
|
Deng S, Wang J, Hu Y, Sun Y, Yang X, Zhang B, Deng Y, Wei W, Zhang Z, Wen L, Qin Y, Huang F, Sheng Y, Wan C, Yang K. Induction of therapeutic immunity and cancer eradication through biofunctionalized liposome-like nanovesicles derived from irradiated-cancer cells. J Nanobiotechnology 2024; 22:156. [PMID: 38589867 PMCID: PMC11000387 DOI: 10.1186/s12951-024-02413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
38
|
Wang L, Shen K, Gao Z, Ren M, Wei C, Yang Y, Li Y, Zhu Y, Zhang S, Ding Y, Zhang T, Li J, Zhu M, Zheng S, Yang Y, Du S, Wei C, Gu J. Melanoma Derived Exosomes Amplify Radiotherapy Induced Abscopal Effect via IRF7/I-IFN Axis in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304991. [PMID: 38286661 PMCID: PMC10987102 DOI: 10.1002/advs.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/11/2023] [Indexed: 01/31/2024]
Abstract
Radiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor-bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single-cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor-derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I-IFN) secretion and M1 polarization via the miR-872-3p/IRF7 axis. Secreted I-IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN-γ and GZMB secretion. Together, the study shows that tumor-derived exosomes promote I-IFN secretion via the circPIK3R3/miR-872-3p/IRF7 axis in macrophages and enhance the anti-tumor immune response of CD8+ T cells.
Collapse
Affiliation(s)
- Lu Wang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Kangjie Shen
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Zixu Gao
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Ren
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chenlu Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yang Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinlam Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yu Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Simin Zhang
- Department of Plastic SurgeryShanghai Geriatric Medical CenterShanghai201104P. R. China
| | - Yiteng Ding
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Tianyi Zhang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianrui Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoluan Zheng
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| | - Yanwen Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shisuo Du
- Department of RadiotherapyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chuanyuan Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianying Gu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| |
Collapse
|
39
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y, Peng Z. SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol 2024; 129:111564. [PMID: 38320352 DOI: 10.1016/j.intimp.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Bingqing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yue Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
40
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
41
|
Chen Y, Zhang Y, Wang J, Cai X, Chen J, Min X, Xu Y, Qin Q, Wan C. Drug-Loaded Tumor-Derived Microparticles Elicit CD8+ T Cell-Mediated Anti-Tumor Response in Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:2227-2239. [PMID: 38465206 PMCID: PMC10924763 DOI: 10.2147/ijn.s449694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Background Hepatocellular Carcinoma (HCC) poses significant challenges due to limited effective treatments and high recurrence rates. Immunotherapy, a promising approach, faces obstacles in HCC patients due to T-cell exhaustion and immunosuppression within the tumor microenvironment. Methods Using doxorubicin-loaded tumor-derived microparticles (Dox-TMPs), the mice with H22 ascites model and subcutaneous tumors model were treated. Following the treatment, mice were re-challenged with H22 cells to compare the therapeutic effects and recurrence among different groups of mice, alongside examining the changes in the proportions of immune cells within the tumor microenvironment. Furthermore, Dox-TMPs were combined with anti-PD-1 to further validate their anti-tumor efficacy. In vitro studies using various liver cancer cell lines were conducted to verify the tumor-killing effects of Dox-TMPs. Additionally, CD8+ T cells from the abdominal cavity of tumor-free mice were co-cultured with H22 cells to confirm their specific tumor-killing abilities. Results Dox-TMPs demonstrate effective anti-tumor effects both in vitro and in vivo. In vivo, their effectiveness primarily involves enhancing CD8+ T cell infiltration, alleviating T cell immunosuppression, and improving the immune microenvironment to combat tumors. When used in combination with anti-PD-1, their anti-tumor effects are further enhanced. Moreover, some mice treated with Dox-TMPs developed anti-tumor immunity, displaying a self-specific T-cell immune response upon re-challenged with tumor cells. This suggests that Dox-TMPs also have the potential to act as a long-term immune response against tumor recurrence, indicating their capability as a tumor vaccine. Conclusion Dox-TMPs exhibit a dual role in liver cancer by regulating T cells within the tumor microenvironment, functioning both as an anti-tumor agent and a potential tumor vaccine.
Collapse
Affiliation(s)
- Yulin Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yi Zhang
- Hubei Engineering Research Center of Tumor-Targeted Biochemotherapy, Wuhan, 430030, People’s Republic of China
| | - Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiaobo Min
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yunjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Qi Qin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
42
|
Qiu J, Xia Y, Bao Y, Cheng J, Liu L, Qian D. Silencing PinX1 enhances radiosensitivity and antitumor-immunity of radiotherapy in non-small cell lung cancer. J Transl Med 2024; 22:228. [PMID: 38431575 PMCID: PMC10908107 DOI: 10.1186/s12967-024-05023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND We aimed to investigate the effects of PinX1 on non-small cell lung cancer(NSCLC) radiosensitivity and radiotherapy-associated tumor immune microenvironment and its mechanisms. METHODS The effect of PinX1 silencing on radiosensitivity in NSCLC was assessed by colony formation and CCK8 assay, immunofluorescence detection of γ- H2AX and micronucleus assay. Western blot was used to assess the effect of PinX1 silencing on DNA damage repair pathway and cGAS-STING pathway. The nude mouse and Lewis lung cancer mouse model were used to assess the combined efficacy of PinX1 silencing and radiotherapy in vivo. Changes in the tumor immune microenvironment were assessed by flow cytometry for different treatment modalities in the Lewis luuse model. The interaction protein RBM10 was screened by immunoprecipitation-mass spectrometry. RESULTS Silencing PinX1 enhanced radiosensitivity and activation of the cGAS-STING pathway while attenuating the DNA damage repair pathway. Silencing PinX1 further increases radiotherapy-stimulated CD8+ T cell infiltration and activation, enhances tumor control and improves survival in vivo; Moreover, PinX1 downregulation improves the anti-tumor efficacy of radioimmunotherapy, increases radioimmune-stimulated CD8+ T cell infiltration, and reprograms M2-type macrophages into M1-type macrophages in tumor tissues. The interaction of PinX1 and RBM10 may promote telomere maintenance by assisting telomerase localization to telomeres, thereby inhibiting the immunostimulatory effects of IR. CONCLUSIONS In NSCLC, silencing PinX1 significantly contributed to the radiosensitivity and promoted the efficacy of radioimmunotherapy. Mechanistically, PinX1 may regulate the transport of telomerase to telomeres through interacting with RBM10, which promotes telomere maintenance and DNA stabilization. Our findings reveal that PinX1 is a potential target to enhance the efficacy of radioimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Jieping Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Xia
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yawei Bao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
43
|
Yang M, Liu H, Lou J, Zhang J, Zuo C, Zhu M, Zhang X, Yin Y, Zhang Y, Qin S, Zhang H, Fan X, Dang Y, Cheng C, Cheng Z, Yu F. Alpha-Emitter Radium-223 Induces STING-Dependent Pyroptosis to Trigger Robust Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307448. [PMID: 37845027 DOI: 10.1002/smll.202307448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.
Collapse
Affiliation(s)
- Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Pudong Medical Center, Fudan University, Shanghai, 201399, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Changjing Zuo
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yifang Dang
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
44
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
45
|
Yang T, Li W, Zhou J, Xu M, Huang Z, Ming J, Huang T. A novel bystander effect in tamoxifen treatment: PPIB derived from ER+ cells attenuates ER- cells via endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2024; 15:147. [PMID: 38360722 PMCID: PMC10869711 DOI: 10.1038/s41419-024-06539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Tamoxifen (TAM) is the frontline therapy for estrogen receptor-positive (ER+) breast cancer in premenopausal women that interrupts ER signaling. As tumors with elevated heterogeneity, amounts of ER-negative (ER-) cells are present in ER+ breast cancer that cannot be directly killed by TAM. Despite complete remissions have been achieved in clinical practice, the mechanism underlying the elimination of ER- cells during TAM treatment remains an open issue. Herein, we deciphered the elimination of ER- cells in TAM treatment from the perspective of the bystander effect. Markable reductions were observed in tumorigenesis of ER- breast cancer cells by applying both supernatants from TAM-treated ER+ cells and a transwell co-culture system, validating the presence of a TAM-induced bystander effect. The major antitumor protein derived from ER+ cells, peptidyl-prolyl cis-trans isomerase B (PPIB), is the mediator of the TAM-induced bystander effect identified by quantitative proteomics. The attenuation of ER- cells was attributed to activated BiP/eIF2α/CHOP axis and promoted endoplasmic reticulum stress (ERS)-induced apoptosis, which can also be triggered by PPIB independently. Altogether, our study revealed a novel TAM-induced bystander effect in TAM treatment of ER+ breast cancer, raising the possibility of developing PPIB as a synergistic antitumor agent or even substitute endocrine therapy.
Collapse
Affiliation(s)
- Tinglin Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Hu Y, Sun Y, Liao Z, An D, Liu X, Yang X, Tian Y, Deng S, Meng J, Wang Y, Li J, Deng Y, Zhou Z, Chen Q, Ye Y, Wei W, Wu B, Lovell JF, Jin H, Huang F, Wan C, Yang K. Irradiated engineered tumor cell-derived microparticles remodel the tumor immune microenvironment and enhance antitumor immunity. Mol Ther 2024; 32:411-425. [PMID: 38098229 PMCID: PMC10861971 DOI: 10.1016/j.ymthe.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Radiotherapy (RT), administered to roughly half of all cancer patients, occupies a crucial role in the landscape of cancer treatment. However, expanding the clinical indications of RT remains challenging. Inspired by the radiation-induced bystander effect (RIBE), we used the mediators of RIBE to mimic RT. Specifically, we discovered that irradiated tumor cell-released microparticles (RT-MPs) mediated the RIBE and had immune activation effects. To further boost the immune activation effect of RT-MPs to achieve cancer remission, even in advanced stages, we engineered RT-MPs with different cytokine and chemokine combinations by modifying their production method. After comparing the therapeutic effect of the engineered RT-MPs in vitro and in vivo, we demonstrated that tIL-15/tCCL19-RT-MPs effectively activated antitumor immune responses, significantly prolonged the survival of mice with malignant pleural effusion (MPE), and even achieved complete cancer remission. When tIL-15/tCCL19-RT-MPs were combined with PD-1 monoclonal antibody (mAb), a cure rate of up to 60% was achieved. This combination therapy relied on the activation of CD8+ T cells and macrophages, resulting in the inhibition of tumor growth and the establishment of immunological memory against tumor cells. Hence, our research may provide an alternative and promising strategy for cancers that are not amenable to conventional RT.
Collapse
Affiliation(s)
- Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qinyan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
47
|
Zhai X, Lin Y, Zhu L, Wang Y, Zhang J, Liu J, Li L, Lu X. Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications. Cytokine Growth Factor Rev 2024; 75:101-109. [PMID: 37658030 DOI: 10.1016/j.cytogfr.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Ferroptosis is a type of cell death characterized by iron-dependent phospholipid peroxidation and reactive oxygen species overproduction. Ferroptosis induces immunogenic cell death and elicits anti-tumor immune responses, playing an important role in cancer immunotherapy. Ferroptosis suppression in cancer cells impairs its immunotherapeutic efficacy. To overcome this issue, ferroptosis inducers (FINs) have been combined with other cancer therapies to create an anti-tumor immune microenvironment. However, the ferroptosis-based crosstalk between immune and tumor cells is complex because oxidative products released by ferroptotic tumor cells impair the functions of anti-tumor immune cells, resulting in immunotherapeutic resistance. In the present article, we have reviewed ferroptosis in tumor and immune cells and summarized the crosstalk between ferroptotic tumor cells and the immune microenvironment. Based on the existing literature, we have further discussed future perspectives on opportunities for combining ferroptosis-targeted therapies with cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Wang
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Jiabi Zhang
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Jiewei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
48
|
Xu Y, Hao J, Chen Q, Qin Y, Qin H, Ren S, Sun C, Zhu Y, Shao B, Zhang J, Wang H. Inhibition of the RBMS1/PRNP axis improves ferroptosis resistance-mediated oxaliplatin chemoresistance in colorectal cancer. Mol Carcinog 2024; 63:224-237. [PMID: 37861356 DOI: 10.1002/mc.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The majority of patients with advanced colorectal cancer have chemoresistance to oxaliplatin, and studies on oxaliplatin resistance are limited. Our research showed that RNA-binding motif single-stranded interacting protein 1 (RBMS1) caused ferroptosis resistance in tumor cells, leading to oxaliplatin resistance. We employed bioinformatics to evaluate publically accessible data sets and discovered that RBMS1 was significantly upregulated in oxaliplatin-resistant colorectal cancer cells, in tandem with ferroptosis suppression. In vivo and in vitro studies revealed that inhibiting RBMS1 expression caused ferroptosis in colorectal cancer cells, restoring tumor cell sensitivity to oxaliplatin. Mechanistically, this is due to RBMS1 inducing prion protein translation, resulting in ferroptosis resistance in tumor cells. Validation of clinical specimens revealed that RBMS1 is similarly linked to tumor development and a poor prognosis. Overall, RBMS1 is a potential therapeutic target with clinical translational potential, particularly for oxaliplatin chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of Vascular Surgery, Henan Provincial People's Hospital, The Affiliated People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
49
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|