1
|
Guo L, Lee HK, Oh S, Koirala GR, Kim TI. Smart Bioelectronics for Real-Time Diagnosis and Therapy of Body Organ Functions. ACS Sens 2025. [PMID: 40310273 DOI: 10.1021/acssensors.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Noncommunicable diseases (NCDs) associated with cardiovascular, neurological, and gastrointestinal disorders remain a leading cause of global mortality, sounding the alarm for the urgent need for better diagnostic and therapeutic solutions. Wearable and implantable biointegrated electronics offer a groundbreaking solution, combining real-time, high-resolution monitoring with innovative treatment capabilities tailored to specific organ functions. In this comprehensive review, we focus on the diseases affecting the brain, heart, gastrointestinal organs, bladder, and adrenal gland, along with their associated physiological parameters. Additionally, we provide an overview of the characteristics of these parameters and explore the potential of bioelectronic devices for in situ sensing and therapeutic applications and highlight the recent advancements in their deployment across specific organs. Finally, we analyze the current challenges and prospects of implementing closed-loop feedback control systems in integrated sensor-therapy applications. By emphasizing organ-specific applications and advocating for closed-loop systems, this review highlights the potential of future bioelectronics to address physiological needs and serves as a guide for researchers navigating the interdisciplinary fields of diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Lili Guo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Zhang JR, Li A, Li XL, Chang Z, Han DD, Zhang YL. Bioinspired Sensor and Actuator Hybrid Pixel Array for Moisture/Temperature Mapping, Electrothermal Display and Programmable Deformation. NANO LETTERS 2025; 25:4586-4595. [PMID: 40047276 DOI: 10.1021/acs.nanolett.5c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Natural soft organisms with sophisticated perception and deformation abilities provide inspiration for developing flexible electronics. However, the development of flexible sensing and actuating hybrid systems remains a challenge. Herein, we report a bioinspired sensor and actuator hybrid pixel array (SA-HPA) that enables moisture/temperature mapping, electrothermal display, and programmable electrothermal deformation. The SA-HPA is fabricated by femtosecond laser patterning of Cu electrodes/circuits, controllable deposition of graphene, selective encapsulation, and liquid crystal elastomer integration. The versatile SA-HPA can work as a sensor array for temperature and moisture recognition, and the interference between them can be overcome by the selective encapsulation of adjacent pixels. Additionally, SA-HPAs can also serve as electrothermal pixels for programmable infrared display and actuation. As a proof-of-concept, a soft robotic system that enables active temperature and humidity sensing was demonstrated. We deem that the SA-HPA may provide a new paradigm for developing soft electronics.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ang Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xi-Lin Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
3
|
Marmarchinia S, Chen X, Senel M, Gundogdu G, Mauney J, Khine M. Stretchable Strain Sensors for Real-Time Bladder Volume Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11678-11687. [PMID: 39963026 DOI: 10.1021/acsami.4c19156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Urinary incontinence (UI) is a prevalent condition that adversely affects quality of life, driving the need for innovative technologies for continuous bladder monitoring. In this study, we introduce a wrinkled metal (platinum and gold) strain sensor tailored for real-time bladder volume monitoring. This stretchable sensor is designed to provide robust and reliable performance for 5000 cycles with minimal hysteresis, and its mechanical properties match that of bladder tissue, enabling accurate monitoring during bladder filling and emptying. Our experimental results demonstrate that the sensor offers high sensitivity and stability, with a dynamic range of up to 230% strain, Young's modulus of 11.7-32 kPa, and a gauge factor (GF) of 2.9-4.7. The sensor's efficacy was validated through in vitro bladder phantom studies and ex vivo pig bladder experiments, where it consistently tracked bladder volume changes with a sensitivity of 4.60 mL-1. The results suggest that the strain sensor is a promising candidate for robust, biocompatible bladder volume monitoring in patients with urinary disorders, offering an alternative to traditional methods by being more comfortable and biocompatible.
Collapse
Affiliation(s)
- Sara Marmarchinia
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| | - Xinlei Chen
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| | - Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department Biochemistry, Faculty of Pharmacy, Biruni University, 34010 Istanbul, Turkiye
| | - Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, California 92868, United States
| | - Joshua Mauney
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Department of Urology, University of California, Irvine, Orange, California 92868, United States
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
| |
Collapse
|
4
|
Han WB, Jang TM, Shin B, Naganaboina VR, Yeo WH, Hwang SW. Recent advances in soft, implantable electronics for dynamic organs. Biosens Bioelectron 2024; 261:116472. [PMID: 38878696 DOI: 10.1016/j.bios.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Unlike conventional rigid counterparts, soft and stretchable electronics forms crack- or defect-free conformal interfaces with biological tissues, enabling precise and reliable interventions in diagnosis and treatment of human diseases. Intrinsically soft and elastic materials, and device designs of innovative configurations and structures leads to the emergence of such features, particularly, the mechanical compliance provides seamless integration into continuous movements and deformations of dynamic organs such as the bladder and heart, without disrupting natural physiological functions. This review introduces the development of soft, implantable electronics tailored for dynamic organs, covering various materials, mechanical design strategies, and representative applications for the bladder and heart, and concludes with insights into future directions toward clinically relevant tools.
Collapse
Affiliation(s)
- Won Bae Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Beomjune Shin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Venkata Ramesh Naganaboina
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Jiang H, Zhang J, Weng Z, Chen L, Wu Y, Weng X. Flexible Microfluidic Strain Sensor Made with Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-MXene-Au Nanocomposites for Monitoring Physiological Signals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49745-49755. [PMID: 39226117 DOI: 10.1021/acsami.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Flexible strain sensors have been widely used in wearable electronics. However, the fabrication of flexible strain sensors with a large strain detection range, high sensitivity, and negligible hysteresis remains a formidable challenge, even after enormous advancements in the field. Herein, a flexible microfluidic strain sensor was fabricated by filling poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-MXene-gold (PEDOT:PSS-MXene-Au) nanocomposites into microchannels in an elastic matrix. Owing to the unique properties of the nanofiller and Ecoflex elastomer microchannel, the microfluidic strain sensor detected a strain of 0%-500% with low hysteresis (2.4%), high sensitivity (guage factor = 25.4), short response times (∼86 ms), and good durability. Moreover, the flexible microfluidic sensor was used to detect various physiological signals and human activities, control a mechanical hand, and capture hand motions in real time. As demonstrated by its good performance, the proposed flexible microfluidic sensor holds great potential in applications such as wearable electronics, physiological signal monitoring and human-machine interactions.
Collapse
Affiliation(s)
- Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| | - Jiabo Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhiwei Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Longyan Chen
- Department of Biomedical, Industrial & Systems Engineering, Gannon University, 109 University Square, Erie, Pennsylvania 16541, United States
| | - Yichuan Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| |
Collapse
|
6
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
7
|
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1961. [PMID: 38723798 PMCID: PMC11108230 DOI: 10.1002/wnan.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Rithvik Papani
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois, United States
| |
Collapse
|
8
|
Vogt B. Catheter-Free Urodynamics Testing: Current Insights and Clinical Potential. Res Rep Urol 2024; 16:1-17. [PMID: 38192632 PMCID: PMC10771720 DOI: 10.2147/rru.s387757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Lower urinary tract dysfunction not only interferes with the health-related quality of life of patients but may also lead to acute kidney injury and infections. To assess the bladder, urodynamic studies (UDS) have been implemented but the use of catheters leads to discomfort for the patient. Catheter-free long-term UDS would be useful and a potential solution could be ambulatory wireless devices that communicate via telemetry. Such sensors can detect pressure or volume. Numerous types of potential catheter-free sensors have been proposed for bladder monitoring. Despite substantial innovation in the manufacturing of implantable biomedical electronic systems, such sensors have remained at the laboratory stage due to a number of critical challenges. These challenges primarily concern hermeticity and biocompatibility, sensitivity and artifacts, drift, telemetry, and energy management. Having overcome these challenges, catheter-free ambulatory urodynamic monitoring could combine a synchronized intravesical pressure sensor with a volume analyzer but only the steps of cystometry and volume measurement are currently sufficiently reproducible to simulate UDS results. The measurement of volume by infrared optical sensors, in the form of abdominal patches, appears to be promising and studies are underway to market a telemetric ambulatory urodynamic monitoring system that includes an intravesical pressure sensor. There has been considerable progress in wearable and conformable electronics on many fronts, and continued collaboration between engineers and urologists could quickly overcome current challenges. In addition, to the diagnosis of UDS, such sensors could be useful in the development of a long-term closed-loop neuromodulation system. In this review, we explore the various types of catheter-free bladder sensors, inherent challenges and solutions to overcome these challenges, and the clinical potential of such long-term implantable sensors.
Collapse
Affiliation(s)
- Benoît Vogt
- Department of Urology, Polyclinique de Blois, La Chaussée Saint-Victor, France
| |
Collapse
|
9
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu X, Wang J, Ren L, Ling Q. Bladder Replacement Therapy. Bladder (San Franc) 2023; 10:e21200010. [PMID: 38022707 PMCID: PMC10668601 DOI: 10.14440/bladder.2023.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The bladder, as a vital organ of the urinary system, facilitates urine storage and micturition. The bladder can store urine under low pressure, sense volume changes, and coordinate with the urethral sphincter to ensure autonomous and efficient urination and bladder emptying. However, irreversible bladder damage may result from various conditions, such as nerve injuries, aging, or metabolic syndrome, compromising its normal physiological functions and necessitating various interventions for anatomical and functional bladder replacements. This review aimed to summarize advances on anatomical and functional bladder replacements.
Collapse
Affiliation(s)
| | | | | | - Qing Ling
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Lee JH, Jang TM, Shin JW, Lim BH, Rajaram K, Han WB, Ko GJ, Yang SM, Han S, Kim DJ, Kang H, Lim JH, Lee KS, Park E, Hwang SW. Wireless, Fully Implantable and Expandable Electronic System for Bidirectional Electrical Neuromodulation of the Urinary Bladder. ACS NANO 2023; 17:8511-8520. [PMID: 37070621 DOI: 10.1021/acsnano.3c00755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Current standard clinical options for patients with detrusor underactivity (DUA) or underactive bladder─the inability to release urine naturally─include the use of medications, voiding techniques, and intermittent catheterization, for which the patient inserts a tube directly into the urethra to eliminate urine. Although those are life-saving techniques, there are still unfavorable side effects, including urinary tract infection (UTI), urethritis, irritation, and discomfort. Here, we report a wireless, fully implantable, and expandable electronic complex that enables elaborate management of abnormal bladder function via seamless integrations with the urinary bladder. Such electronics can not only record multiple physiological parameters simultaneously but also provide direct electrical stimulation based on a feedback control system. Uniform distribution of multiple stimulation electrodes via mesh-type geometry realizes low-impedance characteristics, which improves voiding/urination efficiency at the desired times. In vivo evaluations using live, free-moving animal models demonstrate system-level functionality.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong Hee Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyu-Sung Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Biomedical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Oh B, Lim YS, Ko KW, Seo H, Kim DJ, Kong D, You JM, Kim H, Kim TS, Park S, Kwon DS, Na JC, Han WK, Park SM, Park S. Ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor for monitoring of overactive bladder. Biosens Bioelectron 2023; 225:115060. [PMID: 36701947 DOI: 10.1016/j.bios.2023.115060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
A highly stretchable and tissue-adhesive multifunctional sensor based on structurally engineered islets embedded in ultra-soft hydrogel is reported for monitoring of bladder activity in overactive bladder (OAB) induced rat and anesthetized pig. The use of hydrogel yielded a much lower sensor modulus (1 kPa) compared to that of the bladder (300 kPa), while the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) allowed firm attachment onto the bladder. The change in resistance of printed liquid metal particle thin-film lines under strain were used to detect bladder inflation and deflation; due to the high stretchability and reliability of the lines, surface strains of 200% could be measured repeatedly. Au electrodes coated with Platinum black were used to detect electromyography (EMG). These electrodes were placed on structurally engineered rigid islets so that no interfacial fracture occurs under high strains associated with bladder expansion. On the OAB induced rat, stronger signals (change in resistance and EMG root-mean-square) were detected near intra-bladder pressure maxima, thus showing correlation to bladder activity. Moreover, using robot-assisted laparoscopic surgery, the sensor was placed onto the bladder of an anesthetized pig. Under voiding and filling, bladder strain and EMG were once again monitored. These results confirm that our proposed sensor is a highly feasible, clinically relevant implantable device for continuous monitoring OAB for diagnosis and treatment.
Collapse
Affiliation(s)
- Byungkook Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Kun Woo Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyeonyeob Seo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dukyoo Kong
- Roen Surgical Inc, 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea
| | - Jae Min You
- Roen Surgical Inc, 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea
| | - Hansoul Kim
- Roen Surgical Inc, 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea; KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dong-Soo Kwon
- Roen Surgical Inc, 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea
| | - Joon Chae Na
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Kyu Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Center of Uro-Oncology, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea; Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea; KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Xiang L, Li H, Xie QQ, Siau CS, Xie Z, Zhu MT, Zhou B, Li ZP, Wang SB. Rehabilitation care of patients with neurogenic bladder after spinal cord injury: A literature review. World J Clin Cases 2023; 11:57-64. [PMID: 36687186 PMCID: PMC9846973 DOI: 10.12998/wjcc.v11.i1.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
This article reviews the research progress of rehabilitation treatment and nursing care of patients with neurogenic bladder after spinal cord injury, in order to provide reference for the rehabilitation treatment and nursing care of patients. We reviewed recent medical literature on patients with neurogenic bladder, focusing on neurogenic bladder caused by spinal cord injury. We analyzed 30 recent of publications in patients with neurogenic bladder after spinal cord injury, in addition to reviewing and evaluating the commonly used rehabilitation nursing methods for neurogenic bladder. Psychological counseling is a vital aspect which cannot be neglected in the process of neurogenic bladder rehabilitation. Hitherto, the commonly used drug and surgical treatments may have negatively impacted the mental health of patients in varying degrees. However, in clinical practice, applying intermittent catheterization in patients who have neurogenic bladder with spinal cord injury may help improve patients' life quality, mitigate psychological burden, and reduce negative emotions.
Collapse
Affiliation(s)
- Lei Xiang
- Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Department of Rehabilitation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Han Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Qi-Qi Xie
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Ching Sin Siau
- Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Zhi Xie
- College of Biology & Pharmacy, Three Gorges University, Yichang 443002, Hubei Province, China
| | - Meng-Ting Zhu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Bo Zhou
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zhi-Peng Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| |
Collapse
|
14
|
Sim HJ, Choi C. Microbuckled Mechano-electrochemical Harvesting Fiber for Self-Powered Organ Motion Sensors. NANO LETTERS 2022; 22:8695-8703. [PMID: 36301734 DOI: 10.1021/acs.nanolett.2c03296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical harvesters have attracted tremendous attention as self-powered strain sensors; previous harvesters required high stress to stretch the fiber because of their high Young's modulus and low elasticity. We report on a mechano-electrochemical harvesting (MECH) fiber based on the new buckle structure, which has a low Young's modulus (2 MPa) with high elasticity (up to 100%) in a similar physiological fluid. MECH converts mechanical energy into electrical energy by changing the capacitance due to changing the surface area caused by the microbuckle on the surface. The damage to the cells can be minimized by their softness; the fiber was stitched on the tissue of the pig stomach while maintaining the performance like a suture fiber. Additionally, the fiber successfully operated in an organ-similar system, which is composed of the stomach or bladder of a pig. The fiber has a high potential to be applied in wearable energy sources and self-powered strain sensors.
Collapse
Affiliation(s)
- Hyeon Jun Sim
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| |
Collapse
|
15
|
Yang Y, Wang J, Wang L, Wu Q, Ling L, Yang Y, Ning S, Xie Y, Cao Q, Li L, Liu J, Ling Q, Zang J. Magnetic soft robotic bladder for assisted urination. SCIENCE ADVANCES 2022; 8:eabq1456. [PMID: 36001667 PMCID: PMC9401625 DOI: 10.1126/sciadv.abq1456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The poor contractility of the detrusor muscle in underactive bladders (UABs) fails to increase the pressure inside the UAB, leading to strenuous and incomplete urination. However, existing therapeutic strategies by modulating/repairing detrusor muscles, e.g., neurostimulation and regenerative medicine, still have low efficacy and/or adverse effects. Here, we present an implantable magnetic soft robotic bladder (MRB) that can directly apply mechanical compression to the UAB to assist urination. Composed of a biocompatible elastomer composite with optimized magnetic domains, the MRB enables on-demand contraction of the UAB when actuated by magnetic fields. A representative MRB for a UAB in a porcine model is demonstrated, and MRB-assisted urination is validated by in situ computed tomography imaging after 14-day implantation. The urodynamic tests show a series of successful urination with a high pressure increase and fast urine flow. Our work paves the way for developing MRB to assist urination for humans with UABs.
Collapse
Affiliation(s)
- Youzhou Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
| | - Qingyang Wu
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Le Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yueying Yang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shan Ning
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yan Xie
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liang Li
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianfeng Zang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
16
|
Casagrande G, Ibrahimi M, Semproni F, Iacovacci V, Menciassi A. Hydraulic Detrusor for Artificial Bladder Active Voiding. Soft Robot 2022; 10:269-279. [PMID: 35759369 DOI: 10.1089/soro.2021.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gold standard treatment for bladder cancer is radical cystectomy that implies bladder removal coupled to urinary diversions. Despite the serious complications and the impossibility of controlled active voiding, bladder substitution with artificial systems is a challenge and cannot represent a real option, yet. In this article, we present hydraulic artificial detrusor prototypes to control and drive the voiding of an artificial bladder (AB). These prototypes rely on two actuator designs (origami and bellows) based either on negative or positive operating pressure, to be combined with an AB structure. Based on the bladder geometry and size, we optimized the actuators in terms of contraction/expansion performances, minimizing the liquid volume required for actuation and exploring different actuator arrangements to maximize the voiding efficiency. To operate the actuators, an ad hoc electrohydraulic circuit was developed for transferring liquid between the actuators and a reservoir, both of them intended to be implanted. The AB, actuators, and reservoir were fabricated with biocompatible flexible thermoplastic materials by a heat-sealing process. We assessed the voiding efficiency with benchtop experiments by varying the actuator type and arrangement at different simulated patient positions (horizontal, 45° tilted, and vertical) to identify the optimal configuration and actuation strategy. The most efficient solution relies on two bellows actuators anchored to the AB. This artificial detrusor design resulted in a voiding efficiency of about 99%, 99%, and 89%, in the vertical, 45° tilted, and horizontal positions, respectively. The relative voiding time was reduced by about 17, 24, and 55 s compared with the unactuated bladder.
Collapse
Affiliation(s)
- Giada Casagrande
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Michele Ibrahimi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Federica Semproni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Veronica Iacovacci
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Arianna Menciassi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
17
|
Sevcencu C. Single-interface bioelectronic medicines - concept, clinical applications and preclinical data. J Neural Eng 2022; 19. [PMID: 35533654 DOI: 10.1088/1741-2552/ac6e08] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/12/2022]
Abstract
Presently, large groups of patients with various diseases are either intolerant, or irresponsive to drug therapies and also intractable by surgery. For several diseases, one option which is available for such patients is the implantable neurostimulation therapy. However, lacking closed-loop control and selective stimulation capabilities, the present neurostimulation therapies are not optimal and are therefore used as only "third" therapeutic options when a disease cannot be treated by drugs or surgery. Addressing those limitations, a next generation class of closed-loop controlled and selective neurostimulators generically named bioelectronic medicines seems within reach. A sub-class of such devices is meant to monitor and treat impaired functions by intercepting, analyzing and modulating neural signals involved in the regulation of such functions using just one neural interface for those purposes. The primary objective of this review is to provide a first broad perspective on this type of single-interface devices for bioelectronic therapies. For this purpose, the concept, clinical applications and preclinical studies for further developments with such devices are here analyzed in a narrative manner.
Collapse
Affiliation(s)
- Cristian Sevcencu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca, 400293, ROMANIA
| |
Collapse
|
18
|
Singh S, Melnik R. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. CHEMOSENSORS (BASEL, SWITZERLAND) 2022; 10:157. [PMID: 35909810 PMCID: PMC9171916 DOI: 10.3390/chemosensors10050157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022]
Abstract
Low-dimensional nanostructures have many advantages when used in sensors compared to the traditional bulk materials, in particular in their sensitivity and specificity. In such nanostructures, the motion of carriers can be confined from one, two, or all three spatial dimensions, leading to their unique properties. New advancements in nanosensors, based on low-dimensional nanostructures, permit their functioning at scales comparable with biological processes and natural systems, allowing their efficient functionalization with chemical and biological molecules. In this article, we provide details of such sensors, focusing on their several important classes, as well as the issues of their designs based on mathematical and computational models covering a range of scales. Such multiscale models require state-of-the-art techniques for their solutions, and we provide an overview of the associated numerical methodologies and approaches in this context. We emphasize the importance of accounting for coupling between different physical fields such as thermal, electromechanical, and magnetic, as well as of additional nonlinear and nonlocal effects which can be salient features of new applications and sensor designs. Our special attention is given to nanowires and nanotubes which are well suited for nanosensor designs and applications, being able to carry a double functionality, as transducers and the media to transmit the signal. One of the key properties of these nanostructures is an enhancement in sensitivity resulting from their high surface-to-volume ratio, which leads to their geometry-dependant properties. This dependency requires careful consideration at the modelling stage, and we provide further details on this issue. Another important class of sensors analyzed here is pertinent to sensor and actuator technologies based on smart materials. The modelling of such materials in their dynamics-enabled applications represents a significant challenge as we have to deal with strongly nonlinear coupled problems, accounting for dynamic interactions between different physical fields and microstructure evolution. Among other classes, important in novel sensor applications, we have given our special attention to heterostructures and nucleic acid based nanostructures. In terms of the application areas, we have focused on chemical and biomedical fields, as well as on green energy and environmentally-friendly technologies where the efficient designs and opportune deployments of sensors are both urgent and compelling.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- BCAM-Basque Centre for Applied Mathematics, E-48009 Bilbao, Spain
| |
Collapse
|
19
|
Holmes-Martin K, Zhu M, Xiao S, Arab Hassani F. Advances in Assistive Electronic Device Solutions for Urology. MICROMACHINES 2022; 13:mi13040551. [PMID: 35457855 PMCID: PMC9028141 DOI: 10.3390/mi13040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.
Collapse
|
20
|
Su Q, Zou Q, Li Y, Chen Y, Teng SY, Kelleher JT, Nith R, Cheng P, Li N, Liu W, Dai S, Liu Y, Mazursky A, Xu J, Jin L, Lopes P, Wang S. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins. SCIENCE ADVANCES 2021; 7:eabi4563. [PMID: 34818045 PMCID: PMC8612682 DOI: 10.1126/sciadv.abi4563] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A stretchable pressure sensor is a necessary tool for perceiving physical interactions that take place on soft/deformable skins present in human bodies, prosthetic limbs, or soft robots. However, all existing types of stretchable pressure sensors have an inherent limitation, which is the interference of stretching with pressure sensing accuracy. Here, we present a design for a highly stretchable and highly sensitive pressure sensor that can provide unaltered sensing performance under stretching, which is realized through the synergistic creations of an ionic capacitive sensing mechanism and a mechanically hierarchical microstructure. Via this optimized structure, our sensor exhibits 98% strain insensitivity up to 50% strain and a low pressure detection limit of 0.2 Pa. With the capability to provide all the desired characteristics for quantitative pressure sensing on a deformable surface, this sensor has been used to realize the accurate sensation of physical interactions on human or soft robotic skin.
Collapse
Affiliation(s)
- Qi Su
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Qiang Zou
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Yuzhen Chen
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan-Yuan Teng
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Jane T. Kelleher
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Romain Nith
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Shilei Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Alex Mazursky
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Jie Xu
- Nanotechnology and Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pedro Lopes
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author.
| |
Collapse
|
21
|
Qin J, Yin LJ, Hao YN, Zhong SL, Zhang DL, Bi K, Zhang YX, Zhao Y, Dang ZM. Flexible and Stretchable Capacitive Sensors with Different Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008267. [PMID: 34240474 DOI: 10.1002/adma.202008267] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Indexed: 05/27/2023]
Abstract
Recently, sensors that can imitate human skin have received extensive attention. Capacitive sensors have a simple structure, low loss, no temperature drift, and other excellent properties, and can be applied in the fields of robotics, human-machine interactions, medical care, and health monitoring. Polymer matrices are commonly employed in flexible capacitive sensors because of their high flexibility. However, their volume is almost unchanged when pressure is applied, and they are inherently viscoelastic. These shortcomings severely lead to high hysteresis and limit the improvement in sensitivity. Therefore, considerable efforts have been applied to improve the sensing performance by designing different microstructures of materials. Herein, two types of sensors based on the applied forces are discussed, including pressure sensors and strain sensors. Currently, five types of microstructures are commonly used in pressure sensors, while four are used in strain sensors. The advantages, disadvantages, and practical values of the different structures are systematically elaborated. Finally, future perspectives of microstructures for capacitive sensors are discussed, with the aim of providing a guide for designing advanced flexible and stretchable capacitive sensors via ingenious human-made microstructures.
Collapse
Affiliation(s)
- Jing Qin
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Li-Juan Yin
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ya-Nan Hao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shao-Long Zhong
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dong-Li Zhang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ke Bi
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yong-Xin Zhang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Zhao
- School of Electrical Engineering, Zheng Zhou University, Zhengzhou, Henan, 450001, China
| | - Zhi-Min Dang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annu Rev Chem Biomol Eng 2021; 12:359-391. [PMID: 34097846 DOI: 10.1146/annurev-chembioeng-101420-024336] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ho Ha
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA;
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea;
| | - Nanshu Lu
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA; .,Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Department of Biomedical Engineering, and Texas Material Institute, The University of Texas at Austin, Texas 78712, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Han F, Li M, Ye H, Zhang G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1220. [PMID: 34063165 PMCID: PMC8148098 DOI: 10.3390/nano11051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As a core member within the wearable electronics family, flexible strain sensors play an essential role in the structure design and functional optimization. To further enhance the stretchability, flexibility, sensitivity, and electricity performances of the flexible strain sensors, enormous efforts have been done covering the materials design, manufacturing approaches and various applications. Thus, this review summarizes the latest advances in flexible strain sensors over recent years from the material, application, and manufacturing strategies. Firstly, the critical parameters measuring the performances of flexible strain sensors and materials development contains different flexible substrates, new nano- and hybrid- materials are introduced. Then, the developed working mechanisms, theoretical analysis, and computational simulation are presented. Next, based on different material design, diverse applications including human motion detection and health monitoring, soft robotics and human-machine interface, implantable devices, and biomedical applications are highlighted. Finally, synthesis consideration of the massive production industry of flexible strain sensors in the future; different fabrication approaches that are fully expected are classified and discussed.
Collapse
Affiliation(s)
- Fei Han
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Min Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
| | - Huaiyu Ye
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Guoqi Zhang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| |
Collapse
|
24
|
Dahiya AS, Shakthivel D, Kumaresan Y, Zumeit A, Christou A, Dahiya R. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. NANO CONVERGENCE 2020; 7:33. [PMID: 33034776 PMCID: PMC7547062 DOI: 10.1186/s40580-020-00243-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.
Collapse
Affiliation(s)
- Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yogeenth Kumaresan
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayoub Zumeit
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
25
|
Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L, Lv Z, Luo Y, Loh XJ, Chen X. An artificial sensory neuron with visual-haptic fusion. Nat Commun 2020; 11:4602. [PMID: 32929071 PMCID: PMC7490423 DOI: 10.1038/s41467-020-18375-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Human behaviors are extremely sophisticated, relying on the adaptive, plastic and event-driven network of sensory neurons. Such neuronal system analyzes multiple sensory cues efficiently to establish accurate depiction of the environment. Here, we develop a bimodal artificial sensory neuron to implement the sensory fusion processes. Such a bimodal artificial sensory neuron collects optic and pressure information from the photodetector and pressure sensors respectively, transmits the bimodal information through an ionic cable, and integrates them into post-synaptic currents by a synaptic transistor. The sensory neuron can be excited in multiple levels by synchronizing the two sensory cues, which enables the manipulating of skeletal myotubes and a robotic hand. Furthermore, enhanced recognition capability achieved on fused visual/haptic cues is confirmed by simulation of a multi-transparency pattern recognition task. Our biomimetic design has the potential to advance technologies in cyborg and neuromorphic systems by endowing them with supramodal perceptual capabilities.
Collapse
Affiliation(s)
- Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Xintong Guo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Naoji Matsuhisa
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore, Singapore
| | - Zhisheng Lv
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
| |
Collapse
|