1
|
Izumi S, Ohtani K, Matsumoto M, Shibata S, Rahmutulla B, Fukuyo M, Nishimoto M, Miyagawa H, Sakaida E, Yokote K, Kitabayashi I, Araki K, Kaneda A, Hoshii T. Regulation of H3K4me3 breadth and MYC expression by the SETD1B catalytic domain in MLL-rearranged leukemia. Leukemia 2025:10.1038/s41375-025-02638-y. [PMID: 40341256 DOI: 10.1038/s41375-025-02638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in mixed-lineage leukemia-rearranged (MLL-r) acute myeloid leukemia (AML) cells; however, the responsible enzymes and their roles remain unclear. This study aimed to identify the modifier responsible for high H3K4me3 modification in MLL-r leukemia and its downstream targets essential for the cell proliferation. Here, we performed a CRISPR-tiling screen against known H3K4 methylation modifiers in an MLL-r AML model. Disrupting the SETD1B catalytic SET domain caused depletion of FLT3-ITD or NrasG12D-expressing AML cells, and gene expression downregulation, particularly in the MYC pathway. SETD1B SET domain loss results in a significant decrease in H3K4me3 breadth. Exogenous MYC expression or disrupting H3K4 demethylase KDM5C significantly restored growth defects in SETD1B SET domain-mutant cells. These data indicated that SETD1B was required for H3K4me3 breadth and MYC expression. Thus, a thorough understanding of SETD1B-mediated H3K4me3 breadth is critical for developing markers and therapies for MYC-dependent leukemia subtypes.
Collapse
Affiliation(s)
- Shintaro Izumi
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ko Ohtani
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
| | - Seito Shibata
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hideo Miyagawa
- Preventive Medicine and Environmental Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Emiko Sakaida
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Issay Kitabayashi
- Oncology Innovation Center/ Center for Translational Research, Fujita Health University, Aichi, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba, Japan.
| |
Collapse
|
2
|
Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F, Tong MH. SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res 2025; 35:345-361. [PMID: 40033033 PMCID: PMC12012180 DOI: 10.1038/s41422-025-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Gao
- Department of Organ Transplantation, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Meng X, Zhu Y, Liu K, Wang Y, Liu X, Liu C, Zeng Y, Wang S, Gao X, Shen X, Chen J, Tao S, Xu Q, Dong L, Shen L, Wang L. CXXC-finger protein 1 associates with FOXP3 to stabilize homeostasis and suppressive functions of regulatory T cells. eLife 2025; 13:RP103417. [PMID: 40183773 PMCID: PMC11970909 DOI: 10.7554/elife.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
FOXP3-expressing regulatory T (Treg) cells play a pivotal role in maintaining immune homeostasis and tolerance, with their activation being crucial for preventing various inflammatory responses. However, the mechanisms governing the epigenetic program in Treg cells during their dynamic activation remain unclear. In this study, we demonstrate that CXXC-finger protein 1 (CXXC1) interacts with the transcription factor FOXP3 and facilitates the regulation of target genes by modulating H3K4me3 deposition. Cxxc1 deletion in Treg cells leads to severe inflammatory disease and spontaneous T cell activation, with impaired immunosuppressive function. As a transcriptional regulator, CXXC1 promotes the expression of key Treg functional markers under steady-state conditions, which are essential for the maintenance of Treg cell homeostasis and their suppressive functions. Epigenetically, CXXC1 binds to the genomic regulatory regions of Treg program genes in mouse Treg cells, overlapping with FOXP3-binding sites. Given its critical role in Treg cell homeostasis, CXXC1 presents itself as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Yezhang Zhu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
| | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Chenxin Liu
- Zhejiang University School of MedicineHangzhouChina
| | - Yan Zeng
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Shuai Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of MedicineHangzhouChina
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
| | - Qianying Xu
- Zhejiang University School of MedicineHangzhouChina
| | - Linjia Dong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical CollegeHangzhouChina
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang UniversityJiaxingChina
| |
Collapse
|
4
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
5
|
Wang H, Helin K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol 2025; 35:115-128. [PMID: 38909006 DOI: 10.1016/j.tcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Epigenetic modifications, including posttranslational modifications of histones, are closely linked to transcriptional regulation. Trimethylated H3 lysine 4 (H3K4me3) is one of the most studied histone modifications owing to its enrichment at the start sites of transcription and its association with gene expression and processes determining cell fate, development, and disease. In this review, we focus on recent studies that have yielded insights into how levels and patterns of H3K4me3 are regulated, how H3K4me3 contributes to the regulation of specific phases of transcription such as RNA polymerase II initiation, pause-release, heterogeneity, and consistency. The conclusion from these studies is that H3K4me3 by itself regulates gene expression and its precise regulation is essential for normal development and preventing disease.
Collapse
Affiliation(s)
- Hua Wang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | |
Collapse
|
6
|
Zhang J, Sun Q, Liu L, Yang S, Zhang X, Miao YL, Liu X. Histone methyltransferases MLL2 and SETD1A/B play distinct roles in H3K4me3 deposition during the transition from totipotency to pluripotency. EMBO J 2025; 44:437-456. [PMID: 39639179 PMCID: PMC11730331 DOI: 10.1038/s44318-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
In early mammalian embryogenesis, a shift from non-canonical histone H3 lysine 4 trimethylation (H3K4me3) linked to transcriptional repression to canonical H3K4me3 indicating active promoters occurs during zygotic genome activation (ZGA). However, the mechanisms and roles of these H3K4me3 states in embryogenesis remain poorly understood. Our research reveals that the histone methyltransferase MLL2 is responsible for installing H3K4me3 (both non-canonical and canonical) in totipotent embryos, while a transition to SETD1A/B-deposited H3K4me3 occurs in pluripotent embryos. Interestingly, MLL2-mediated H3K4me3 operates independently of transcription, fostering a relaxed chromatin state conducive to totipotency rather than directly influencing transcription. Conversely, SETD1A/B-mediated H3K4me3, which depends on transcription, is crucial for facilitating expression of genes essential for pluripotency and pre-implantation development. Our findings highlight the role of the H3K4me3 transition, mediated by an MLL2-to-SETD1A/B relay mechanism, in the regulation of transition from totipotency to pluripotency during early embryogenesis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Qiaoran Sun
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Liang Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Shichun Yang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan, China.
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
| |
Collapse
|
7
|
Wang N, Pachai MR, Li D, Lee CJ, Warda S, Khudoynazarova MN, Cho WH, Xie G, Shah SR, Yao L, Qian C, Wong EWP, Yan J, Tomas FV, Hu W, Kuo F, Gao SP, Luo J, Smith AE, Han M, Gao D, Ge K, Yu H, Chandarlapaty S, Iyer GV, Rosenberg JE, Solit DB, Al-Ahmadie HA, Chi P, Chen Y. Loss of Kmt2c or Kmt2d primes urothelium for tumorigenesis and redistributes KMT2A-menin to bivalent promoters. Nat Genet 2025; 57:165-179. [PMID: 39806204 PMCID: PMC11735410 DOI: 10.1038/s41588-024-02015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation. Kmt2c/d knockout further led to KMT2A-menin redistribution from KMT2D localized enhancers to CpG-high and bivalent promoters, resulting in derepression of signal-induced immediate early genes. Therapeutically, Kmt2c/d knockout upregulated epidermal growth factor receptor signaling and conferred vulnerability to epidermal growth factor receptor inhibitors. Together, our data posit that functional loss of Kmt2c/d licenses a molecular 'field effect' priming histologically normal urothelium for oncogenic transformation and presents therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohini R Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cindy J Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Woo Hyun Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guojia Xie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sagar R Shah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Li Yao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanny V Tomas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqian Luo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison E Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gopakumar V Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Cordero J, Swaminathan G, Rogel-Ayala DG, Rubio K, Elsherbiny A, Mahmood S, Szymanski W, Graumann J, Braun T, Günther S, Dobreva G, Barreto G. Nuclear microRNA 9 mediates G-quadruplex formation and 3D genome organization during TGF-β-induced transcription. Nat Commun 2024; 15:10711. [PMID: 39706840 PMCID: PMC11662019 DOI: 10.1038/s41467-024-54740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
The dynamics of three-dimensional (3D) genome organization are essential to transcriptional regulation. While enhancers regulate spatiotemporal gene expression, chromatin looping is a means for enhancer-promoter interactions yielding cell-type-specific gene expression. Further, non-canonical DNA secondary structures, such as G-quadruplexes (G4s), are related to increased gene expression. However, the role of G4s in promoter-distal regulatory elements, such as super-enhancers (SE), and in chromatin looping has remained elusive. Here we show that mature microRNA 9 (miR-9) is enriched at promoters and SE of genes that are inducible by transforming growth factor beta 1 (TGFB1) signaling. Moreover, we find that miR-9 is required for formation of G4s, promoter-super-enhancer looping and broad domains of the euchromatin histone mark H3K4me3 at TGFB1-responsive genes. Our study places miR-9 in the same functional context with G4s and promoter-enhancer interactions during 3D genome organization and transcriptional activation induced by TGFB1 signaling, a critical signaling pathway in cancer and fibrosis.
Collapse
Grants
- BA 4036/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Guillermo Barreto was funded by the “Centre National de la Recherche Scientifique” (CNRS, France), “Délégation Centre-Est” (CNRS-DR6) and the “Lorraine Université” (LU, France) through the initiative “Lorraine Université d’Excellence” (LUE) and the dispositive “Future Leader”, the Max-Planck-Society (MPG, Munich, Germany) and the “Deutsche Forschungsgemeinschaft” (DFG, Bonn, Germany) (BA 4036/4-1).
- Gergana Dobreva and Julio Cordero are supported by the CRC 1366 (Projects A03, A06), the CRC 873 (Project A16), the CRC1550 (Project A03) funded by the DFG, the DZHK (81Z0500202), funded by BMBF and the Baden‐Württemberg foundation special program “Angioformatics single cell platform”.
- Guruprasadh Swaminathan receive a doctoral fellowship through the initiative “Lorraine Université d’Excellence” (LUE).
- Diana G. Rogel-Ayala receive a doctoral fellowship from the DAAD (57552340).
- Karla Rubio was funded by the “Consejo de Ciencia y Tecnología del Estado de Puebla” (CONCYTEP, Puebla, Mexico) through the initiative International Laboratory EPIGEN.
- Work in the lab of Thomas Braun is supported by the Deutsche Forschungsgemeinschaft, Excellence Cluster Cardio-Pulmonary Institute (CPI), Transregional Collaborative Research Center TRR81, TP A02, SFB1213 TP B02, TRR 267 TP A05 and the German Center for Cardiovascular Research.
Collapse
Affiliation(s)
- Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany.
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| | | | - Diana G Rogel-Ayala
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France
| | - Karla Rubio
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Adel Elsherbiny
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany
| | - Samina Mahmood
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Witold Szymanski
- Department of Medicine, Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Johannes Graumann
- Department of Medicine, Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, 69117, Heidelberg, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France.
| |
Collapse
|
9
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
10
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Kubo N, Chen PB, Hu R, Ye Z, Sasaki H, Ren B. H3K4me1 facilitates promoter-enhancer interactions and gene activation during embryonic stem cell differentiation. Mol Cell 2024; 84:1742-1752.e5. [PMID: 38513661 PMCID: PMC11069443 DOI: 10.1016/j.molcel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Histone H3 lysine 4 mono-methylation (H3K4me1) marks poised or active enhancers. KMT2C (MLL3) and KMT2D (MLL4) catalyze H3K4me1, but their histone methyltransferase activities are largely dispensable for transcription during early embryogenesis in mammals. To better understand the role of H3K4me1 in enhancer function, we analyze dynamic enhancer-promoter (E-P) interactions and gene expression during neural differentiation of the mouse embryonic stem cells. We found that KMT2C/D catalytic activities were only required for H3K4me1 and E-P contacts at a subset of candidate enhancers, induced upon neural differentiation. By contrast, a majority of enhancers retained H3K4me1 in KMT2C/D catalytic mutant cells. Surprisingly, H3K4me1 signals at these KMT2C/D-independent sites were reduced after acute depletion of KMT2B, resulting in aggravated transcriptional defects. Our observations therefore implicate KMT2B in the catalysis of H3K4me1 at enhancers and provide additional support for an active role of H3K4me1 in enhancer-promoter interactions and transcription in mammalian cells.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Poshen B Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Zhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
12
|
Jorge SD, Chi YI, Mazaba JL, Haque N, Wagenknecht J, Smith BC, Volkman BF, Mathison AJ, Lomberk G, Zimmermann MT, Urrutia R. Deep computational phenotyping of genomic variants impacting the SET domain of KMT2C reveal molecular mechanisms for their dysfunction. Front Genet 2023; 14:1291307. [PMID: 38090150 PMCID: PMC10715303 DOI: 10.3389/fgene.2023.1291307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Kleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental disorder characterized by intellectual disability, infantile hypotonia, severe expressive language delay, and characteristic facial appearance, with a spectrum of other distinct clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals. Methods: This work reports a translational genomic study that applies a multidimensional computational approach for deep variant phenotyping, combining conventional genomic analyses, advanced protein bioinformatics, computational biophysics, biochemistry, and biostatistics-based modeling. We use standard variant annotation, paralog annotation analyses, molecular mechanics, and molecular dynamics simulations to evaluate damaging scores and provide potential mechanisms underlying KMT2C variant dysfunction. Results: We integrated data derived from the structure and dynamics of KMT2C to classify variants into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). When compared with controls, these variants show values reflecting alterations in molecular fitness in both structure and dynamics. Discussion: We demonstrate that our 3D models for KMT2C variants suggest distinct mechanisms that lead to their imbalance and are not predictable from sequence alone. Thus, the missense variants studied here cause destabilizing effects on KMT2C function by different biophysical and biochemical mechanisms which we adeptly describe. This new knowledge extends our understanding of how variations in the KMT2C gene cause the dysfunction of its methyltransferase enzyme product, thereby bearing significant biomedical relevance for carriers of KLEFS2-associated genomic mutations.
Collapse
Affiliation(s)
- Salomão Dória Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jose Lizarraga Mazaba
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Neshatul Haque
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica Wagenknecht
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C. Smith
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian F. Volkman
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Li X, Wu F, Günther S, Looso M, Kuenne C, Zhang T, Wiesnet M, Klatt S, Zukunft S, Fleming I, Poschet G, Wietelmann A, Atzberger A, Potente M, Yuan X, Braun T. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 2023; 622:619-626. [PMID: 37758950 PMCID: PMC10584682 DOI: 10.1038/s41586-023-06585-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fan Wu
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ting Zhang
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marion Wiesnet
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Klatt
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Astrid Wietelmann
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centres, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Fan T, Xiao C, Liu H, Liu Y, Wang L, Tian H, Li C, He J. CXXC finger protein 1 (CFP1) bridges the reshaping of genomic H3K4me3 signature to the advancement of lung adenocarcinoma. Signal Transduct Target Ther 2023; 8:369. [PMID: 37735441 PMCID: PMC10514036 DOI: 10.1038/s41392-023-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a canonical chromatin modification associated with active gene transcription, playing a pivotal role in regulating various cellular functions. Components of the H3K4me3 methyltransferase complex, known as the proteins associated with SET1 (COMPASS), have been implicated in exerting cancer-protective or cancer-inhibitory effects through inducive H3K4me3 modification. However, the role of the indispensable non-catalytic component of COMPASS CXXC-type zinc finger protein 1 (CFP1) in malignant progression remains unclear. We have unveiled that CFP1 promote lung adenocarcinoma (LUAD) cell proliferation, migration, and invasion while impairing cell apoptosis through in vitro and in vivo models. In addition, high CFP1 expression was identified as emerged as an adverse prognostic indicator across multiple public and in-house LUAD datasets. Notably, CFP1 deficiency led to dual effects on cancer cell transcriptome including extensive inactivation of cancer-promoting as well as activation of cancer repressors. Combining this with the chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we showed that CFP1 ablation reshaped the genomic H3K4me3 distribution signature, with prominent effects on TGF-β and WNT signaling pathways. Collectively, our study proposes that CFP1 mediates tumorigenesis by genomic histone methylation reprogramming, offering insights for future investigations into epigenetic modifications in cancer progression and potential therapeutic advancements.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Intervention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Li Y, Yi Y, Lv J, Gao X, Yu Y, Babu S, Bruno I, Zhao D, Xia B, Peng W, Zhu J, Chen H, Zhang L, Cao Q, Chen K. Low RNA stability signifies increased post-transcriptional regulation of cell identity genes. Nucleic Acids Res 2023; 51:6020-6038. [PMID: 37125636 PMCID: PMC10325912 DOI: 10.1093/nar/gkad300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Bo Xia
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
18
|
Hughes AL, Szczurek AT, Kelley JR, Lastuvkova A, Turberfield AH, Dimitrova E, Blackledge NP, Klose RJ. A CpG island-encoded mechanism protects genes from premature transcription termination. Nat Commun 2023; 14:726. [PMID: 36759609 PMCID: PMC9911701 DOI: 10.1038/s41467-023-36236-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Transcription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes. Counterintuitively, this effect can occur independently of SET1 complex histone-modifying activity and instead relies on an interaction with the RNA Polymerase II-binding protein WDR82. Unexpectedly, we discover that SET1 complexes enable gene expression by antagonising premature transcription termination by the ZC3H4/WDR82 complex at CpG island-associated genes. In contrast, at extragenic sites of transcription, which typically lack CpG islands and SET1 complex occupancy, we show that the activity of ZC3H4/WDR82 is unopposed. Therefore, we reveal a gene regulatory mechanism whereby CpG islands are bound by a protein complex that specifically protects genic transcripts from premature termination, effectively distinguishing genic from extragenic transcription and enabling normal gene expression.
Collapse
Affiliation(s)
- Amy L Hughes
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Mitchell K, Sprowls SA, Arora S, Shakya S, Silver DJ, Goins CM, Wallace L, Roversi G, Schafer RE, Kay K, Miller TE, Lauko A, Bassett J, Kashyap A, D'Amato Kass J, Mulkearns-Hubert EE, Johnson S, Alvarado J, Rich JN, Holland EC, Paddison PJ, Patel AP, Stauffer SR, Hubert CG, Lathia JD. WDR5 represents a therapeutically exploitable target for cancer stem cells in glioblastoma. Genes Dev 2023; 37:86-102. [PMID: 36732025 PMCID: PMC10069451 DOI: 10.1101/gad.349803.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Samuel A Sprowls
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sajina Shakya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
| | - Lisa Wallace
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Gustavo Roversi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel E Schafer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kristen Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Adam Lauko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - John Bassett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anjali Kashyap
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jonathan D'Amato Kass
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Sadie Johnson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Joseph Alvarado
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Christopher G Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio 44106, USA
| |
Collapse
|
20
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
21
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
22
|
Strenkert D, Yildirim A, Yan J, Yoshinaga Y, Pellegrini M, O'Malley RC, Merchant SS, Umen JG. The landscape of Chlamydomonas histone H3 lysine 4 methylation reveals both constant features and dynamic changes during the diurnal cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:352-368. [PMID: 35986497 PMCID: PMC9588799 DOI: 10.1111/tpj.15948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 05/29/2023]
Abstract
Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Asli Yildirim
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles, CA, 90095, USA
| | - Juying Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matteo Pellegrini
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ronan C O'Malley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
23
|
Medina EA, Delma CR, Yang FC. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol 2022; 15:127. [PMID: 36068610 PMCID: PMC9450349 DOI: 10.1186/s13045-022-01336-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Myeloid malignancies develop through the accumulation of genetic and epigenetic alterations that dysregulate hematopoietic stem cell (HSC) self-renewal, stimulate HSC proliferation and result in differentiation defects. The polycomb group (PcG) and trithorax group (TrxG) of epigenetic regulators act antagonistically to regulate the expression of genes key to stem cell functions. The genes encoding these proteins, and the proteins that interact with them or affect their occupancy at chromatin, are frequently mutated in myeloid malignancies. PcG and TrxG proteins are regulated by Enhancers of Trithorax and Polycomb (ETP) proteins. ASXL1 and ASXL2 are ETP proteins that assemble chromatin modification complexes and transcription factors. ASXL1 mutations frequently occur in myeloid malignancies and are associated with a poor prognosis, whereas ASXL2 mutations frequently occur in AML with t(8;21)/RUNX1-RUNX1T1 and less frequently in other subtypes of myeloid malignancies. Herein, we review the role of ASXL1 and ASXL2 in normal and malignant hematopoiesis by summarizing the findings of mouse model systems and discussing their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Edward A Medina
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Caroline R Delma
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
24
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
25
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
26
|
Costallat M, Batsché E, Rachez C, Muchardt C. The 'Alu-ome' shapes the epigenetic environment of regulatory elements controlling cellular defense. Nucleic Acids Res 2022; 50:5095-5110. [PMID: 35544277 PMCID: PMC9122584 DOI: 10.1093/nar/gkac346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Promoters and enhancers are sites of transcription initiation (TSSs) and carry specific histone modifications, including H3K4me1, H3K4me3, and H3K27ac. Yet, the principles governing the boundaries of such regulatory elements are still poorly characterized. Alu elements are good candidates for a boundary function, being highly abundant in gene-rich regions, while essentially excluded from regulatory elements. Here, we show that the interval ranging from TSS to first upstream Alu, accommodates all H3K4me3 and most H3K27ac marks, while excluding DNA methylation. Remarkably, the average length of these intervals greatly varies in-between tissues, being longer in stem- and shorter in immune-cells. The very shortest TSS-to-first-Alu intervals were observed at promoters active in T-cells, particularly at immune genes, where first-Alus were traversed by RNA polymerase II transcription, while accumulating H3K4me1 signal. Finally, DNA methylation at first-Alus was found to evolve with age, regressing from young to middle-aged, then recovering later in life. Thus, the first-Alus upstream of TSSs appear as dynamic boundaries marking the transition from DNA methylation to active histone modifications at regulatory elements, while also participating in the recording of immune gene transcriptional events by positioning H3K4me1-modified nucleosomes.
Collapse
Affiliation(s)
- Mickael Costallat
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Eric Batsché
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Christophe Rachez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Christian Muchardt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| |
Collapse
|
27
|
Cenik BK, Sze CC, Ryan CA, Das S, Cao K, Douillet D, Rendleman EJ, Zha D, Khan NH, Bartom E, Shilatifard A. A synthetic lethality screen reveals ING5 as a genetic dependency of catalytically dead Set1A/COMPASS in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2022; 119:e2118385119. [PMID: 35500115 PMCID: PMC9171609 DOI: 10.1073/pnas.2118385119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.
Collapse
Affiliation(s)
- Bercin K. Cenik
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christie C. Sze
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Caila A. Ryan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Siddhartha Das
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kaixiang Cao
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Delphine Douillet
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Emily J. Rendleman
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Didi Zha
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Nabiha Haleema Khan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Bartom
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
28
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Boujemaa M, Mighri N, Chouchane L, Boubaker MS, Abdelhak S, Boussen H, Hamdi Y. Health influenced by genetics: A first comprehensive analysis of breast cancer high and moderate penetrance susceptibility genes in the Tunisian population. PLoS One 2022; 17:e0265638. [PMID: 35333900 PMCID: PMC8956157 DOI: 10.1371/journal.pone.0265638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Significant advances have been made to understand the genetic basis of breast cancer. High, moderate and low penetrance variants have been identified with inter-ethnic variability in mutation frequency and spectrum. Genome wide association studies (GWAS) are widely used to identify disease-associated SNPs. Understanding the functional impact of these risk-SNPs will help the translation of GWAS findings into clinical interventions. Here we aim to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs. We analyzed BRCA1/2, PTEN, STK11, TP53, ATM, BRIP1, CHEK2 and PALB2 genotype data obtained from 135 healthy participants genotyped using Affymetrix Genome-Wide Human SNP-Array 6.0. Haplotype analysis was performed using Haploview.V4.2 and PHASE.V2.1. Population structure and genetic differentiation were assessed using principal component analysis (PCA) and fixation index (FST). Functional annotation was performed using In Silico web-based tools including RegulomeDB and VARAdb. Haplotype analysis showed distinct LD patterns with high levels of recombination and haplotype blocks of moderate to small size. Our findings revealed also that the Tunisian population tends to have a mixed origin with European, South Asian and Mexican footprints. Functional annotation allowed the selection of 28 putative regulatory variants. Of special interest were BRCA1_ rs8176318 predicted to alter the binding sites of a tumor suppressor miRNA hsa-miR-149 and PALB2_ rs120963 located in tumorigenesis-associated enhancer and predicted to strongly affect the binding of P53. Significant differences in allele frequencies were observed with populations of African and European ancestries for rs8176318 and rs120963 respectively. Our findings will help to better understand the genetic basis of breast cancer by guiding upcoming genome wide studies in the Tunisian population. Putative functional SNPs may be used to develop an efficient polygenic risk score to predict breast cancer risk leading to better disease prevention and management.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, United States of America
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
30
|
Michurina A, Sakib MS, Kerimoglu C, Krüger DM, Kaurani L, Islam MR, Joshi PD, Schröder S, Centeno TP, Zhou J, Pradhan R, Cha J, Xu X, Eichele G, Zeisberg EM, Kranz A, Stewart AF, Fischer A. Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuron-enriched genes. EMBO J 2022; 41:e106459. [PMID: 34806773 PMCID: PMC8724770 DOI: 10.15252/embj.2020106459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.
Collapse
Affiliation(s)
- Alexandra Michurina
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - M Sadman Sakib
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Cemil Kerimoglu
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Dennis Manfred Krüger
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Lalit Kaurani
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Md Rezaul Islam
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Parth Devesh Joshi
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Sophie Schröder
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tonatiuh Pena Centeno
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Jiayin Zhou
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ranjit Pradhan
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Julia Cha
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Xingbo Xu
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Gregor Eichele
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Elisabeth M Zeisberg
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
| | - Andrea Kranz
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
| | - A Francis Stewart
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
- Max‐Planck‐Institute for Cell Biology and GeneticsDresdenGermany
| | - André Fischer
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
31
|
Klonou A, Chlamydas S, Piperi C. Structure, Activity and Function of the MLL2 (KMT2B) Protein Lysine Methyltransferase. Life (Basel) 2021; 11:823. [PMID: 34440566 PMCID: PMC8401916 DOI: 10.3390/life11080823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
The Mixed Lineage Leukemia 2 (MLL2) protein, also known as KMT2B, belongs to the family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein of 2715 amino acids, widely expressed in adult human tissues and a paralog of the MLL1 protein. MLL2 contains a characteristic C-terminal SET domain responsible for methyltransferase activity and forms a protein complex with WRAD (WDR5, RbBP5, ASH2L and DPY30), host cell factors 1/2 (HCF 1/2) and Menin. The MLL2 complex is responsible for H3K4 trimethylation (H3K4me3) on specific gene promoters and nearby cis-regulatory sites, regulating bivalent developmental genes as well as stem cell and germinal cell differentiation gene sets. Moreover, MLL2 plays a critical role in development and germ line deletions of Mll2 have been associated with early growth retardation, neural tube defects and apoptosis that leads to embryonic death. It has also been involved in the control of voluntary movement and the pathogenesis of early stage childhood dystonia. Additionally, tumor-promoting functions of MLL2 have been detected in several cancer types, including colorectal, hepatocellular, follicular cancer and gliomas. In this review, we discuss the main structural and functional aspects of the MLL2 methyltransferase with particular emphasis on transcriptional mechanisms, gene regulation and association with diseases.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
- Research and Development Department, Active Motif, Inc., Carlsbad, CA 92008, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
| |
Collapse
|
32
|
Yang Y, Yang Y, Chan K, Couture JF. Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB J 2021; 35:e21790. [PMID: 34320252 DOI: 10.1096/fj.202100427r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
CXXC Zinc finger protein 1 (CFP1) is a multitasking protein playing essential roles during various developmental processes. Its ability to interact with several proteins contribute to several epigenetic events. Here, we review CFP1's functions and its impact on DNA methylation and the post-translational modification of histone proteins such as lysine acetylation and methylation. We will also discuss the potential role of CFP1 in carcinogenesis and the impact of the mutations identified in patients suffering from various cancers.
Collapse
Affiliation(s)
- Yidai Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yaqing Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kin Chan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Xiao Z, Locasale JW. Epigenomic links from metabolism-methionine and chromatin architecture. Curr Opin Chem Biol 2021; 63:11-18. [PMID: 33667809 PMCID: PMC9889272 DOI: 10.1016/j.cbpa.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.
Collapse
Affiliation(s)
- Zhengtao Xiao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
35
|
Numakura S, Uozaki H. Low MLL2 Protein Expression Is Associated With Fibrosis in Early Stage Gastric Cancer. In Vivo 2021; 35:603-609. [PMID: 33402515 DOI: 10.21873/invivo.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Myeloid/lymphoid or mixed lineage leukemia 2 (MLL2) gene is mutated in gastric cancer, with most resulting in inactivated proteins. In this study, we examined the expression of MLL2 protein in gastric cancers. PATIENTS AND METHODS The expression of MLL2 protein in cancer cell nuclei was studied by immunohistochemistry in tissue microarrays of 529 human gastric cancers. MLL2 expression was classified into low and high expression from the point of zygosity, and its relationships with mismatch repair protein expression and clinicopathological features were examined. RESULTS Low expression of MLL2 was associated with younger age, MSH6, and early cancers. MLL2-low pT1a cancers were associated with fibrosis, especially ulcer scars, and in 62.5% of them there was no direct contact between carcinoma and fibrosis. CONCLUSION There is potentially an association between low expression of MLL2 protein and gastric malignancy from chronic fibrosis.
Collapse
Affiliation(s)
- Satoe Numakura
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Uozaki
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67:695-705. [PMID: 34089069 DOI: 10.1007/s00294-021-01196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023]
Abstract
Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.
Collapse
Affiliation(s)
- Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Vivane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
37
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
38
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
39
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|