1
|
Leng F, Merino-Urteaga R, Wang X, Zhang W, Ha T, Hur S. Ultrastable and versatile multimeric ensembles of FoxP3 on microsatellites. Mol Cell 2025; 85:1509-1524.e7. [PMID: 40179879 DOI: 10.1016/j.molcel.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Microsatellites are essential genomic components increasingly linked to transcriptional regulation. FoxP3, a transcription factor critical for regulatory T cell (Treg) development, recognizes TTTG repeat microsatellites by forming multimers along DNA. However, FoxP3 also binds a broader range of TnG repeats (n = 2-5), often at the edges of accessible chromatin regions. This raises questions about how FoxP3 adapts to sequence variability and the potential role of nucleosomes. Using cryoelectron microscopy and single-molecule analyses, we show that murine FoxP3 assembles into various distinct supramolecular structures, depending on DNA sequence. This structural plasticity enables FoxP3 to bridge 2-4 DNA duplexes, forming ultrastable structures that coordinate multiple genomic loci. Nucleosomes further facilitate FoxP3 assembly by inducing local DNA bending, creating a nucleus that recruits distal DNA elements through multiway bridging. Our findings thus reveal FoxP3's unusual ability to shapeshift to accommodate evolutionarily dynamic microsatellites and its potential to reinforce chromatin boundaries and three-dimensional genomic architecture.
Collapse
Affiliation(s)
- Fangwei Leng
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Institute of Immunology, Chinese Institutes for Medical Research, Beijing 100069, China
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xi Wang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenxiang Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Yao T, Kobayashi H, Hirai T, Tokuoka Y, Tokoro M, Asayama Y, Suzuki Y, Hatano Y, Ikeda H, Sugimura S, Yamamoto T, Yamada TG, Hosoi Y, Funahashi A, Fukunaga N, Asada Y, Kurimoto K, Yamagata K. Zinc eluted from glassware is a risk factor for embryo development in human and animal assisted reproduction†. Biol Reprod 2025:ioaf050. [PMID: 40169168 DOI: 10.1093/biolre/ioaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/16/2025] [Indexed: 04/03/2025] Open
Abstract
In assisted reproduction, many factors in the culture environment, including light, temperature, pH, and culture media, can reduce preimplantation embryo viability. Laboratory glassware is also a known risk factor for in vitro embryos; however, the underlying mechanisms that disrupt embryonic development remain unclear. We identified Zn eluted from glassware as an embryotoxic substance. In mouse embryos, Zn induced delayed development, abnormalities in chromosome segregation, cytokinesis, zygotic gene activation (e.g. Zscan4a and murine endogenous retrovirus with leucine, also known as MERVL), and aberrantly upregulated developmental gene expression (e.g. Hoxa1, Hoxb9, T, and Fgf8) that could be mediated through metal regulatory transcription factors (e.g. Mtf1). Subsequently, Zn exposure led to significantly reduced blastocyst formation. Post-implantation, Zn-exposed embryos were associated with normal birth rates, however, the birth weight increased by an average of 18% compared with embryos cultured without Zn. Furthermore, Zn exposure affected the development of bovine and human embryos, with species-based variation in the strength and timing of these effects. To mitigate these embryotoxic effects, we identified a method to prevent glass toxicity using chelating agents. This research not only highlights the importance of risk control in embryo culture but also facilitates the development of safe and effective methods for assisted reproduction.
Collapse
Affiliation(s)
- Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Joto-ku, Osaka 536-8523, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Tatsuki Hirai
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Joto-ku, Osaka 536-8523, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Yuta Tokuoka
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mikiko Tokoro
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi 450-0002, Japan
| | - Yuta Asayama
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Joto-ku, Osaka 536-8523, Japan
| | - Yuka Suzuki
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Yu Hatano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Satoshi Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro G Yamada
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshihiko Hosoi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Akira Funahashi
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi 450-0002, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi 450-0002, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
3
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Du Q, Zhang M, Gao A, He T, Guo M. Epigenetic silencing ZSCAN23 promotes pancreatic cancer growth by activating Wnt signaling. Cancer Biol Ther 2024; 25:2302924. [PMID: 38226836 PMCID: PMC10793710 DOI: 10.1080/15384047.2024.2302924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Du
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Yang J, Dan J, Zhao N, Liu L, Wang H, Liu Q, Wang L, Li J, Wu Y, Chen F, Fu W, Liu F, Lin M, Zhang W, Chen F, Liu X, Lu X, Chen Q, Wu X, Niu Y, Yang N, Zhu Y, Long J, Liu L. Zscan4 mediates ubiquitination and degradation of the corepressor complex to promote chromatin accessibility in 2C-like cells. Proc Natl Acad Sci U S A 2024; 121:e2407490121. [PMID: 39705314 DOI: 10.1073/pnas.2407490121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells. Here, we show that Zscan4 mediates chromatin remodeling to promote the chromatin accessibility for achieving the 2C-like state. Through coimmunoprecipitation/mass spectrometry, we identified that Zscan4 interacts with the corepressors Kap1/Trim28, Lsd1, and Hdac1, also with H3K9me3 modifiers Suv39h1/2, to transiently form a repressive chromatin complex. Then, Zscan4 mediates the degradation of these chromatin repressors by recruiting Trim25 as an E3 ligase, enabling the ubiquitination of Lsd1, Hdac1, and Suv39h1/2. Degradation of the chromatin repressors promotes the chromatin accessibility for activation of the 2C-like state. These findings reveal the molecular insights into the roles of Zscan4 in promoting full activation of the 2C-like state.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Huasong Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Yiwei Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weilun Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fei Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Xudong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China
| |
Collapse
|
7
|
Haasl RJ, Payseur BA. Fitness landscapes of human microsatellites. PLoS Genet 2024; 20:e1011524. [PMID: 39775235 PMCID: PMC11734926 DOI: 10.1371/journal.pgen.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/15/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Collapse
Affiliation(s)
- Ryan J. Haasl
- Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Yang Y, Zhang S, Xu L, Pan Y, Xuan Y, Kai Y, Chen X. Structural insights into the recognition of purine-pyrimidine dinucleotide repeats by zinc finger protein ZBTB43. FEBS J 2024; 291:5002-5014. [PMID: 39344089 DOI: 10.1111/febs.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Purine-pyrimidine repeats (PPRs) can form left-handed Z-form DNA and induce DNA double-strand breaks (DSBs), posing a risk for genomic rearrangements and cancer. The zinc finger (ZF) and BTB domain-containing protein 43 (ZBTB43) is a transcription factor containing two Cys2-His2 (C2H2) and one C3H1 zinc fingers and plays a crucial role in maintaining genomic and epigenomic integrity by converting mutagenic Z-form PPRs to the B-form in prospermatogonia. Despite its importance, the molecular mechanism underlying the recognition of PPRs by ZBTB43 remains elusive. In this study, we determined the X-ray crystal structure of the ZBTB43 ZF1-3 in complex with the B-form DNA containing the CA repeats sequence. The structure reveals that ZF1 and ZF2 primarily recognize the CACA sequence through specific hydrogen-bonding and van der Waals contacts via a quadruple center involving Arg389, Met411, His413, and His414. These interactions were further validated by fluorescence-based DNA-binding assays using mutated ZBTB43 variants. Our structural investigation provides valuable insights into the recognition mechanism of PPRs by ZBTB43 and suggests a potential role for ZBTB43 in the transformation of Z-DNA to B-DNA, contributing to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li Xu
- Shenzhen Medical Academy of Research and Translation (SMART), Institute of Bio-Architecture and Bio-Interactions (IBABI), China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, China
| | - Yumi Xuan
- Faculty of Pharmaceutical Sciences, Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanzhong Kai
- School of Life Sciences, Anhui University, Hefei, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
9
|
Suwanprakorn N, Shin KJ, Tran PH, Truong NT, Kim KS, Yoo HJ, Yang SG. Transcriptomic analysis of embryonic mouse hypothalamic N38 cells exposed to high-energy protons and/or simulated microgravity. Heliyon 2024; 10:e39533. [PMID: 39506968 PMCID: PMC11538749 DOI: 10.1016/j.heliyon.2024.e39533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Space exploration poses unique challenges to astronauts, especially the effects of space radiation and microgravity (μG). Understanding molecular responses to these factors is crucial for ensuring astronaut health, and this study aimed to identify transcriptomic changes in mouse hypothalamic cell line N38 (mHypoE-N38) caused by simulated space environments. Method Four experimental groups were established, namely, a ground condition group (GC; the control group), a proton irradiated group (the space radiation group), a simulated μG group, and a proton irradiated × simulated μG group (the combination group). RNA sequencing and quantitative real-time polymerase chain reaction were performed to investigate key altered genes and to validate them. Results Three hundred and fifty-five differentially expressed genes were identified. Notably, the expressions of UCN2 and UGT1A5 genes were upregulated in all three experimental groups, suggesting a shared regulatory mechanism with potential consequences for brain function during space missions. Moreover, the study revealed significant alterations in genes belonging to the USP17 and ZSCAN4 families, indicating active response to DNA damage and telomere maintenance. PCR results validated that UGT1A5, USP17 family, and ZSCAN4 families (ZSCAN4C, ZSCAN4D, and ZSCAN4F) were significantly upregulated at the mRNA level in the combination group, while UCN2, ZSCAN4A, and ZSCAN4B were not reproduced. Conclusion The present study on mHypoE-N38 cells exposed to space environments revealed a complex molecular narrative with disease-oriented implications. The knowledge gained might serve as a cornerstone for developing strategies to mitigate potential health risks associated with extended exposure to space-related stressors.
Collapse
Affiliation(s)
- Nattha Suwanprakorn
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyung-Ju Shin
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Phuong Hoa Tran
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Ngoc Thuan Truong
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyu-Sung Kim
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Otorhinolaryngology, Head and Neck Surgery, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hye Jin Yoo
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Institute for Specialized Teaching and Research (INSTAR), Inha University, Incheon, 22332, Republic of Korea
| | - Su-Geun Yang
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| |
Collapse
|
10
|
Du Z, Lin M, Li Q, Guo D, Xue Y, Liu W, Shi H, Chen T, Dan J. The totipotent 2C-like state safeguards genomic stability of mouse embryonic stem cells. J Cell Physiol 2024; 239:e31337. [PMID: 38860420 DOI: 10.1002/jcp.31337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Mouse embryonic stem cells (mESCs) sporadically transition to a transient totipotent state that resembles blastomeres of the two-cell (2C) embryo stage, which has been proposed to contribute to exceptional genomic stability, one of the key features of mESCs. However, the biological significance of the rare population of 2C-like cells (2CLCs) in ESC cultures remains to be tested. Here we generated an inducible reporter cell system for specific elimination of 2CLCs from the ESC cultures to disrupt the equilibrium between ESCs and 2CLCs. We show that removing 2CLCs from the ESC cultures leads to dramatic accumulation of DNA damage, genomic mutations, and rearrangements, indicating impaired genomic instability. Furthermore, 2CLCs removal results in increased apoptosis and reduced proliferation of mESCs in both serum/LIF and 2i/LIF culture conditions. Unexpectedly, p53 deficiency results in defective response to DNA damage, leading to early accumulation of DNA damage, micronuclei, indicative of genomic instability, cell apoptosis, and reduced self-renewal capacity of ESCs when devoid of 2CLCs in cultures. Together, our data reveal that transition to the privileged 2C-like state is a major component of the intrinsic mechanisms that maintain the exceptional genomic stability of mESCs for long-term self-renewal.
Collapse
Affiliation(s)
- Zeling Du
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Qiaohua Li
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Dan Guo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Yanna Xue
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Wei Liu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| |
Collapse
|
11
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
13
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
14
|
Hu K, Li W, Ma S, Fang D, Xu J. The identification and classification of candidate genes during the zygotic genome activation in the mammals. ZYGOTE 2024; 32:119-129. [PMID: 38248909 DOI: 10.1017/s0967199423000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Zygotic genome activation (ZGA) is a critical event in early embryonic development, and thousands of genes are involved in this delicate and sophisticated biological process. To date, however, only a handful of these genes have revealed their core functions in this special process, and therefore the roles of other genes still remain unclear. In the present study, we used previously published transcriptome profiling to identify potential key genes (candidate genes) in minor ZGA and major ZGA in both human and mouse specimens, and further identified the conserved genes across species. Our results showed that 887 and 760 genes, respectively, were thought to be specific to human and mouse in major ZGA, and the other 135 genes were considered to be orthologous genes. Moreover, the conserved genes were most enriched in rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis, ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of this first comprehensive identification and characterization of candidate genes in minor and major ZGA provide relevant insights for future studies on ZGA.
Collapse
Affiliation(s)
- Kaiyue Hu
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Wenbo Li
- The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052China
| | - Shuxia Ma
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Dong Fang
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052China
| |
Collapse
|
15
|
Meltzer WA, Gupta A, Lin PN, Brown RA, Benyamien-Roufaeil DS, Khatri R, Mahurkar AA, Song Y, Taylor RJ, Zalzman M. Reprogramming Chromosome Ends by Functional Histone Acetylation. Int J Mol Sci 2024; 25:3898. [PMID: 38612707 PMCID: PMC11011970 DOI: 10.3390/ijms25073898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs. Mouse embryonic stem cells (mESCs) activate a transient expression of the gene Zscan4, which correlates with chromatin de-condensation and telomere extension. Head and neck squamous cell carcinoma (HNSCC) cancers reactivate ZSCAN4, which in turn regulates the phenotype of cancer stem cells (CSCs). Our study reveals a new role for human ZSCAN4 in facilitating functional histone H3 acetylation at telomere chromatin. Next-generation sequencing indicates ZSCAN4 enrichment at telomere chromatin. These changes correlate with ZSCAN4-induced histone H3 acetylation and telomere elongation, while CRISPR/Cas9 knockout of ZSCAN4 leads to reduced H3 acetylation and telomere shortening. Our study elucidates the intricate involvement of ZSCAN4 and its significant contribution to telomere chromatin remodeling. These findings suggest that ZSCAN4 induction serves as a novel link between 'stemness' and telomere maintenance. Targeting ZSCAN4 may offer new therapeutic approaches to effectively limit or enhance the replicative lifespan of stem cells and cancer cells.
Collapse
Affiliation(s)
- W. Alex Meltzer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Aditi Gupta
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Phyo Nay Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Robert A. Brown
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Daniel S. Benyamien-Roufaeil
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Raju Khatri
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Anup A. Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.M.); (Y.S.)
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.M.); (Y.S.)
| | - Rodney J. Taylor
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Vega-Sendino M, Ruiz S. Transition from totipotency to pluripotency in mice: insights into molecular mechanisms. Biochem Soc Trans 2024; 52:231-239. [PMID: 38288760 DOI: 10.1042/bst20230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Totipotency is the ability of a single cell to develop into a full organism and, in mammals, is strictly associated with the early stages of development following fertilization. This unlimited developmental potential becomes quickly restricted as embryonic cells transition into a pluripotent state. The loss of totipotency seems a consequence of the zygotic genome activation (ZGA), a process that determines the switch from maternal to embryonic transcription, which in mice takes place following the first cleavage. ZGA confers to the totipotent cell a transient transcriptional profile characterized by the expression of stage-specific genes and a set of transposable elements that prepares the embryo for subsequent development. The timely silencing of this transcriptional program during the exit from totipotency is required to ensure proper development. Importantly, the molecular mechanisms regulating the transition from totipotency to pluripotency have remained elusive due to the scarcity of embryonic material. However, the development of new in vitro totipotent-like models together with advances in low-input genome-wide technologies, are providing a better mechanistic understanding of how this important transition is achieved. This review summarizes the current knowledge on the molecular determinants that regulate the exit from totipotency.
Collapse
Affiliation(s)
- Maria Vega-Sendino
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| |
Collapse
|
17
|
Liu J, Chu M, Zhang J, He J, Yang Q, Tao L, Wang Z, Yao F, Zhao W, Ouyang S, Chen L, Zhang S, Gao S, Tian J, Ren L, An L. Glutathione safeguards TET-dependent DNA demethylation and is critical for the acquisition of totipotency and pluripotency during preimplantation development. FASEB J 2024; 38:e23453. [PMID: 38318639 DOI: 10.1096/fj.202301220r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Meiqiang Chu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong, China
| | - Jingyu Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiale He
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Tao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhaochen Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fusheng Yao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Si Ouyang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Chen
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likun Ren
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Akiyama T, Ishiguro KI, Chikazawa N, Ko SBH, Yukawa M, Ko MSH. ZSCAN4-binding motif-TGCACAC is conserved and enriched in CA/TG microsatellites in both mouse and human genomes. DNA Res 2024; 31:dsad029. [PMID: 38153767 PMCID: PMC10785592 DOI: 10.1093/dnares/dsad029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023] Open
Abstract
The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.
Collapse
Affiliation(s)
- Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Molecular Biology, Yokohama City University, School of Medicine, Kanagawa 236-0027, Japan
| | - Kei-ichiro Ishiguro
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Nana Chikazawa
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Yukawa
- Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime 791-0295, Japan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, USA
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Yakhou L, Azogui A, Therizols P, Defossez PA. [Using 2C-like cells to understand embryonic totipotency]. Med Sci (Paris) 2024; 40:147-153. [PMID: 38411422 DOI: 10.1051/medsci/2023217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Totipotency is the ability of a cell to generate a whole organism, a property that characterizes the first embryonic cells, such as the zygote and the blastomeres. This review provides a retrospective on the progress made in the last decade in the study of totipotency, especially with the discovery of mouse ES cells expressing markers of the 2-cell stage (2C-like cells). This model has greatly contributed to a better understanding of the molecular mechanisms involved in totipotency (pioneer factors, epigenetic regulation, splicing, nuclear maturation). 2C-like cells have also paved the way for the development of new cellular models of human totipotency.
Collapse
Affiliation(s)
- Lounis Yakhou
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Anaelle Azogui
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Pierre Therizols
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Pierre-Antoine Defossez
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
20
|
Torre D, Fstkchyan YS, Ho JSY, Cheon Y, Patel RS, Degrace EJ, Mzoughi S, Schwarz M, Mohammed K, Seo JS, Romero-Bueno R, Demircioglu D, Hasson D, Tang W, Mahajani SU, Campisi L, Zheng S, Song WS, Wang YC, Shah H, Francoeur N, Soto J, Salfati Z, Weirauch MT, Warburton P, Beaumont K, Smith ML, Mulder L, Villalta SA, Kessenbrock K, Jang C, Lee D, De Rubeis S, Cobos I, Tam O, Hammell MG, Seldin M, Shi Y, Basu U, Sebastiano V, Byun M, Sebra R, Rosenberg BR, Benner C, Guccione E, Marazzi I. Nuclear RNA catabolism controls endogenous retroviruses, gene expression asymmetry, and dedifferentiation. Mol Cell 2023; 83:4255-4271.e9. [PMID: 37995687 PMCID: PMC10842741 DOI: 10.1016/j.molcel.2023.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.
Collapse
Affiliation(s)
- Denis Torre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Youngseo Cheon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma J Degrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Slim Mzoughi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Schwarz
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Raquel Romero-Bueno
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zelda Salfati
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lubbertus Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Mindich Child Health and Development Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Marcus Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine and the Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Tsai LK, Peng M, Chang CC, Wen L, Liu L, Liang X, Chen YE, Xu J, Sung LY. ZSCAN4 interacts with PARP1 to promote DNA repair in mouse embryonic stem cells. Cell Biosci 2023; 13:193. [PMID: 37875990 PMCID: PMC10594928 DOI: 10.1186/s13578-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
Collapse
Affiliation(s)
- Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Center for Developmental Biology and Regenerative Medicine, Taipei, 106, Taiwan, ROC.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
22
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
23
|
Hamm DC, Paatela EM, Bennett SR, Wong CJ, Campbell AE, Wladyka CL, Smith AA, Jagannathan S, Hsieh AC, Tapscott SJ. The transcription factor DUX4 orchestrates translational reprogramming by broadly suppressing translation efficiency and promoting expression of DUX4-induced mRNAs. PLoS Biol 2023; 21:e3002317. [PMID: 37747887 PMCID: PMC10553841 DOI: 10.1371/journal.pbio.3002317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.
Collapse
Affiliation(s)
- Danielle C. Hamm
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Ellen M. Paatela
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cynthia L. Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Andrew A. Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew C. Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington State, United States of America
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Department of Neurology, University of Washington, Seattle, Washington State, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| |
Collapse
|
24
|
DeAntoneo C, Herbert A, Balachandran S. Z-form nucleic acid-binding protein 1 (ZBP1) as a sensor of viral and cellular Z-RNAs: walking the razor's edge. Curr Opin Immunol 2023; 83:102347. [PMID: 37276820 PMCID: PMC10526625 DOI: 10.1016/j.coi.2023.102347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Z-form nucleic acid-binding protein 1 (ZBP1) detects viral Z-form RNAs (Z-RNAs), activates receptor-interacting protein kinase 3, and triggers cell death during both RNA and DNA virus infections. Such cell death promotes virus clearance by eliminating infected cells and galvanizing antiviral immunity, and is thus often targeted for evasion by virus-encoded suppressors. Recent evidence demonstrates that ZBP1 can also be activated by cellular Z-RNAs transcribed from endogenous retroelements within mammalian genomes. These cellular Z-RNAs, if not edited and neutralized by adenosine deaminase RNA-specific 1, trigger ZBP1-dependent cell death and inflammation, which may drive disease in Aicardi-Goutière's syndrome and related interferonopathies. Thus, while well-controlled activation of ZBP1 by viral Z-RNAs during infections is beneficial, the same pathway can have harmful consequences when inappropriately triggered by cellular Z-RNAs in other disease settings.
Collapse
Affiliation(s)
- Carly DeAntoneo
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA; Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA, USA
| | | |
Collapse
|
25
|
Li XH, Sun MH, Jiang WJ, Zhou D, Lee SH, Heo G, Chen Z, Cui XS. ZSCAN4 Regulates Zygotic Genome Activation and Telomere Elongation in Porcine Parthenogenetic Embryos. Int J Mol Sci 2023; 24:12121. [PMID: 37569497 PMCID: PMC10418334 DOI: 10.3390/ijms241512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
26
|
Guo SM, Zhang YR, Ma BX, Zhou LQ, Yin Y. Regulation of cleavage embryo genes upon DRP1 inhibition in mouse embryonic stem cells. Front Cell Dev Biol 2023; 11:1191797. [PMID: 37255603 PMCID: PMC10225531 DOI: 10.3389/fcell.2023.1191797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Dynamic-related protein 1 (DRP1) is a key protein of mitochondrial fission. In this study, we found that inhibition of activity of DRP1 led to increased levels of cleavage embryo genes in mouse embryonic stem cells (mESCs), which might reflect a transient totipotency status derived from pluripotency. This result indicates that DRP1 inhibition in mESCs leads to a tendency to obtain a new expression profile similar to that of the 2C-like state. Meanwhile, we also noticed that the glycolysis/gluconeogenesis pathway and its related enzymes were significantly downregulated, and the key glycolytic enzymes were also downregulated in various 2C-like cells. Moreover, when DRP1 activity was inhibited from the late zygote when cleavage embryo genes started to express, development of early embryos was inhibited, and these cleavage embryo genes failed to be efficiently silenced at the late 2-cell (2C) stage. Taken together, our result shows that DRP1 plays an important role in silencing cleavage embryo genes for totipotency-to-pluripotency transition.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Xin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Grow EJ, Liu Y, Fan Z, Perisse IV, Patrick T, Regouski M, Shadle S, Polejaeva I, White KL, Cairns BR. Chromatin Reprogramming of In Vitro Fertilized and Somatic Cell Nuclear Transfer Bovine Embryos During Embryonic Genome Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536281. [PMID: 37090641 PMCID: PMC10120652 DOI: 10.1101/2023.04.10.536281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Reprogramming of the gamete into a developmentally competent embryo identity is a fundamental aspect of preimplantation development. One of the most important processes of this reprogramming is the transcriptional awakening during embryonic genome activation (EGA), which robustly occurs in fertilized embryos but is defective in most somatic cell nuclear transfer (SCNT) embryos. However, little is known about the genome-wide underlying chromatin landscape during EGA in SCNT embryos and how it differs from a fertilized embryo. By profiling open chromatin genome-wide in both types of bovine embryos, we find that SCNT embryos fail to reprogram a subset of the EGA gene targets that are normally activated in fertilized embryos. Importantly, a small number of transcription factor (TF) motifs explain most chromatin regions that fail to open in SCNT embryos suggesting that over-expression of a limited number of TFs may provide more robust reprogramming. One such TF, the zygotically-expressed bovine gene DUXC which is a homologue of EGA factors DUX/DUX4 in mouse/human, is alone capable of activating ∼84% of all EGA transcripts that fail to activate normally in SCNT embryos. Additionally, single-cell chromatin profiling revealed low intra-embryo heterogeneity but high inter-embryo heterogeneity in SCNT embryos and an uncoupling of cell division and open chromatin reprogramming during EGA. Surprisingly, our data also indicate that transcriptional defects may arise downstream of promoter chromatin opening in SCNT embryos, suggesting additional mechanistic insights into how and why transcription at EGA is dysregulated. We anticipate that our work will lead to altered SCNT protocols to increase the developmental competency of bovine SCNT embryos.
Collapse
|
28
|
Burden F, Ellis PI, Farré M. A shared 'vulnerability code' underpins varying sources of DNA damage throughout paternal germline transmission in mouse. Nucleic Acids Res 2023; 51:2319-2332. [PMID: 36806949 PMCID: PMC10018361 DOI: 10.1093/nar/gkad089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
During mammalian spermatogenesis, the paternal genome is extensively remodelled via replacement of histones with protamines forming the highly compact mature sperm nucleus. Compaction occurs in post-meiotic spermatids and is accompanied by extensive double strand break (DSB) formation. We investigate the epigenomic and genomic context of mouse spermatid DSBs, identifying primary sequence motifs, secondary DNA structures and chromatin contexts associated with this damage. Consistent with previously published results we find spermatid DSBs positively associated with short tandem repeats and LINE elements. We further show spermatid DSBs preferentially occur in association with (CA)n, (NA)n and (RY)n repeats, in predicted Z-DNA, are not associated with G-quadruplexes, are preferentially found in regions of low histone mark coverage and engage the remodelling/NHEJ factor BRD4. Locations incurring DSBs in spermatids also show distinct epigenetic profiles throughout later developmental stages: regions retaining histones in mature sperm, regions susceptible to oxidative damage in mature sperm, and fragile two-cell like embryonic stem cell regions bound by ZSCAN4 all co-localise with spermatid DSBs and with each other. Our results point to a common 'vulnerability code' unifying several types of DNA damage occurring on the paternal genome during reproduction, potentially underpinned by torsional changes during sperm chromatin remodelling.
Collapse
Affiliation(s)
| | - Peter J I Ellis
- To whom correspondence should be addressed. Tel: +44 1227 823526;
| | - Marta Farré
- Correspondence may also be addressed to Marta Farré. Tel: +44 1227 823697;
| |
Collapse
|
29
|
The remodeling of Z-DNA in the mammalian germ line. Biochem Soc Trans 2022; 50:1875-1884. [PMID: 36454621 PMCID: PMC9788570 DOI: 10.1042/bst20221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
We recently discovered a novel biological process, the scheduled remodeling of Z-DNA structures in the developing fetal mouse male germ cells [Nat. Cell Biol. 24, 1141-1153]. This process affects purine/pyrimidine dinucleotide repeat (PPR) rich sequences, which can form stable left-handed Z-DNA structures. The protein that carries out this function is identified as ZBTB43, member of a large family of ZBTB proteins. Z-DNA remodeling by ZBTB43 not only coincides with global remodeling of DNA methylation and chromatin events in the male germ line, but it also is a prerequisite for de novo DNA methylation. When ZBTB43 changes DNA structure from the left-handed zigzag shaped Z-DNA to the regular smooth right-handed B-DNA, it also generates a suitable substrate for the de novo DNA methyltransferase, DNMT3A. By instructing de novo DNA methylation at PPRs in prospermatogonia, ZBTB43 safeguards epigenomic integrity of the male gamete. PPRs are fragile sequences, sites of large deletions and rearrangements in mammalian cells, and this fragility is thought to be due to Z-DNA structure formation rather than the sequence itself. This idea is now supported by the in vivo finding that DNA double strand breaks accumulate in mutant prospermatogonia which lack ZBTB43-dependent Z-DNA remodeling. If unrepaired, double stranded DNA breaks can lead to germ line mutations. Therefore, by preventing such breaks ZBTB43 is critical for guarding genome stability between generations. Here, we discuss the significance and implications of these findings in more detail.
Collapse
|
30
|
Herbert A. Nucleosomes and flipons exchange energy to alter chromatin conformation, the readout of genomic information, and cell fate. Bioessays 2022; 44:e2200166. [DOI: 10.1002/bies.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
31
|
Li L, Li P, Chen J, Li L, Shen Y, Zhu Y, Liu J, Lv L, Mao S, Chen F, Hu G, Yuan K. Rif1 interacts with non-canonical polycomb repressive complex PRC1.6 to regulate mouse embryonic stem cells fate potential. CELL REGENERATION 2022; 11:25. [PMID: 35915272 PMCID: PMC9343540 DOI: 10.1186/s13619-022-00124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Mouse embryonic stem cells (mESCs) cycle in and out of a transient 2-cell (2C)-like totipotent state, driven by a complex genetic circuit involves both the coding and repetitive sections of the genome. While a vast array of regulators, including the multi-functional protein Rif1, has been reported to influence the switch of fate potential, how they act in concert to achieve this cellular plasticity remains elusive. Here, by modularizing the known totipotency regulatory factors, we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repressive complex PRC1.6. Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs. The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6, bolstering the intactness of the PRC1.6 complex. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state. Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352, but also derepresses a group of the endogenous retroviral element MERVL, a key marker for totipotency. Collectively, our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential, shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells.
Collapse
|
32
|
Xu H, Liang H. The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front Cell Dev Biol 2022; 10:1024093. [PMID: 36393839 PMCID: PMC9643643 DOI: 10.3389/fcell.2022.1024093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/13/2022] [Indexed: 09/08/2024] Open
Abstract
Totipotency represents the highest developmental potency. By definition, totipotent stem cells are capable of giving rise to all embryonic and extraembryonic cell types. In mammalian embryos, totipotency occurs around the zygotic genome activation period, which is around the 2-cell stage in mouse embryo or the 4-to 8-cell stage in human embryo. Currently, with the development of in vitro totipotent-like models and the advances in small-scale genomic methods, an in-depth mechanistic understanding of the totipotency state and regulation was enabled. In this review, we explored and summarized the current views about totipotency from various angles, including genetic and epigenetic aspects. This will hopefully formulate a panoramic view of totipotency from the available research works until now. It can also help delineate the scaffold and formulate new hypotheses on totipotency for future research works.
Collapse
Affiliation(s)
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women’s Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Shi F, Xu Y, Zhang S, Fu Z, Yu Q, Zhang S, Sun M, Zhao X, Feng X. Decabromodiphenyl ethane affects embryonic development by interfering with nuclear F-actin in zygotes and leads to cognitive and social disorders in offspring mice. FASEB J 2022; 36:e22445. [PMID: 35816173 DOI: 10.1096/fj.202200586r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Abstract
Decabromodiphenyl ethane (DBDPE) is a novel retardant. DBDPE is used in various flammable consumer products such as electronics, building materials, textiles, and children's toys. The presence of DBDPE in humans makes it extremely urgent to assess the health effects of DBDPE exposure. Here, we used female mice as an animal model to investigate the effects of DBDPE on embryonic development and offspring health. The results showed that 50 μg/kg bw/day of DBDPE exposure did not affect spindle rotation in oocytes after fertilization, but led to a decrease of pronuclei (PN) in zygotes. Further investigation found that DBDPE interferes with the self-assembly of F-actin in PN, resulting in PN reduction, DNA damage, and reduced expression of zygotic genome activating genes, and finally leading to abnormal embryonic development. More importantly, we found that maternal DBDPE exposure did not affect the growth and development of the first generation of offspring (F1) mice, but resulted in behavioral defects in F1 mice. Female F1 mice from DBDPE-exposed mothers exhibited increased motor activity and deficits in social behavior. Both female and male F1 mice from DBDPE-exposed mothers exhibited cognitive memory impairment. These results suggest that DBDPE has developmental toxicity on embryos and has a cross-generational interference effect. It is suggested that people should pay attention to the reproductive toxicity of DBDPE. In addition, it also provides a reference for studying the origin of neurological diseases and indicates that adult diseases caused by environmental pollutants may have begun in the embryonic stage.
Collapse
Affiliation(s)
- Feifei Shi
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shaozhi Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Meng Y, Wang G, He H, Lau KH, Hurt A, Bixler BJ, Parham A, Jin SG, Xu X, Vasquez KM, Pfeifer GP, Szabó PE. Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline genome and epigenome. Nat Cell Biol 2022; 24:1141-1153. [PMID: 35787683 PMCID: PMC9276527 DOI: 10.1038/s41556-022-00941-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
Abstract
Mutagenic purine–pyrimidine repeats can adopt the left-handed Z-DNA conformation. DNA breaks at potential Z-DNA sites can lead to somatic mutations in cancer or to germline mutations that are transmitted to the next generation. It is not known whether any mechanism exists in the germ line to control Z-DNA structure and DNA breaks at purine–pyrimidine repeats. Here we provide genetic, epigenomic and biochemical evidence for the existence of a biological process that erases Z-DNA specifically in germ cells of the mouse male foetus. We show that a previously uncharacterized zinc finger protein, ZBTB43, binds to and removes Z-DNA, preventing the formation of DNA double-strand breaks. By removing Z-DNA, ZBTB43 also promotes de novo DNA methylation at CG-containing purine–pyrimidine repeats in prospermatogonia. Therefore, the genomic and epigenomic integrity of the species is safeguarded by remodelling DNA structure in the mammalian germ line during a critical window of germline epigenome reprogramming. Meng et al. show that ZBTB43 alters Z-DNA structures to prevent deleterious double-strand breaks and promote DNA methylation at purine–pyrimidine repeats in the mouse germ line.
Collapse
Affiliation(s)
- Yingying Meng
- Capital Normal University College of Life Science, Beijing, China.,Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hongjuan He
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Hurt
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Brianna J Bixler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrea Parham
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,Van Andel Institute Graduate School, Grand Rapids, MI, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xingzhi Xu
- Capital Normal University College of Life Science, Beijing, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
35
|
Thool M, Sundaravadivelu PK, Sudhagar S, Thummer RP. A Comprehensive Review on the Role of ZSCAN4 in Embryonic Development, Stem Cells, and Cancer. Stem Cell Rev Rep 2022; 18:2740-2756. [PMID: 35739386 DOI: 10.1007/s12015-022-10412-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
ZSCAN4 is a transcription factor that plays a pivotal role during early embryonic development. It is a unique gene expressed specifically during the first tide of de novo transcription during the zygotic genome activation. Moreover, it is reported to regulate telomere length in embryonic stem cells and induced pluripotent stem cells. Interestingly, ZSCAN4 is expressed in approximately 5% of the embryonic stem cells in culture at any given time, which points to the fact that it has a tight regulatory system. Furthermore, ZSCAN4, if included in the reprogramming cocktail along with core reprogramming factors, increases the reprogramming efficiency and results in better quality, genetically stable induced pluripotent stem cells. Also, it is reported to have a role in promoting cancer stem cell phenotype and can prospectively be used as a marker for the same. In this review, the multifaceted role of ZSCAN4 in embryonic development, embryonic stem cells, induced pluripotent stem cells, cancer, and germ cells are discussed comprehensively.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
36
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
37
|
Zhang C, Wen H, Liu S, Fu E, Yu L, Chen S, Han Q, Li Z, Liu N. Maternal Factor Dppa3 Activates 2C-Like Genes and Depresses DNA Methylation in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:882671. [PMID: 35721479 PMCID: PMC9203971 DOI: 10.3389/fcell.2022.882671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) contain a rare cell population of “two-cell embryonic like” cells (2CLCs) that display similar features to those found in the two-cell (2C) embryo and thus represent an in vitro model for studying the progress of zygotic genome activation (ZGA). However, the positive regulator determinants of the 2CLCs’ conversion and ZGA have not been completely elucidated. Here, we identify a new regulator promoting 2CLCs and ZGA transcripts. Through a combination of overexpression (OE), knockdown (KD), together with transcriptional analysis and methylome analysis, we find that Dppa3 regulates the 2CLC-associated transcripts, DNA methylation, and 2CLC population in ESCs. The differentially methylated regions (DMRs) analysis identified 6,920 (98.2%) hypomethylated, whilst only 129 (1.8%) hypermethylated, regions in Dppa3 OE ESCs, suggesting that Dppa3 facilitates 2CLCs reprogramming. The conversion to 2CLCs by overexpression of Dppa3 is also associated with DNA damage response. Dppa3 knockdown manifest impairs transition into the 2C-like state. Global DNA methylome and chromatin state analysis of Dppa3 OE ESCs reveal that Dppa3 facilitates the chromatin configuration to 2CLCs reversion. Our finding for the first time elucidates a novel role of Dppa3 in mediating the 2CLC conversion, and suggests that Dppa3 is a new regulator for ZGA progress.
Collapse
Affiliation(s)
- Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Enze Fu
- School of Medicine, Nankai University, Tianjin, China
| | - Lu Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| |
Collapse
|
38
|
Arand J, Chiang HR, Martin D, Snyder MP, Sage J, Reijo Pera RA, Wossidlo M. Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Rep 2022; 23:e53968. [PMID: 34866320 PMCID: PMC8811641 DOI: 10.15252/embr.202153968] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Mammalian development begins in transcriptional silence followed by a period of widespread activation of thousands of genes. DNA methylation reprogramming is integral to embryogenesis and linked to Tet enzymes, but their function in early development is not well understood. Here, we generate combined deficiencies of all three Tet enzymes in mouse oocytes using a morpholino-guided knockdown approach and study the impact of acute Tet enzyme deficiencies on preimplantation development. Tet1-3 deficient embryos arrest at the 2-cell stage with the most severe phenotype linked to Tet2. Individual Tet enzymes display non-redundant roles in the consecutive oxidation of 5-methylcytosine to 5-carboxylcytosine. Gene expression analysis uncovers that Tet enzymes are required for completion of embryonic genome activation (EGA) and fine-tuned expression of transposable elements and chimeric transcripts. Whole-genome bisulfite sequencing reveals minor changes of global DNA methylation in Tet-deficient 2-cell embryos, suggesting an important role of non-catalytic functions of Tet enzymes in early embryogenesis. Our results demonstrate that Tet enzymes are key components of the clock that regulates the timing and extent of EGA in mammalian embryos.
Collapse
Affiliation(s)
- Julia Arand
- Center of Anatomy and Cell BiologyDepartment of Cell and Developmental BiologyMedical University of ViennaViennaAustria
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - H Rosaria Chiang
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
- Department of Obstetrics & GynecologyStanford UniversityStanfordCAUSA
| | - David Martin
- Center of Anatomy and Cell BiologyDepartment of Cell and Developmental BiologyMedical University of ViennaViennaAustria
| | | | - Julien Sage
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Renee A Reijo Pera
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of Obstetrics & GynecologyStanford UniversityStanfordCAUSA
- Present address:
McLaughlin Research InstituteGreat FallsMTUSA
| | - Mark Wossidlo
- Center of Anatomy and Cell BiologyDepartment of Cell and Developmental BiologyMedical University of ViennaViennaAustria
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
- Department of Obstetrics & GynecologyStanford UniversityStanfordCAUSA
| |
Collapse
|
39
|
Dan J, Zhou Z, Wang F, Wang H, Guo R, Keefe DL, Liu L. Zscan4 Contributes to Telomere Maintenance in Telomerase-Deficient Late Generation Mouse ESCs and Human ALT Cancer Cells. Cells 2022; 11:cells11030456. [PMID: 35159266 PMCID: PMC8834411 DOI: 10.3390/cells11030456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Proper telomere length is essential for indefinite self-renewal of embryonic stem (ES) cells and cancer cells. Telomerase-deficient late generation mouse ES cells and human ALT cancer cells are able to propagate for numerous passages, suggesting telomerase-independent mechanisms responding for telomere maintenance. However, the underlying mechanisms ensuring the telomere length maintenance are unclear. Here, using late generation telomerase KO (G4 Terc-/-) ESCs as a model, we show that Zscan4, highly upregulated in G4 Terc-/- ESCs, is responsible for the prolonged culture of these cells with stably short telomeres. Mechanistically, G4 Terc-/- ESCs showed reduced levels of DNA methylation and H3K9me3 at Zscan4 promoter and subtelomeres, which relieved the expression of Zscan4. Similarly, human ZSCAN4 was also derepressed by reduced H3K9me3 at its promoter in ALT U2 OS cells, and depletion of ZSCAN4 significantly shortened telomeres. Our results define a similar conserved pathway contributing to the telomere maintenance in telomerase-deficient late generation mESCs and human ALT U2OS cancer cells.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
- Correspondence: (J.D.); (L.L.)
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- Correspondence: (J.D.); (L.L.)
| |
Collapse
|
40
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
41
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
42
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
43
|
Olbrich T, Vega-Sendino M, Tillo D, Wu W, Zolnerowich N, Pavani R, Tran AD, Domingo CN, Franco M, Markiewicz-Potoczny M, Pegoraro G, FitzGerald PC, Kruhlak MJ, Lazzerini-Denchi E, Nora EP, Nussenzweig A, Ruiz S. CTCF is a barrier for 2C-like reprogramming. Nat Commun 2021; 12:4856. [PMID: 34381034 PMCID: PMC8358036 DOI: 10.1038/s41467-021-25072-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023] Open
Abstract
Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.
Collapse
Affiliation(s)
- Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | | | - Wei Wu
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Raphael Pavani
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Mariajose Franco
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Elphege P Nora
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
44
|
Grow EJ, Weaver BD, Smith CM, Guo J, Stein P, Shadle SC, Hendrickson PG, Johnson NE, Butterfield RJ, Menafra R, Kloet SL, van der Maarel SM, Williams CJ, Cairns BR. p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nat Genet 2021; 53:1207-1220. [PMID: 34267371 PMCID: PMC8513633 DOI: 10.1038/s41588-021-00893-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.
Collapse
Affiliation(s)
- Edward J Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley D Weaver
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Smith
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sean C Shadle
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Peter G Hendrickson
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicholas E Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Russell J Butterfield
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Roberta Menafra
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan L Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
45
|
Huang X, Hu X, Jiang Q, Cao Q, Wu Y, Lei L. Functional study of distinct domains of dux in improving mouse SCNT embryonic development. Biol Reprod 2021; 105:1089-1103. [PMID: 34296246 DOI: 10.1093/biolre/ioab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
2-cell-like (2C-like) embryonic stem cells (ESCs) are a small group of ESCs that spontaneously express zygotic genomic activation (ZGA) genes and repeats, such as Zscan4 and MERVL, and are specifically expressed in 2-cell-stage mouse embryos. Although numerous types of treatment and agents elevate the transition of ESCs to 2C-like ESCs, Dux serves as a critical factor in this transition by increasing the expression of Zscan4 and MERVL directly. However, the loss of Dux did not impair the birth of mice, suggesting that Dux may not be the primary transitioning factor in fertilized embryos. It has been reported that for 2-cell embryos derived from somatic cell nuclear transfer (SCNT) and whose expression of ZGA genes and repeats was aberrant, Dux improved the reprogramming efficiency by correcting aberrant H3K9ac modification via its C-terminal domain. We confirmed that overexpression of full-length Dux mRNA in SCNT embryos improved the efficiency of preimplantation development (62.16% vs. 41.26% with respect to controls) and also increased the expression of Zscan4 and MERVL. Furthermore, we found that the N-terminal double homeodomains of Dux were indispensable for Dux localization and function. The intermediate region was essential for MERVL and Zscan4 activation, and the C-terminal domain was important for elevating level of H3K27ac. Mutant Dux mRNA containing N-terminal double homeodomains with the intermediate region or the C-terminal domain also improved the preimplantation development of SCNT embryos. This is the first report focusing on distinguishing functional domains of Dux in embryos derived from SCNT.
Collapse
Affiliation(s)
- Xingwei Huang
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Qi Jiang
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Qianzi Cao
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| |
Collapse
|
46
|
Nsd2 Represses Endogenous Retrovirus MERVL in Embryonic Stem Cells. Stem Cells Int 2021; 2021:6663960. [PMID: 33531910 PMCID: PMC7834818 DOI: 10.1155/2021/6663960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
The facilitates chromatin transcription (FACT) complex is a histone H2A/H2B chaperone, which represses endogenous retroviruses (ERVs) and transcription of ERV-chimeric transcripts. It binds to both transcription start site and gene body region. Here, we investigated the downstream targets of FACT complex to identify the potential regulators of MERVL, which is a key 2-cell marker gene. H3K36me2 profile was positively correlated with that of FACT component Ssrp1. Among H3K36me2 deposition enzymes, Nsd2 was downregulated after the loss of Ssrp1. Furthermore, we demonstrated that Nsd2 repressed the expression of ERVs without affecting the expression of pluripotency genes. The expression of MERVL and 2-cell genes was partially rescued by Nsd2 overexpression. The enrichment of H3K36me2 decreased on MERVL-chimeric gene in ESCs without Ssrp1. Our study discovers that Nsd2 is a repressor of MERVL, and FACT partially represses MERVL expression by regulating the expression of Nsd2 and its downstream H3K36me2.
Collapse
|
47
|
Ilic D, Liovic M. Industry updates from the field of stem cell research and regenerative medicine in June 2020. Regen Med 2020. [DOI: 10.2217/rme-2020-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in June 2020.
Collapse
Affiliation(s)
- Dusko Ilic
- Department of Women & Children’s Health, Stem Cell Laboratories, Guy’s Assisted Conception Unit, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly. Viruses 2020; 12:v12101089. [PMID: 32993145 PMCID: PMC7650545 DOI: 10.3390/v12101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The human genome has been under selective pressure to evolve in response to emerging pathogens and other environmental challenges. Genome evolution includes the acquisition of new genes or new isoforms of genes and changes to gene expression patterns. One source of genome innovation is from transposable elements (TEs), which carry their own promoters, enhancers and open reading frames and can act as ‘controlling elements’ for our own genes. TEs include LINE-1 elements, which can retrotranspose intracellularly and endogenous retroviruses (ERVs) that represent remnants of past retroviral germline infections. Although once pathogens, ERVs also represent an enticing source of incoming genetic material that the host can then repurpose. ERVs and other TEs have coevolved with host genes for millions of years, which has allowed them to become embedded within essential gene expression programmes. Intriguingly, these host genes are often subject to the same epigenetic control mechanisms that evolved to combat the TEs that now regulate them. Here, we illustrate the breadth of host gene regulation through TEs by focusing on examples of young (The New), ancient (The Old), and disease-causing (The Ugly) TE integrants.
Collapse
|
49
|
Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun 2020; 11:4654. [PMID: 32943640 PMCID: PMC7498599 DOI: 10.1038/s41467-020-18508-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
The shift from maternal to embryonic control is a critical developmental milestone in preimplantation development. Widespread transcriptomic and epigenetic remodeling facilitate this transition from terminally differentiated gametes to totipotent blastomeres, but the identity of transcription factors (TF) and genomic elements regulating embryonic genome activation (EGA) are poorly defined. The timing of EGA is species-specific, e.g., the timing of murine and human EGA differ significantly. To deepen our understanding of mammalian EGA, here we profile changes in open chromatin during bovine preimplantation development. Before EGA, open chromatin is enriched for maternal TF binding, similar to that observed in humans and mice. During EGA, homeobox factor binding becomes more prevalent and requires embryonic transcription. A cross-species comparison of open chromatin during preimplantation development reveals strong similarity in the regulatory circuitry underlying bovine and human EGA compared to mouse. Moreover, TFs associated with murine EGA are not enriched in cattle or humans, indicating that cattle may be a more informative model for human preimplantation development than mice. Preimplantation embryos undergo extensive transcriptomic and epigenomic remodeling. Here the authors assay open chromatin in bovine oocytes, embryos, and embryonic stem cells, and compare the transcriptomes and epigenomes of cattle, human and mouse embryos, revealing species-specific regulation of genome activation.
Collapse
|