1
|
Paterson LC, Ali F, Naseri M, Perez Loureiro D, Festarini A, Stuart M, Boyer C, Rogge R, Costello C, Ybarra N, Kildea J, Richardson RB. Relative biological effectiveness of 31 meV thermal neutrons in peripheral blood lymphocytes. RADIATION PROTECTION DOSIMETRY 2025; 201:297-313. [PMID: 40062825 PMCID: PMC11926985 DOI: 10.1093/rpd/ncae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/01/2024] [Accepted: 11/27/2024] [Indexed: 03/22/2025]
Abstract
The reported relative biological effectiveness (RBE) for thermal neutrons has a large range (5-51, for cytogenetic endpoints), which can confound radiation protection decision-making. To determine whether thermal neutron spectra can influence RBE, the RBE of reactor-derived thermal neutrons of average energy 31 meV was evaluated in human peripheral blood lymphocytes using two classical DNA double-strand break endpoints: the dicentric chromosome assay (DCA) and the cytokinesis-block micronucleus assay. Dose-response curves for 41 to 408 mGy revealed a preference for linear regression. Maximum RBE (RBEM) values of 6.7 ± 0.9 and 4.4 ± 0.7 were calculated for the DCA and the micronucleus assay, respectively. These 31 meV RBEM values were significantly lower than our prior results for 64 meV thermal neutrons, which yielded a DCA RBEM of 11.3 ± 1.6 and a micronucleus RBEM of 9.0 ± 1.1. Dose-specific RBE values decreased with increasing dose for both assays. Microdosimetry simulations demonstrated similar quality factor values for both thermal neutron spectra. Dose deposition differences on the cellular scale, the difference in dose rate between irradiation configurations, or a not-yet understood phenomenon may be responsible for the RBE difference between the 31 and 64 meV thermal spectra. These findings indicate that the currently accepted radiation weighting factor wR value of 2.5 for thermal neutrons may underestimate the radiation detriment to small or shallow tissue targets including the lens of the eye.
Collapse
Affiliation(s)
- Laura C Paterson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fawaz Ali
- Biology R&D Facility Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Mohsen Naseri
- Applied Physics Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - David Perez Loureiro
- Applied Physics Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Amy Festarini
- Environment and Waste Technologies Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Marilyne Stuart
- Environment and Waste Technologies Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Chad Boyer
- Advanced Fuels and Reactor Physics Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Ronald Rogge
- National Security and Critical Infrastructure Directorate, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Christie Costello
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
| | - Norma Ybarra
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River, ON K0J 1J0, Canada
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Erickson S, Lum C, Stephens K, Parashar M, Saini DK, Rout B, Park C, Peshek TJ, McMillon-Brown L, Ghosh S. Elucidating early proton irradiation effects in metal halide perovskites via photoluminescence spectroscopy. iScience 2025; 28:111586. [PMID: 39834868 PMCID: PMC11743089 DOI: 10.1016/j.isci.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CH3NH3PbI3-xClx) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.5 MeV neutrons and 20 keV protons at fluences between 5×1010 and 1×1016 p+/cm2. As proton radiation increased beyond 1×1013 p+/cm2, defects formed in the film, causing both a decrease in photoluminescence intensity and a 30% increase in surface darkening. All proton irradiated films additionally exhibited continuous increase of energy bandgaps and decreasing charge recombination lifetimes with increasing proton fluences. These optical changes in the absorber layer precede performance declines detectable in standard current-voltage measurements of complete solar cell devices and therefore have the potential of serving as early indicators of radiation tolerance.
Collapse
Affiliation(s)
- Samuel Erickson
- Department of Physics, University of California, Merced, Merced, CA, USA
| | - Calista Lum
- Department of Physics, University of California, Merced, Merced, CA, USA
| | - Katie Stephens
- Materials and Biomaterials Science and Engineering, University of California, Merced, Merced, CA, USA
| | | | | | - Bibhudutta Rout
- Department of Physics, University of North Texas, Denton, TX, USA
| | - Cheol Park
- Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA 23681, USA
| | - Timothy J. Peshek
- Photovoltaic and Electrochemical Systems Branch, John H. Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA
| | - Lyndsey McMillon-Brown
- Photovoltaic and Electrochemical Systems Branch, John H. Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA
| | - Sayantani Ghosh
- Department of Physics, University of California, Merced, Merced, CA, USA
| |
Collapse
|
3
|
Grinberg M, Vodeneev V. The role of signaling systems of plant in responding to key astrophysical factors: increased ionizing radiation, near-null magnetic field and microgravity. PLANTA 2025; 261:31. [PMID: 39797920 DOI: 10.1007/s00425-025-04610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored. The review shows that, despite the lack of specialized receptors, plants are able to perceive changes in astrophysical factors. Potential mechanisms for perceiving changes in IR, MF and gravity levels are considered. The main pathway for inducing effects in plants is caused by primary physicochemical reactions and change in the levels of secondary messengers, including ROS and Ca2+. The presence of common components, including secondary messengers, in the chain of responses to astrophysical factors determines the complex nature of the response under their combined action. The analysis performed and the proposed hypothesis will help in planning space missions, as well as identifying the most important areas of research in space biology.
Collapse
Affiliation(s)
- Marina Grinberg
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Zhang B, Zhong R, Shen G, Tuo C, Dong Y, Wang W, Zhang M, Tong G, Zhang H, Yuan B, Quan Z, Su B, Lin Q, Zhao L, Ma A, Wang J, Zhang W, Zheng W, Liu F, Sun Y, Wang C, Chang Z, Liu L, Zhang X, Sun Y, Zhang T, Zhang S, Sun Y. The Space Radiobiological Exposure Facility on the China Space Station. ASTROBIOLOGY 2025; 25:32-41. [PMID: 39778906 DOI: 10.1089/ast.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The Space Radiobiological Exposure Facility (SREF) is a general experimental facility at the China Space Station for scientific research in the fields of space radiation protection, space radiation biology, biotechnology, and the origin of life. The facility provides an environment with controllable temperatures for experiments with organic molecules and model organisms such as small animals, plant seeds, and microorganisms. The cultivation of small animals can be achieved in the facility with the use of microfluidic chips and images and videos of such experiments can be captured by microscopy. SREF also includes a linear energy transfer (LET) detector, neutron detectors, and a solar ultraviolet (UV) detector to measure the LET spectrum of the charged particles, energy spectrum and dose equivalent of neutrons, and fluence of solar UV radiation, respectively. The facility is reusable, and the model organisms from the first exposure experiment were recovered in orbit and returned to the ground for further study.
Collapse
Affiliation(s)
- Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Runtao Zhong
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| | - Guohong Shen
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Changsheng Tuo
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Yongjin Dong
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| | - Meng Zhang
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| | - Guanghui Tong
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Huanxin Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Bin Yuan
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Zida Quan
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Bo Su
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Qiang Lin
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| | - Aijun Ma
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| | - Jing Wang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Weibo Zheng
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Fangwu Liu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ying Sun
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Chunqin Wang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Lijun Liu
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Xianguo Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - YueQiang Sun
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Tao Zhang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Shenyi Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Sun
- Institute of Environmental System Biology, Dalian Maritime University, Dalian, China
| |
Collapse
|
5
|
Du X, Zhang Y, Zhang M, Sun Y. Variations in DNA methylation and the role of regulatory factors in rice ( Oryza sativa) response to lunar orbit stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1427578. [PMID: 39610890 PMCID: PMC11603183 DOI: 10.3389/fpls.2024.1427578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Deep space flight imposes higher levels of damage on biological organisms; however, its specific effects on rice remain unclear. To investigate the variations in DNA methylation under deep space flight conditions, this study examined rice seeds carried by Chang'e-5. After 23 days of lunar orbital flight, the samples were planted in an artificial climate chamber and subjected to transcriptome and DNA methylation sequencing during the tillering and heading stages. The methylation patterns in the rice genome exhibited variability in response to lunar orbital stressors. DNA methylation alters the expression and interaction patterns of functional genes, involving biological processes such as metabolism and defense. Furthermore, we employed single-sample analysis methods to assess the gene expression and interaction patterns of different rice individuals. The genes exhibiting changes at the transcriptional and methylation levels varied among the different plants; however, these genes regulate consistent biological functions, primarily emphasizing metabolic processes. Finally, through single-sample analysis, we identified a set of miRNAs induced by lunar orbital stressors that potentially target DNA methylation regulatory factors. The findings of this study broaden the understanding of space biological effects and lay a foundation for further exploration of the mechanisms by which deep space flight impacts plants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and
Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
6
|
Britten RA, Fesshaye AS, Tidmore A, Tamgue EN, Alvarado-Arriaga PA. Different spectrum of space radiation induced cognitive impairments in radiation-naïve and adapted rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:68-74. [PMID: 39521496 DOI: 10.1016/j.lssr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
NASA's decision to resume manned deep space mission, first to the Moon and then Mars, necessitated a detailed assessment of the potential health effects that astronauts may experience on long-duration missions. Multiple studies suggest that there may be significant space radiation (SR)-induced impairment of neurocognitive processes, including advanced executive functions. However, given the multitude of SR-induced changes in the CNS, it is possible that completely different SR-induced sequelae will be induced in previously exposed individuals. Thus, current risk estimates are likely to be pertinent only for the early stages of a deep space mission, and even then only for astronauts that have no previous experience in space. In this study, rats that maintained high attentional set shifting (ATSET) performance after an initial exposure to 10 cGy of SR (either 250 MeV/n He or GCRsim), were exposed to an additional dose of 10 cGy GCRsim and their ATSET performance reassessed. The re-irradiated rats exhibited significant impairment of ATSET performance, however, the performance decrements differed in two important aspects from those typically observed after single exposures. First, the decrements were manifested when the rats were required to perform set shifting, specifically in the IDR and EDS stages of the ATSET test. Secondly, the main performance decrement was in a loss of processing speed, which in the IDR stage resulted in the re-irradiated rats taking 2-fold more time to solve the problem than did Sham rats. The functional consequence of this decrement was that compared to Sham rats, 20 % fewer SR-exposed rats solved the IDS and EDR problems within 20 s. These data suggests that prior SR exposure alters nature of ATSET impairments from that observed in radiation-naïve individuals. Risk estimates derived from studies that use radiation naïve rats may thus not fully reflect the incidence and nature of ATSET performance deficits that could occur over the entire duration of a mission to Mars, or in astronauts who return to deep space on multiple occasions. It would thus be germane to conduct in-flight monitoring for cognitive performance decrements observed in both radiation naïve and exposed rats during the mission, and ensure that the crew has sufficient overlapping skill sets to minimize the operational impact of these additional cognitive impairments.
Collapse
Affiliation(s)
- Richard A Britten
- Radiation Oncology, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA. 23507, USA.
| | | | | | | | | |
Collapse
|
7
|
Restier-Verlet J, Ferlazzo ML, Granzotto A, Al-Choboq J, Bellemou C, Estavoyer M, Lecomte F, Bourguignon M, Pujo-Menjouet L, Foray N. Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station. Cells 2024; 13:1703. [PMID: 39451221 PMCID: PMC11506070 DOI: 10.3390/cells13201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Radiation impacting astronauts in their spacecraft come from a "bath" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a "stochastic rain" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.
Collapse
Affiliation(s)
- Juliette Restier-Verlet
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Camélia Bellemou
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Maxime Estavoyer
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Florentin Lecomte
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| |
Collapse
|
8
|
George SP, Gaza R, Matthiä D, Laramore D, Lehti J, Campbell-Ricketts T, Kroupa M, Stoffle N, Marsalek K, Przybyla B, Abdelmelek M, Aeckerlein J, Bahadori AA, Barzilla J, Dieckmann M, Ecord M, Egeland R, Eronen T, Fry D, Jones BH, Hellweg CE, Houri J, Hirsh R, Hirvonen M, Hovland S, Hussein H, Johnson AS, Kasemann M, Lee K, Leitgab M, McLeod C, Milstein O, Pinsky L, Quinn P, Riihonen E, Rohde M, Rozhdestvenskyy S, Saari J, Schram A, Straube U, Turecek D, Virtanen P, Waterman G, Wheeler S, Whitman K, Wirtz M, Vandewalle M, Zeitlin C, Semones E, Berger T. Space radiation measurements during the Artemis I lunar mission. Nature 2024; 634:48-52. [PMID: 39294379 PMCID: PMC11446838 DOI: 10.1038/s41586-024-07927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Space radiation is a notable hazard for long-duration human spaceflight1. Associated risks include cancer, cataracts, degenerative diseases2 and tissue reactions from large, acute exposures3. Space radiation originates from diverse sources, including galactic cosmic rays4, trapped-particle (Van Allen) belts5 and solar-particle events6. Previous radiation data are from the International Space Station and the Space Shuttle in low-Earth orbit protected by heavy shielding and Earth's magnetic field7,8 and lightly shielded interplanetary robotic probes such as Mars Science Laboratory and Lunar Reconnaissance Orbiter9,10. Limited data from the Apollo missions11-13 and ground measurements with substantial caveats are also available14. Here we report radiation measurements from the heavily shielded Orion spacecraft on the uncrewed Artemis I lunar mission. At differing shielding locations inside the vehicle, a fourfold difference in dose rates was observed during proton-belt passes that are similar to large, reference solar-particle events. Interplanetary cosmic-ray dose equivalent rates in Orion were as much as 60% lower than previous observations9. Furthermore, a change in orientation of the spacecraft during the proton-belt transit resulted in a reduction of radiation dose rates of around 50%. These measurements validate the Orion for future crewed exploration and inform future human spaceflight mission design.
Collapse
Affiliation(s)
- Stuart P George
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA.
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | - Ramona Gaza
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Daniel Matthiä
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Diego Laramore
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Jussi Lehti
- Aboa Space Research Oy (ASRO), Turku, Finland
| | - Thomas Campbell-Ricketts
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Martin Kroupa
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
- Space Science and Applications (ISR-1), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nicholas Stoffle
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
- Axiom Space, Houston, TX, USA
| | - Karel Marsalek
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Bartos Przybyla
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Mena Abdelmelek
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Joachim Aeckerlein
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Amir A Bahadori
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, USA
| | - Janet Barzilla
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Matthias Dieckmann
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
| | - Michael Ecord
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Ricky Egeland
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Timo Eronen
- Aboa Space Research Oy (ASRO), Turku, Finland
| | - Dan Fry
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | - Christine E Hellweg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | | | - Robert Hirsh
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | | | - Scott Hovland
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
| | | | - A Steve Johnson
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Moritz Kasemann
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Kerry Lee
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
- The Aerospace Corporation, Houston, TX, USA
| | - Martin Leitgab
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
- Abbott Laboratories, Dallas, TX, USA
| | - Catherine McLeod
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | - Lawrence Pinsky
- Department of Physics and Astronomy, University of Houston, Houston, TX, USA
| | - Phillip Quinn
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | | | - Markus Rohde
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Sergiy Rozhdestvenskyy
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Jouni Saari
- Aboa Space Research Oy (ASRO), Turku, Finland
| | | | - Ulrich Straube
- European Astronaut Centre (EAC), European Space Agency (ESA), Cologne, Germany
| | - Daniel Turecek
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
| | | | - Gideon Waterman
- StemRad Ltd., Tel Aviv, Israel
- Advanced Medical Physics, Inc., Houston, TX, USA
| | - Scott Wheeler
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Kathryn Whitman
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Michael Wirtz
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | | | - Cary Zeitlin
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- Space Exploration and Mission Operations, Leidos, Houston, TX, USA
| | - Edward Semones
- Space Radiation Analysis Group, Johnson Space Center, Houston, TX, USA
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Thomas Berger
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany.
| |
Collapse
|
9
|
Jimenez M, L'Heureux J, Kolaya E, Liu GW, Martin KB, Ellis H, Dao A, Yang M, Villaverde Z, Khazi-Syed A, Cao Q, Fabian N, Jenkins J, Fitzgerald N, Karavasili C, Muller B, Byrne JD, Traverso G. Synthetic extremophiles via species-specific formulations improve microbial therapeutics. NATURE MATERIALS 2024; 23:1436-1443. [PMID: 38969782 PMCID: PMC11840811 DOI: 10.1038/s41563-024-01937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (Escherichia coli Nissle 1917, Ensifer meliloti), gram-positive bacteria (Lactobacillus plantarum) and yeast (Saccharomyces boulardii). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
Collapse
Affiliation(s)
- Miguel Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johanna L'Heureux
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Kolaya
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gary W Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle B Martin
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Husna Ellis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Dao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Yang
- Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Villaverde
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Afeefah Khazi-Syed
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qinhao Cao
- Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niora Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Fitzgerald
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Karavasili
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Muller
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Byrne
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Suh A, Ditelberg S, Szeto JJ, Kumar D, Ong J, Robert Gibson C, Mader TH, Waisberg E, Lee AG. Safety protocols, precautions, and countermeasures aboard the International Space Station to prevent ocular injury. Surv Ophthalmol 2024:S0039-6257(24)00097-3. [PMID: 39236988 DOI: 10.1016/j.survophthal.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The International Space Station (ISS) is a $100 billion epicenter of human activity in the vacuum of space that displays mankind's collective endeavor to explore the cosmic frontier. Even within the marvels of technological sophistication aboard the ISS, the human eye remains a highly vulnerable structure. In the absence of multiple layers of protection and risk assessments, crewmembers would face a substantial increase in vulnerability to ocular injury. Aside from stringent preflight screening criteria for astronauts, the ISS is equipped with ophthalmic medications, environmental control and life support systems (e.g., humidity regulation, carbon dioxide removal, pressurized device regulators), and radiation protection to reduce ocular injury. Moreover, additional countermeasures are currently being developed to mitigate the effects of spaceflight-associated neuro-ocular syndrome (SANS) and lunar dust toxicity for the Artemis Program missions. The success of future endeavors hinges not only on continued technological innovation, but also respecting the intricate interplay between human physiology and the extraterrestrial environments. Establishing habitations on the Moon and Mars, as well as NASA's Gateway Program (humanity's first space station around the Moon), will introduce a new set of challenges, underscoring the necessity for continuous insights into ocular health in space. We discuss the safety protocols, precautions, and countermeasures implemented on the ISS to prevent ocular injury - an aspect often overshadowed by the grandeur of space exploration.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, United States.
| | - Sarah Ditelberg
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Jonathan J Szeto
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Divy Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | | | | | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M College of Medicine, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
11
|
Shearer CK, McCubbin FM, Eckley S, Simon SB, Meshik A, McDonald F, Schmitt HH, Zeigler RA, Gross J, Mitchell J, Krysher C, Morris RV, Parai R, Jolliff BL, Gillis-Davis JJ, Joy KH, Bell SK, Lucey PG, Sun L, Sharp ZD, Dukes C, Sehlke A, Mosie A, Allton J, Amick C, Simon JI, Erickson TM, Barnes JJ, Dyar MD, Burgess K, Petro N, Moriarty D, Curran NM, Elsila JE, Colina-Ruiz RA, Kroll T, Sokaras D, Ishii HA, Bradley JP, Sears D, Cohen B, Pravdivseva O, Thompson MS, Neal CR, Hana R, Ketcham R, Welten K. Apollo Next Generation Sample Analysis (ANGSA): an Apollo Participating Scientist Program to Prepare the Lunar Sample Community for Artemis. SPACE SCIENCE REVIEWS 2024; 220:62. [PMID: 39176178 PMCID: PMC11335912 DOI: 10.1007/s11214-024-01094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/11/2024] [Indexed: 08/24/2024]
Abstract
As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years. ANGSA constitutes the first preliminary examination phase of a lunar "sample return mission" in over 50 years. It also mimics that same phase of an Artemis surface exploration mission, its design included placing samples within the context of local and regional geology through new orbital observations collected since Apollo and additional new "boots-on-the-ground" observations, data synthesis, and interpretations provided by Apollo 17 astronaut Harrison Schmitt. ANGSA used new curation techniques to prepare, document, and allocate these new lunar samples, developed new tools to open and extract gases from their containers, and applied new analytical instrumentation previously unavailable during the Apollo Program to reveal new information about these samples. Most of the 90 scientists, engineers, and curators involved in this mission were not alive during the Apollo Program, and it had been 30 years since the last Apollo core sample was processed in the Apollo curation facility at NASA JSC. There are many firsts associated with ANGSA that have direct relevance to Artemis. ANGSA is the first to open a core sample previously sealed on the surface of the Moon, the first to extract and analyze lunar gases collected in situ, the first to examine a core that penetrated a lunar landslide deposit, and the first to process pristine Apollo samples in a glovebox at -20 °C. All the ANGSA activities have helped to prepare the Artemis generation for what is to come. The timing of this program, the composition of the team, and the preservation of unopened Apollo samples facilitated this generational handoff from Apollo to Artemis that sets up Artemis and the lunar sample science community for additional successes.
Collapse
Affiliation(s)
- C. K. Shearer
- Dept. of Earth & Planet. Sci., Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA
- Lunar and Planetary Institute, Houston, TX 77058 USA
| | - F. M. McCubbin
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - S. Eckley
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - S. B. Simon
- Dept. of Earth & Planet. Sci., Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA
| | - A. Meshik
- Washington University St. Louis, St. Louis, MO 63130 USA
| | | | - H. H. Schmitt
- University of Wisconsin-Madison, P.O. Box 90730, Albuquerque, NM 87199 USA
| | - R. A. Zeigler
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - J. Gross
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - J. Mitchell
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - C. Krysher
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - R. V. Morris
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - R. Parai
- Washington University St. Louis, St. Louis, MO 63130 USA
| | - B. L. Jolliff
- Washington University St. Louis, St. Louis, MO 63130 USA
| | | | - K. H. Joy
- University of Manchester, Manchester, UK
| | - S. K. Bell
- University of Manchester, Manchester, UK
| | - P. G. Lucey
- University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - L. Sun
- University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Z. D. Sharp
- Dept. of Earth & Planet. Sci., Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA
| | - C. Dukes
- University of Virginia, Charlottesville, VA 22904 USA
| | - A. Sehlke
- NASA Ames Research Center, Moffett, CA 94035 USA
| | - A. Mosie
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - J. Allton
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - C. Amick
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - J. I. Simon
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - T. M. Erickson
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
| | - J. J. Barnes
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
| | - M. D. Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 USA
| | - K. Burgess
- United States Naval Research Laboratory, Washington DC, 20375 USA
| | - N. Petro
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - D. Moriarty
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - N. M. Curran
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - J. E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | | | - T. Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - D. Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - H. A. Ishii
- University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - J. P. Bradley
- University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - D. Sears
- NASA Ames Research Center, Moffett, CA 94035 USA
| | - B. Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - O. Pravdivseva
- Washington University St. Louis, St. Louis, MO 63130 USA
| | | | - C. R. Neal
- University of Notre Dame, Notre Dame, IN 46556 USA
| | - R. Hana
- Jackson School of Geosciences, University of Texas, Austin, TX 78712 USA
| | - R. Ketcham
- Jackson School of Geosciences, University of Texas, Austin, TX 78712 USA
| | - K. Welten
- SSL University of California, Berkeley, CA 94720 USA
| | - the ANGSA science team
- Dept. of Earth & Planet. Sci., Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA
- Lunar and Planetary Institute, Houston, TX 77058 USA
- Jacobs, ARES, NASA Johnson Space Center, Houston, TX 77058-3696 USA
- Washington University St. Louis, St. Louis, MO 63130 USA
- ESA/ESTEC, Noordwijk, The Netherlands
- University of Wisconsin-Madison, P.O. Box 90730, Albuquerque, NM 87199 USA
- University of Manchester, Manchester, UK
- University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
- University of Virginia, Charlottesville, VA 22904 USA
- NASA Ames Research Center, Moffett, CA 94035 USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
- Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 USA
- United States Naval Research Laboratory, Washington DC, 20375 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
- Purdue University, West Lafayette, IN 47907 USA
- University of Notre Dame, Notre Dame, IN 46556 USA
- Jackson School of Geosciences, University of Texas, Austin, TX 78712 USA
- SSL University of California, Berkeley, CA 94720 USA
| |
Collapse
|
12
|
Pak S, Cucinotta FA. Organ dose equivalents of albedo protons and neutrons under exposure to large solar particle events during lunar human landing missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:133-139. [PMID: 39067984 DOI: 10.1016/j.lssr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Astronauts participating in lunar landing missions will encounter exposure to albedo particles emitted from the lunar surface as well as primary high-energy particles in the spectra of galactic cosmic rays (GCRs) and solar particle events (SPEs). While existing studies have examined particle energy spectra and absorbed doses in limited radiation exposure scenarios on and near the Moon, comprehensive research encompassing various shielding amounts and large SPEs on the lunar surface remains lacking. Additionally, detailed organ dose equivalents of albedo particles in a human model on the lunar surface have yet to be investigated. This work assesses the organ dose equivalents of albedo neutrons and albedo protons during historically large SPEs in August 1972 and September 1989 utilizing realistic computational anthropomorphic human phantom for the first time. Dosimetric quantities within human organs have been evaluated based on the PHITS Monte Carlo simulation results and quality factors of the state-of-the-art NASA Space Cancer Risk (NSCR) model, as well as ICRP publications. The results with the NSCR model indicate that the albedo contribution to organ dose equivalent is less than 3 % for 1 g/cm2 aluminum shielding, while it increases to more than 30 % in some organs for 50 g/cm2 aluminum shielding during exposure to low-energy-proton-rich SPEs.
Collapse
Affiliation(s)
- Sungmin Pak
- Department of Health Physics and Diagnostic Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
13
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
14
|
Zheng X, Zhao C, Sun X, Dong W. Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review. Polymers (Basel) 2024; 16:1582. [PMID: 38891528 PMCID: PMC11174982 DOI: 10.3390/polym16111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The construction of lunar bases represents a fundamental challenge for deep space exploration, lunar research, and the exploitation of lunar resources. In-situ resource utilization (ISRU) technology constitutes a pivotal tool for constructing lunar bases. Using lunar regolith to create geopolymers as construction materials offers multiple advantages as an ISRU technique. This paper discusses the principle of geopolymer for lunar regolith, focusing on the reaction principle of geopolymer. It also analyzes the applicability of geopolymer under the effects of the lunar surface environment and the differences between the highland and mare lunar regolith. This paper summarizes the characteristics of existing lunar regolith simulants and the research on the mechanical properties of lunar regolith geopolymers using lunar regolith simulants. Highland lunar regolith samples contain approximately 36% amorphous substances, the content of silicon is approximately 28%, and the ratios of Si/Al and Si/Ca are approximately 1.5 and 2.6, respectively. They are more suitable as precursor materials for geopolymers than mare samples. The compressive strength of lunar regolith geopolymer is mainly in the range of 18~30 MPa. Sodium silicate is the most commonly utilized activator for lunar regolith geopolymers; alkalinity in the range of 7% to 10% and modulus in the range of 0.8 to 2.0 are suitable. A vacuum environment and multiple temperature cycles reduce the mechanical properties of geopolymers by 8% to 70%. Future research should be concentrated on the precision control of the lunar regolith's chemical properties and the alkali activation efficacy of geopolymers in the lunar environment.
Collapse
Affiliation(s)
- Xiaowei Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; (X.Z.); (C.Z.)
| | - Cong Zhao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; (X.Z.); (C.Z.)
| | - Xiaoyan Sun
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; (X.Z.); (C.Z.)
- Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan 030001, China
| | - Weiwei Dong
- Centre for Balance Architecture, Zhejiang University, Hangzhou 310063, China
| |
Collapse
|
15
|
Dandouras I, Roussos E. High-energy particle observations from the Moon. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230311. [PMID: 38522469 PMCID: PMC10961188 DOI: 10.1098/rsta.2023.0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The Moon is a unique natural laboratory for the study of the deep space plasma and energetic particles environment. During more than 3/4 of its orbit around the Earth it is exposed to the solar wind. Being an unmagnetized body and lacking a substantial atmosphere, solar wind and solar energetic particles bombard the Moon's surface, interacting with the lunar regolith and the tenuous lunar exosphere. Energetic particles arriving at the Moon's surface can be absorbed, or scattered, or can remove another particle from the lunar regolith by sputtering or desorption. A similar phenomenon occurs also with the galactic cosmic rays, which have fluxes and energy spectra representative of interplanetary space. During the remaining part of its orbit the Moon crosses the tail of the terrestrial magnetosphere. It then provides the opportunity to study in-situ the terrestrial magnetotail plasma environment as well as atmospheric escape from the Earth's ionosphere, in the form of heavy ions accelerated and streaming downtail. The lunar environment is thus a unique natural laboratory for analysing the interaction of the solar wind, the cosmic rays and the Earth's magnetosphere with the surface, the immediate subsurface, and the surface-bounded exosphere of an unmagnetized planetary body. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.
Collapse
Affiliation(s)
- Iannis Dandouras
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse/CNRS/UPS/CNES, Toulouse, France
| | - Elias Roussos
- Max Planck Institute for Solar System Research, Goettingen, Germany
| |
Collapse
|
16
|
Nardi L, Davis NM, Sansolini S, Baratto de Albuquerque T, Laarraj M, Caputo D, de Cesare G, Shariati Pour SR, Zangheri M, Calabria D, Guardigli M, Balsamo M, Carrubba E, Carubia F, Ceccarelli M, Ghiozzi M, Popova L, Tenaglia A, Crisconio M, Donati A, Nascetti A, Mirasoli M. APHRODITE: A Compact Lab-on-Chip Biosensor for the Real-Time Analysis of Salivary Biomarkers in Space Missions. BIOSENSORS 2024; 14:72. [PMID: 38391991 PMCID: PMC10887022 DOI: 10.3390/bios14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).
Collapse
Affiliation(s)
- Lorenzo Nardi
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Serena Sansolini
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Thiago Baratto de Albuquerque
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mohcine Laarraj
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Michele Balsamo
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Elisa Carrubba
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Fabrizio Carubia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marco Ceccarelli
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Michele Ghiozzi
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Liyana Popova
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Andrea Tenaglia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marino Crisconio
- Agenzia Spaziale Italiana (ASI), Italian Space Agency, Via del Politecnico, I-00133 Rome, Italy;
| | - Alessandro Donati
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
17
|
Pagliarello R, Bennici E, Di Sarcina I, Villani ME, Desiderio A, Nardi L, Benvenuto E, Cemmi A, Massa S. Effects of gamma radiation on engineered tomato biofortified for space agriculture by morphometry and fluorescence-based indices. FRONTIERS IN PLANT SCIENCE 2023; 14:1266199. [PMID: 37877080 PMCID: PMC10591191 DOI: 10.3389/fpls.2023.1266199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Introduction Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts' diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed. Methods MicroTom plants genetically engineered to express the Petunia hybrida PhAN4 gene, restoring the biosynthesis of anthocyanins in tomato, were used. Seeds and plants from wild type and engineered lines AN4-M and AN4-P2 were exposed to IR doses that they may experience during a long-term space mission, simulated through the administration of gamma radiation. Plant response was continuously evaluated along life cycle by a non-disturbing/non-destructive monitoring of biometric and multiparametric fluorescence-based indices at both phenotypic and phenological levels, and indirectly measuring changes occurring at the primary and secondary metabolism level. Results Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age. Discussion These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.
Collapse
Affiliation(s)
- Riccardo Pagliarello
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Elisabetta Bennici
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Angiola Desiderio
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Nardi
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Silvia Massa
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
18
|
Lerner D, Pohlen M, Wang A, Walter J, Cairnie M, Gifford S. X-Ray Imaging in the Simulated Microgravity Environment of Parabolic Flight. Aerosp Med Hum Perform 2023; 94:786-791. [PMID: 37726905 DOI: 10.3357/amhp.6286.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
INTRODUCTION: The advancement of human spaceflight has made urgent the need to develop medical imaging technology to ensure a high level of in-flight care. To date, only ultrasound has been used in spaceflight. Radiography has multiple advantages over ultrasound, including lower operator dependence, more rapid acquisition, typically higher spatial resolution, and characterization of tissue with acoustic impedance precluding ultrasound. This proof-of-concept work demonstrates for the first time the feasibility of performing human radiographs in microgravity.METHODS: Radiographs of a phantom and human subject's hand, knee, chest, cervical spine, and pelvis were obtained aboard a parabolic flight in microgravity and simulated lunar gravity with various subject and operator positions. Control radiographs were acquired with the same system on the ground. These radiographs were performed with a Food and Drug Administration-approved ultra-portable, wireless, battery-powered, digital x-ray system.RESULTS: The radiographs of the phantom acquired in reduced gravity were qualitatively and quantitatively compared to the ground controls and found to exhibit similar diagnostic adequacy. There was no statistically significant difference in contrast resolution or spatial resolution with a spatial resolution across all imaging environments up to the Nyquist frequency of 3.6 line-pairs/mm and an average contrast-to-noise ratio of 2.44.DISCUSSION: As mass, power, and volume limitations lessen over the coming decades and the miniaturization of imaging equipment continues, in-flight implementation of nonsonographic modalities will become practical. Given the demonstrated ease of use and satisfactory image quality, portable radiography is ready to be the new frontier of space medical imaging.Lerner D, Pohlen M, Wang A, Walter J, Cairnie M, Gifford S. X-ray imaging in the simulated microgravity environment of parabolic flight. Aerosp Med Hum Perform. 2023; 94(10):786-791.
Collapse
|
19
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|
21
|
De Micco V, Aronne G, Caplin N, Carnero-Diaz E, Herranz R, Horemans N, Legué V, Medina FJ, Pereda-Loth V, Schiefloe M, De Francesco S, Izzo LG, Le Disquet I, Kittang Jost AI. Perspectives for plant biology in space and analogue environments. NPJ Microgravity 2023; 9:67. [PMID: 37604914 PMCID: PMC10442387 DOI: 10.1038/s41526-023-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Nicol Caplin
- SciSpacE Team, Directorate of Human and Robotic Exploration Programmes, European Space Agency (ESA), Noordwijk, Netherlands
| | - Eugénie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Boeretang 200, 2400, Mol, Belgium
| | - Valérie Legué
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Mona Schiefloe
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Ann- Iren Kittang Jost
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| |
Collapse
|
22
|
Naito M, Kusano H, Kodaira S. Global dose distributions of neutrons and gamma-rays on the Moon. Sci Rep 2023; 13:13275. [PMID: 37582838 PMCID: PMC10427620 DOI: 10.1038/s41598-023-40405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
Dose assessment on the lunar surface is important for future long-term crewed activity. In addition to the major radiation of energetic charged particles from galactic cosmic rays (GCRs), neutrons and gamma-rays are generated by nuclear interactions of space radiation with the Moon's surface materials, as well as natural radioactive nuclides. We obtained neutron and gamma-ray ambient dose distributions on the Moon using Geant4 Monte Carlo simulations combined with the Kaguya gamma-ray spectrometer measurement dataset from February 10 to May 28, 2009. The neutron and gamma-ray dose rates varied in the ranges of 58.7-71.5 mSv/year and 3.33-3.76 mSv/year, respectively, depending on the lunar geological features. The lunar neutron dose was high in the basalt-rich mare, where the iron- and titanium-rich regions are present, due to their large average atomic mass. As expected, the lunar gamma-ray dose map was similar to the distribution of natural radioactive elements (238U, 232Th, and 40K), although the GCR-induced secondary gamma-ray dose was significant at ~ 3.4 mSv/year. The lunar secondary dose contribution resulted in an additional dose of 12-15% to the primary GCR particles. Global dose distributions on the lunar surface will help identify better locations for long-term stays and suggest radiation protection strategies for future crewed missions.
Collapse
Affiliation(s)
- Masayuki Naito
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Hiroki Kusano
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Satoshi Kodaira
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| |
Collapse
|
23
|
Schneider V, Siegel B, Allen JR. Human Health on the Moon and Beyond and the Results of the Spaceflight for Everybody Symposium. Aerosp Med Hum Perform 2023; 94:634-643. [PMID: 37501302 DOI: 10.3357/amhp.6138.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION:In 2022, the National Aeronautics and Space Administration (NASA) began launching missions to establish a sustainable human presence on the Moon. One key to success will be maintaining human health. In preparation for longer missions with more diverse crews, the Spaceflight for Everybody Symposium was held to review currently known human spaceflight biomedical knowledge, the future of exploration space medicine, and the ability of NASA to manage the spaceflight human health risks and enable exploration. The symposium highlighted the future of precision health/personalized medicine, the possible spaceflight health acute and lifetime illnesses, and the challenge of identifying appropriate prevention, treatment, rehabilitation, and autonomous medical systems for long-duration spaceflight. The symposium was organized to look back at NASA exploration, science, and leadership successes, celebrate NASA women's leadership, and focus on future Artemis activities, including research and development that will benefit both spaceflight and terrestrial life. NASA current preparations for returning to the Moon have led to increased acknowledgment of the importance of workforce diversity, i.e., to use the best candidate in every work position, including the plan for the first woman and person of color to land on the Moon. NASA is developing plans to use commercial spaceflight research opportunities when the International Space Station is no longer available. Astronaut health decisions will consist of individualized health risk determinations and mitigation strategies and increased medical self-care. Research findings include improved exploration cardiovascular, musculoskeletal, and radiation risk reduction and improved interpersonal support for both astronaut crews and mission control personnel.Schneider V, Siegel B, Allen JR. Human health on the Moon and beyond and the results of the Spaceflight for Everybody Symposium. Aerosp Med Hum Perform. 2023; 94(8):634-643.
Collapse
|
24
|
Diaz J, Kuhlman BM, Edenhoffer NP, Evans AC, Martin KA, Guida P, Rusek A, Atala A, Coleman MA, Wilson PF, Almeida-Porada G, Porada CD. Immediate effects of acute Mars mission equivalent doses of SEP and GCR radiation on the murine gastrointestinal system-protective effects of curcumin-loaded nanolipoprotein particles (cNLPs). FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 10:1117811. [PMID: 38741937 PMCID: PMC11089821 DOI: 10.3389/fspas.2023.1117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Introduction Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.
Collapse
Affiliation(s)
- Jonathan Diaz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Bradford M. Kuhlman
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter Guida
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Adam Rusek
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
25
|
Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 2023; 9:8. [PMID: 36707520 PMCID: PMC9883222 DOI: 10.1038/s41526-023-00262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.
Collapse
|
26
|
Vuong PQ, Quang ND, Kim H, Lee J, Kang S, Nam UW, Park WK, Sohn J, Choi YJ, Youn S, Ye SJ, Kim S. Development of novel crystal scintillators for lunar surface science. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Hertel NE, Biegalski SR, Nelson VI, Nelson WA, Mukhopadhyay S, Su Z, Chan AM, Kesarwala AH, Dynan WS. Compact portable sources of high-LET radiation: Validation and potential application for galactic cosmic radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:163-169. [PMID: 36336362 DOI: 10.1016/j.lssr.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Implementation of a systematic program for galactic cosmic radiation (GCR) countermeasure discovery will require convenient access to ground-based space radiation analogs. The current gold standard approach for GCR simulation is to use a particle accelerator for sequential irradiation with ion beams representing different GCR components. This has limitations, particularly for studies of non-acute responses, strategies that require robotic instrumentation, or implementation of complex in vitro models that are emerging as alternatives to animal experimentation. Here we explore theoretical and practical issues relating to a different approach to provide a high-LET radiation field for space radiation countermeasure discovery, based on use of compact portable sources to generate neutron-induced charged particles. We present modeling studies showing that DD and DT neutron generators, as well as an AmBe radionuclide-based source, generate charged particles with a linear energy transfer (LET) distribution that, within a range of biological interest extending from about 10 to 200 keV/μm, resembles the LET distribution of reference GCR radiation fields experienced in a spacecraft or on the lunar surface. We also demonstrate the feasibility of using DD neutrons to induce 53BP1 DNA double-strand break repair foci in the HBEC3-KT line of human bronchial epithelial cells, which are widely used for studies of lung carcinogenesis. The neutron-induced foci are larger and more persistent than X ray-induced foci, consistent with the induction of complex, difficult-to-repair DNA damage characteristic of exposure to high-LET (>10 keV/μm) radiation. We discuss limitations of the neutron approach, including low fluence in the low LET range (<10 keV/μm) and the absence of certain long-range features of high charge and energy particle tracks. We present a concept for integration of a compact portable source with a multiplex microfluidic in vitro culture system, and we discuss a pathway for further validation of the use of compact portable sources for countermeasure discovery.
Collapse
Affiliation(s)
- Nolan E Hertel
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America.
| | - Steven R Biegalski
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Victoria I Nelson
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - William A Nelson
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Sharmistha Mukhopadhyay
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, 30332-0745 Atlanta, GA, United States of America
| | - Zitong Su
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - Alexis M Chan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - Aparna H Kesarwala
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America
| | - William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, 30322 Atlanta GA, United States of America; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, 30322 Atlanta GA, United States of America.
| |
Collapse
|
28
|
Kernagis DN, Balcer-Kubiczek E, Bazyar S, Orschell CM, Jackson IL. Medical countermeasures for the hematopoietic-subsyndrome of acute radiation syndrome in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:36-43. [PMID: 36336367 DOI: 10.1016/j.lssr.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
More than 50 years after the Apollo missions ended, the National Aeronautical and Space Administration (NASA) and other international space agencies are preparing a return to the moon as a step towards deep space exploration. At doses ranging from a fraction of a Gray (Gy) to a few Gy, crew will be at risk for developing bone marrow failure associated with the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) requiring pharmacological intervention to reduce risk to life and mission completion. Four medical countermeasures (MCM) in the colony stimulating factor class of drugs are now approved for treatment of myelosuppression associated with ARS. When taken in conjunction with antibiotics, fluids, antidiarrheals, antiemetics, antipyretics, and other treatments for symptomatic illness, the likelihood for recovery and mission completion can be greatly improved. The current review describes the performance and health risks of deep space flight, ionizing radiation exposure during crewed missions to the moon and Mars, and U.S. Food and Drug Administration (FDA)-approved medical interventions to treat ARS. With an expansion of human exploration missions beyond low Earth orbit (LEO), including near-term Lunar and future Mars missions, inclusion of MCMs to counteract ARS in the spaceflight kit will be critical for preserving crew health and performance.
Collapse
Affiliation(s)
- Dawn N Kernagis
- Departmenet of Neurosurgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth Balcer-Kubiczek
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| | - Soha Bazyar
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| | - Christie M Orschell
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 United States
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201 United States.
| |
Collapse
|
29
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
30
|
De Micco V, Arena C, Di Fino L, Narici L. Radiation environment in exploration-class space missions and plants' responses relevant for cultivation in Bioregenerative Life Support Systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1001158. [PMID: 36212311 PMCID: PMC9540851 DOI: 10.3389/fpls.2022.1001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
For deep space exploration, radiation effects on astronauts, and on items fundamental for life support systems, must be kept under a pre-agreed threshold to avoid detrimental outcomes. Therefore, it is fundamental to achieve a deep knowledge on the radiation spatial and temporal variability in the different mission scenarios as well as on the responses of different organisms to space-relevant radiation. In this paper, we first consider the radiation issue for space exploration from a physics point of view by giving an overview of the topics related to the spatial and temporal variability of space radiation, as well as on measurement and simulation of irradiation, then we focus on biological issues converging the attention on plants as one of the fundamental components of Bioregenerative Life Support Systems (BLSS). In fact, plants in BLSS act as regenerators of resources (i.e. oxygen production, carbon dioxide removal, water and wastes recycling) and producers of fresh food. In particular, we summarize some basic statements on plant radio-resistance deriving from recent literature and concentrate on endpoints critical for the development of Space agriculture. We finally indicate some perspective, suggesting the direction future research should follow to standardize methods and protocols for irradiation experiments moving towards studies to validate with space-relevant radiation the current knowledge. Indeed, the latter derives instead from experiments conducted with different radiation types and doses and often with not space-oriented scopes.
Collapse
Affiliation(s)
- Veronica De Micco
- Laboratory of Plant and Wood Anatomy, Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Carmen Arena
- Laboratory of Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luca Di Fino
- Physics Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Livio Narici
- Physics Department, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
31
|
Cope H, Willis CR, MacKay MJ, Rutter LA, Toh LS, Williams PM, Herranz R, Borg J, Bezdan D, Giacomello S, Muratani M, Mason CE, Etheridge T, Szewczyk NJ. Routine omics collection is a golden opportunity for European human research in space and analog environments. PATTERNS 2022; 3:100550. [PMID: 36277820 PMCID: PMC9583032 DOI: 10.1016/j.patter.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Richardson RB. The role of oxygen and the Goldilocks range in the development of cataracts induced by space radiation in US astronauts. Exp Eye Res 2022; 223:109192. [DOI: 10.1016/j.exer.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
|
33
|
Li H. Biological effectiveness and relative biological effectiveness of ion beams for in-vitro cell irradiation. Cancer Sci 2022; 113:2807-2813. [PMID: 35642350 PMCID: PMC9357665 DOI: 10.1111/cas.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Biological effectiveness and relative biological effectiveness are critical for proton and ion beam radiotherapy. However, the relationship between the two quantities and physical character of ion beams is not well established. By analyzing 1188 sets of in‐vitro cell irradiation experiments using ion beams ranging from protons to 238U, compiled by the Particle Irradiation Data Ensemble (PIDE) project, the biological effectiveness of the ion beams, with cell survival fractionation (SF) as the endpoint, was found to be dependent on the fluence and linear energy transfer (LET) of the ion beam. Consequently, the relative biological effectiveness of the ion beam to photon beam was also established as a function of LET. A common form of relationship among SF, fluence, and LET was found to be valid for all ion beam experiments. The close form relationship could be used for proton and ion beam radiotherapy applications.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Özelbaykal B, Öğretmenoğlu G, Gedik Ş. The Effects of Space Radiation and Microgravity on Ocular Structures. Turk J Ophthalmol 2022; 52:57-63. [PMID: 35196841 PMCID: PMC8876783 DOI: 10.4274/tjo.galenos.2021.29566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Long-term exposure to microgravity and space radiation leads to physiological and pathological changes in human biology. Pathological neuro-ocular changes are collected under the name spaceflight-associated neuro-ocular syndrome. This review examines studies on the effects of microgravity and space radiation on the ocular structures and their results. In addition, we discuss treatment methods and hypotheses to reduce the effects of microgravity and space radiation on biological structures.
Collapse
Affiliation(s)
| | - Gökhan Öğretmenoğlu
- Adana City Training and Research Hospital, Clinic of Ophthalmology, Adana, Turkey
| | - Şansal Gedik
- Selçuk University Faculty of Medicine, Department of Ophthalmology, Konya, Turkey
| |
Collapse
|
35
|
Luo P, Zhang X, Fu S, Li Y, Li C, Cao J. First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang'E-4 mission. SCIENCE ADVANCES 2022; 8:eabk1760. [PMID: 35030015 PMCID: PMC8759739 DOI: 10.1126/sciadv.abk1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Human activities on the lunar surface are severely constrained by the space radiation dominated by cosmic rays (CRs). Here, we report the first measurements of the low-energy (about 10 to 100 MeV/nuc) CR spectra on the lunar surface from China’s Chang’E-4 (CE-4) mission around the solar minimum 24/25. The results show that for the proton, helium, CNO, and heavy-ion groups, the ratios (ratio errors) of the CE-4 fluxes to those from the near-earth spacecraft are 1.05 (0.15), 1.30 (0.18), 1.08 (0.16), and 1.24 (0.21), respectively, and to those predicted by the models [CRÈME96 and CRÈME2009] are instead [1.69 (0.17), 2.25 (0.23)], [1.66 (0.17), 1.76 (0.18)], [1.08 (0.11), 1.07 (0.11)], and [1.33 (0.18), 1.17 (0.15)]. Moreover, a notable enhancement of 3He/4He ratio is observed at ~12 MeV/nuc, and the CR dawn-dusk symmetry is confirmed. These results provide valuable insights into the CRs on the lunar farside surface and will benefit future lunar exploration.
Collapse
Affiliation(s)
- Pengwei Luo
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | - Xiaoping Zhang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | - Shuai Fu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | - Yong Li
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | - Cunhui Li
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, China
| | - Jinbin Cao
- School of Space and Environment, Beihang University, Beijing, China
| |
Collapse
|
36
|
High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. Int J Mol Sci 2022; 23:ijms23020878. [PMID: 35055062 PMCID: PMC8779315 DOI: 10.3390/ijms23020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6–85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.
Collapse
|
37
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
38
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
39
|
Bennett PV, Johnson AM, Ackerman SE, Chaudhary P, Keszenman DJ, Wilson PF. Dose-Rate Effects of Protons and Light Ions for DNA Damage Induction, Survival and Transformation in Apparently Normal Primary Human Fibroblasts. Radiat Res 2021; 197:298-313. [PMID: 34910217 DOI: 10.1667/rade-21-00138.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
We report on effects of low-dose exposures of accelerated protons delivered at high-dose rate (HDR) or a simulated solar-particle event (SPE) like low-dose rate (LDR) on immediate DNA damage induction and processing, survival and in vitro transformation of low passage NFF28 apparently normal primary human fibroblasts. Cultures were exposed to 50, 100 and 1,000 MeV monoenergetic protons in the Bragg entrance/plateau region and cesium-137 γ rays at 20 Gy/h (HDR) or 1 Gy/h (LDR). DNA double-strand breaks (DSB) and clustered DNA damages (containing oxypurines and abasic sites) were measured using transverse alternating gel electrophoresis (TAFE) and immunocytochemical detection/scoring of colocalized γ-H2AX pS139/53BP1 foci, with their induction being linear energy transfer (LET) dependent and dose-rate sparing observed for the different damage classes. Relative biological effectiveness (RBE) values for cell survival after proton irradiation at both dose-rates ranged from 0.61-0.73. Transformation RBE values were dose-rate dependent, ranging from ∼1.8-3.1 and ∼0.6-1.0 at low doses (≤30 cGy) for HDR and LDR irradiations, respectively. However peak transformation frequencies were significantly higher (1.3-7.3-fold) for higher doses of 0.5-1 Gy delivered at SPE-like LDR. Cell survival and transformation frequencies measured after low-dose 500 MeV/n He-4, 290 MeV/n C-12 and 600 MeV/n Si-28 ion irradiations also showed an inverse dose-rate effect for transformation at SPE-like LDR. This work demonstrates the existence of inverse dose-rate effects for proton and light-ion-induced postirradiation cell survival and in vitro transformation for space mission-relevant doses and dose rates.
Collapse
Affiliation(s)
- Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Sarah E Ackerman
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Pankaj Chaudhary
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | | | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
40
|
Kodaira S, Naito M, Uchihori Y, Hashimoto H, Yano H, Yamagishi A. Space Radiation Dosimetry at the Exposure Facility of the International Space Station for the Tanpopo Mission. ASTROBIOLOGY 2021; 21:1473-1478. [PMID: 34348047 DOI: 10.1089/ast.2020.2427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation dosimetry was carried out at the exposure facility (EF) and the pressurized module (PM) of the Japanese Kibo module installed in the International Space Station as one study on environmental monitoring for the Tanpopo mission. Three exposure panels and three references including biological and organic samples and luminescence dosimeters were launched to obtain data for different exposure durations during 3 years from May 2015 to July 2018. The dosimeters were equipped with additional shielding materials (0.55, 2.95, and 6.23 g/cm2 mass thickness). The relative dose variation, as a function of shielding mass thickness, was observed and compared with Monte Carlo simulations with respect to galactic cosmic rays (GCRs) and typical solar energetic particles (SEPs). The mean annual dose rates were DEF = 231 ± 5 mGy/year at the EF and DPM = 82 ± 1 mGy/year at the PM during the 3 years. The PM is well shielded, and the GCR simulation indicated that the measured mean dose reduction ratio inside the module (DPM/DEF = 0.35) required ∼26 g/cm2 additional shielding mass thickness. Observed points of the dose reduction tendency could be explained by the energy ranges of protons (10-100 MeV), where the protons passed through, or were absorbed in, the shielding materials of different mass thickness that surrounded dosimeters.
Collapse
Affiliation(s)
- Satoshi Kodaira
- Space Quantum Research Group, QST Advanced Laboratory, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masayuki Naito
- Space Quantum Research Group, QST Advanced Laboratory, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukio Uchihori
- Space Quantum Research Group, QST Advanced Laboratory, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Akihiko Yamagishi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences. Hachioji, Tokyo, Japan
| |
Collapse
|
41
|
Verbeelen T, Leys N, Ganigué R, Mastroleo F. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space. Front Microbiol 2021; 12:700810. [PMID: 34721316 PMCID: PMC8548772 DOI: 10.3389/fmicb.2021.700810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
To enable long-distance space travel, the development of a highly efficient and robust system to recover nutrients from waste streams is imperative. The inability of the current physicochemical-based environmental control and life support system (ECLSS) on the ISS to produce food in situ and to recover water and oxygen at high enough efficiencies results in the need for frequent resupply missions from Earth. Therefore, alternative strategies like biologically-based technologies called bioregenerative life support systems (BLSSs) are in development. These systems aim to combine biological and physicochemical processes, which enable in situ water, oxygen, and food production (through the highly efficient recovery of minerals from waste streams). Hence, minimalizing the need for external consumables. One of the BLSS initiatives is the European Space Agency's (ESA) Micro-Ecological Life Support System Alternative (MELiSSA). It has been designed as a five-compartment bioengineered system able to produce fresh food and oxygen and to recycle water. As such, it could sustain the needs of a human crew for long-term space exploration missions. A prerequisite for the self-sufficient nature of MELiSSA is the highly efficient recovery of valuable minerals from waste streams. The produced nutrients can be used as a fertilizer for food production. In this review, we discuss the need to shift from the ECLSS to a BLSS, provide a summary of past and current BLSS programs and their unique approaches to nitrogen recovery and processing of urine waste streams. In addition, compartment III of the MELiSSA loop, which is responsible for nitrogen recovery, is reviewed in-depth. Finally, past, current, and future related ground and space demonstration and the space-related challenges for this technology are considered.
Collapse
Affiliation(s)
- Tom Verbeelen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent, Belgium
| | - Felice Mastroleo
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
42
|
Keller RJ, Porter W, Goli K, Rosenthal R, Butler N, Jones JA. Biologically-Based and Physiochemical Life Support and In Situ Resource Utilization for Exploration of the Solar System-Reviewing the Current State and Defining Future Development Needs. Life (Basel) 2021; 11:844. [PMID: 34440588 PMCID: PMC8398003 DOI: 10.3390/life11080844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.
Collapse
Affiliation(s)
- Ryan J. Keller
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (W.P.); (K.G.); (R.R.); (N.B.); (J.A.J.)
| | | | | | | | | | | |
Collapse
|
43
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
44
|
Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. NPJ Microgravity 2021; 7:15. [PMID: 33976230 PMCID: PMC8113475 DOI: 10.1038/s41526-021-00143-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to microgravity, spaceflight simultaneously exposes biology to a suite of other stimuli. For example, in space, organisms experience ionizing radiation environments that significantly differ in both quality and quantity from those normally experienced on Earth. However, data on radiation exposure during space missions is often complex to access and to understand, limiting progress towards defining how radiation affects organisms against the unique background of spaceflight. To help address this challenge, we have developed the Rad-Bio-App. This web-accessible database imports radiation metadata from experiments archived in NASA’s GeneLab data repository, and then allows the user to explore these experiments both in the context of their radiation exposure and through their other metadata and results. Rad-Bio-App provides an easy-to-use, graphically-driven environment to enable both radiation biologists and non-specialist researchers to visualize, and understand the impact of ionizing radiation on various biological systems in the context of spaceflight.
Collapse
|
45
|
Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in Space: What Does It Change? Int J Mol Sci 2021; 22:3739. [PMID: 33916740 PMCID: PMC8038356 DOI: 10.3390/ijms22073739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
After having been an instrument of the Cold War, space exploration has become a major technological, scientific and societal challenge for a number of countries. With new projects to return to the Moon and go to Mars, radiobiologists have been called upon to better assess the risks linked to exposure to radiation emitted from space (IRS), one of the major hazards for astronauts. To this aim, a major task is to identify the specificities of the different sources of IRS that concern astronauts. By considering the probabilities of the impact of IRS against spacecraft shielding, three conclusions can be drawn: (1) The impacts of heavy ions are rare and their contribution to radiation dose may be low during low Earth orbit; (2) secondary particles, including neutrons emitted at low energy from the spacecraft shielding, may be common in deep space and may preferentially target surface tissues such as the eyes and skin; (3) a "bath of radiation" composed of residual rays and fast neutrons inside the spacecraft may present a concern for deep tissues such as bones and the cardiovascular system. Hence, skin melanoma, cataracts, loss of bone mass, and aging of the cardiovascular system are possible, dependent on the dose, dose-rate, and individual factors. This suggests that both radiosusceptibility and radiodegeneration may be concerns related to space exploration. In addition, in the particular case of extreme solar events, radiosensitivity reactions-such as those observed in acute radiation syndrome-may occur and affect blood composition, gastrointestinal and neurologic systems. This review summarizes the specificities of space radiobiology and opens the debate as regards refinements of current radiation protection concepts that will be useful for the better estimation of risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicolas Foray
- Inserm, U1296 Unit, «Radiation: Defense, Health and Environment», Centre Léon-Bérard, 28, Rue Laennec, 69008 Lyon, France; (J.R.-V.); (L.E.-N.); (M.L.F.); (J.A.-C.); (A.G.); (A.B.)
| |
Collapse
|
46
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|