1
|
Wu Z, Lepcha TT, Zhou D, He Z, Fiches GN, Park Y, He J, Chen J, Shanaka K, Oghumu S, Zhao W, Ma A, Ma Q, Zhu J, Santoso NG. Analysis of Head and Neck Cancer scRNA-seq Data Identified PRDM6 Promotes Tumor Progression by Modulating Immune Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641548. [PMID: 40093183 PMCID: PMC11908237 DOI: 10.1101/2025.03.04.641548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a biologically aggressive and heterogeneous group of cancers with limited treatment options for patients who do not respond to standard therapies. While HPV-related HNSCCs tend to show better therapeutic outcomes, we still had limited understanding of the immune mechanisms underlying these cancers. Immune-responsive genes (IRGs) have emerged as critical factors in regulating both tumor progression and immune response. Recent advances in single-cell RNA sequencing (scRNA-seq) and the development of cell-type specific regulon inference tools, such as IRIS3, have provided new insights into the tumor immune microenvironment. In this study, we leveraged the IRIS3 platform to analyze scRNA-seq data from HNSCC patient samples, identifying novel transcription factor (TF)-IRG networks that contribute to tumor proliferation and immune escape. Specifically, we identified PRDM6, a histone methyltransferase, possesses the previously unknown role in promoting tumor cell proliferation by inducing IRG expression. We further demonstrated that HPV viral oncoproteins (E6/E7) oncoproteins up-regulate the PRDM6 expression, which associates PRDM6 with HPV-positive HNSCC.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thurbu Tshering Lepcha
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhixian He
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Guillaume N. Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jinshan He
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jianwen Chen
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - K.A.S.N Shanaka
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Weiqiang Zhao
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Netty G. Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Cortese M, Hagan T, Rouphael N, Wu SY, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam PS, Nakaya HI, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger SE, Kotliarov Y, Cheung F, Schwartzberg PL, Germain RN, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan MJ, Khurana S, Golding H, Pulendran B. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat Immunol 2025; 26:116-130. [PMID: 39747435 DOI: 10.1038/s41590-024-02036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity. We found that TPO administration enhanced the durability of vaccine-induced antibody responses. TPO-activated megakaryocytes also promoted survival of human bone-marrow plasma cells through integrin β1/β2-mediated cell-cell interactions, along with survival factors APRIL and the MIF-CD74 axis. Using machine learning, we developed a classifier based on this platelet-associated signature, which predicted antibody response longevity across six vaccines from seven independent trials, highlighting a conserved mechanism for vaccine durability.
Collapse
Affiliation(s)
- Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Prabhu S Aranuchalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yating Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Elizabeth Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanchih Wu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Bower
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | - Aneesh Mehta
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | | | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Ronald N Germain
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - John Tsang
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology, Kyoto University, Kyoto, Japan
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark J Mulligan
- Division of Infectious Diseases and Immunology, Department of Medicine and NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Lim Y, Cho YB, Seo YJ. Emerging roles of cytoskeletal transport and scaffold systems in human viral propagation. Anim Cells Syst (Seoul) 2024; 28:506-518. [PMID: 39439927 PMCID: PMC11494721 DOI: 10.1080/19768354.2024.2418332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Viruses have long been recognized as significant pathogens, contributing to multiple global pandemics throughout human history. Recent examples include the 2009 influenza pandemic and the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. Despite ongoing experimental and clinical efforts, the development of effective antiviral treatments and vaccines remains challenging due to the high mutation rates of many human pathogenic viruses including influenza virus and SARS-CoV-2. As an alternative approach, antiviral strategies targeting host factors shared by multiple viruses could provide a more universally applicable solution. Emerging evidence suggests that viruses exploit the host cytoskeletal network to facilitate efficient viral replication and propagation. Therefore, a comprehensive understanding of the interactions between viral components and the cytoskeletal machinery may offer valuable insights for the development of broad-spectrum antiviral therapeutics. This review compiles and discusses current knowledge on the interactions between viruses and cytoskeletal elements, including kinesin, dynein, myosin, and vimentin, and explores their potential as therapeutic targets. The potential for these cytoskeletal components to serve as targets for new antiviral interventions is discussed in the context of diverse human viruses, including influenza virus, SARS-CoV-2, herpes simplex virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| |
Collapse
|
4
|
Yang J, Shi C, Cheng Y, Zhu Y, Yang X, Liang Y, Liang H, Lin Q, Li M, Xun J, Liu J, Yin C, Qi J, Zhu H. Effective in vivo reactivation of HIV-1 latency reservoir via oral administration of EK-16A-SNEDDS. Eur J Pharm Biopharm 2024; 201:114353. [PMID: 38885911 DOI: 10.1016/j.ejpb.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.
Collapse
Affiliation(s)
- Jinlong Yang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yipeng Cheng
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianping Liu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Li TW, Park Y, Watters EG, Wang X, Zhou D, Fiches GN, Wu Z, Badley AD, Sacha JB, Ho WZ, Santoso NG, Qi J, Zhu J. KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells. Antiviral Res 2024; 228:105947. [PMID: 38925368 PMCID: PMC11927087 DOI: 10.1016/j.antiviral.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily G Watters
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guillaume N Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Netty G Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Liang T, Li G, Lu Y, Hu M, Ma X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023; 15:v15040985. [PMID: 37112965 PMCID: PMC10144533 DOI: 10.3390/v15040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.
Collapse
Affiliation(s)
- Taizhen Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Guojie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Yunfei Lu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Meilin Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Medicinal Chemistry of Anti-HIV-1 Latency Chemotherapeutics: Biotargets, Binding Modes and Structure-Activity Relationship Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010003. [PMID: 36615199 PMCID: PMC9822059 DOI: 10.3390/molecules28010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The existence of latent viral reservoirs (LVRs), also called latent cells, has long been an acknowledged stubborn hurdle for effective treatment of HIV-1/AIDS. This stable and heterogeneous reservoir, which mainly exists in resting memory CD4+ T cells, is not only resistant to highly active antiretroviral therapy (HAART) but cannot be detected by the immune system, leading to rapid drug resistance and viral rebound once antiviral treatment is interrupted. Accordingly, various functional cure strategies have been proposed to combat this barrier, among which one of the widely accepted and utilized protocols is the so-called 'shock-and-kill' regimen. The protocol begins with latency-reversing agents (LRAs), either alone or in combination, to reactivate the latent HIV-1 proviruses, then eliminates them by viral cytopathic mechanisms (e.g., currently available antiviral drugs) or by the immune killing function of the immune system (e.g., NK and CD8+ T cells). In this review, we focuse on the currently explored small molecular LRAs, with emphasis on their mechanism-directed drug targets, binding modes and structure-relationship activity (SAR) profiles, aiming to provide safer and more effective remedies for treating HIV-1 infection.
Collapse
|
8
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
9
|
Zhou D, Wu Z, Park JG, Fiches GN, Li TW, Ma Q, Huang H, Biswas A, Martinez-Sobrido L, Santoso NG, Zhu J. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of interferon signaling. Nucleic Acids Res 2022; 50:8700-8718. [PMID: 35904816 PMCID: PMC9410884 DOI: 10.1093/nar/gkac645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated in both epithelial and natural killer (NK) cells. The histone acetyltransferase TIP60 contributes to the acetylation of SUPT16H middle domain (MD) at lysine 674 (K674). Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H in both epithelial and NK cells. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (HDAC1, EZH2), and further regulates their activation status and/or promoter association as well as affects the relevant histone marks (H3ac, H3K9me3 and H3K27me3). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, depletion or inhibition of SUPT16H is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that depletion or inhibition of SUPT16H also causes the remarkable activation of IFN signaling in NK cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in coordinating with BRD4 and regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of the FACT inhibitor CBL0137 to treat viral infections.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhenyu Wu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Guillaume N Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Huachao Huang
- Department of Medicine, Columbia University Medical Center, NY, NY 10032, USA
| | - Ayan Biswas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Netty G Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Johnson JR, Crosby DC, Hultquist JF, Kurland AP, Adhikary P, Li D, Marlett J, Swann J, Hüttenhain R, Verschueren E, Johnson TL, Newton BW, Shales M, Simon VA, Beltrao P, Frankel AD, Marson A, Cox JS, Fregoso OI, Young JAT, Krogan NJ. Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Rep 2022; 39:110690. [PMID: 35417684 PMCID: PMC9429972 DOI: 10.1016/j.celrep.2022.110690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
Viruses must effectively remodel host cellular pathways to replicate and evade immune defenses, and they must do so with limited genomic coding capacity. Targeting post-translational modification (PTM) pathways provides a mechanism by which viruses can broadly and rapidly transform a hostile host environment into a hospitable one. We use mass spectrometry-based proteomics to quantify changes in protein abundance and two PTM types-phosphorylation and ubiquitination-in response to HIV-1 infection with viruses harboring targeted deletions of a subset of HIV-1 genes. PTM analysis reveals a requirement for Aurora kinase activity in HIV-1 infection and identified putative substrates of a phosphatase that is degraded during infection. Finally, we demonstrate that the HIV-1 Vpr protein inhibits histone H1 ubiquitination, leading to defects in DNA repair.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prithy Adhikary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donna Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John Marlett
- Viral Vector Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Justine Swann
- Viral Vector Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik Verschueren
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Viviana A Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A T Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Fiches GN, Wu Z, Zhou D, Biswas A, Li TW, Kong W, Jean M, Santoso NG, Zhu J. Polyamine biosynthesis and eIF5A hypusination are modulated by the DNA tumor virus KSHV and promote KSHV viral infection. PLoS Pathog 2022; 18:e1010503. [PMID: 35486659 PMCID: PMC9094511 DOI: 10.1371/journal.ppat.1010503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Polyamines are critical metabolites involved in various cellular processes and often dysregulated in cancers. Kaposi’s sarcoma-associated Herpesvirus (KSHV), a defined human oncogenic virus, leads to profound alterations of host metabolic landscape to favor development of KSHV-associated malignancies. In our studies, we identified that polyamine biosynthesis and eIF5A hypusination are dynamically regulated by KSHV infection through modulation of key enzymes (ODC1 and DHPS) of these pathways. During KSHV latency, ODC1 and DHPS are upregulated along with increase of hypusinated eIF5A (hyp-eIF5A), while hyp-eIF5A is further induced along with reduction of ODC1 and intracellular polyamines during KSHV lytic reactivation. In return these metabolic pathways are required for both KSHV lytic reactivation and de novo infection. Further analysis unraveled that synthesis of critical KSHV latent and lytic proteins (LANA, RTA) depends on hypusinated-eIF5A. We also demonstrated that KSHV infection can be efficiently and specifically suppressed by inhibitors targeting these pathways. Collectively, our results illustrated that the dynamic and profound interaction of a DNA tumor virus (KSHV) with host polyamine biosynthesis and eIF5A hypusination pathways promote viral propagation, thus defining new therapeutic targets to treat KSHV-associated malignancies. Understanding virus-host interactions is crucial to develop and improve therapies. Kaposi’s sarcoma associated Herpesvirus (KSHV) is a human gamma-herpesvirus which deeply modulates the host metabolism and is associated with various cancers of endothelial and lymphoid origin. Polyamines are critical metabolites often dysregulated in cancers. In this study we demonstrated KSHV dynamically modulates polyamine metabolism to favor eIF5A hypusination and translation of critical KSHV latent and lytic proteins (LANA, RTA). Consequently, we found KSHV lytic switch from latency and de novo infection were dependent on polyamines and hypusination and pharmacological inhibition efficiently and specifically restricted KSHV infection. Our study provides new insights into KSHV alteration of the host metabolism and describe new therapeutic targets to treat KSHV-associated malignancies.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Zhenyu Wu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Ayan Biswas
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tai-Wei Li
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Maxime Jean
- Department of Neurology, University of Rochester Medical center, Rochester, New York, United States of America
| | - Netty G. Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zacharopoulou P, Marchi E, Ogbe A, Robinson N, Brown H, Jones M, Parolini L, Pace M, Grayson N, Kaleebu P, Rees H, Fidler S, Goulder P, Klenerman P, Frater J. Expression of type I interferon-associated genes at antiretroviral therapy interruption predicts HIV virological rebound. Sci Rep 2022; 12:462. [PMID: 35013427 PMCID: PMC8748440 DOI: 10.1038/s41598-021-04212-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although certain individuals with HIV infection can stop antiretroviral therapy (ART) without viral load rebound, the mechanisms under-pinning 'post-treatment control' remain unclear. Using RNA-Seq we explored CD4 T cell gene expression to identify evidence of a mechanism that might underpin virological rebound and lead to discovery of associated biomarkers. Fourteen female participants who received 12 months of ART starting from primary HIV infection were sampled at the time of stopping therapy. Two analysis methods (Differential Gene Expression with Gene Set Enrichment Analysis, and Weighted Gene Co-expression Network Analysis) were employed to interrogate CD4+ T cell gene expression data and study pathways enriched in post-treatment controllers versus early rebounders. Using independent analysis tools, expression of genes associated with type I interferon responses were associated with a delayed time to viral rebound following treatment interruption (TI). Expression of four genes identified by Cox-Lasso (ISG15, XAF1, TRIM25 and USP18) was converted to a Risk Score, which associated with rebound (p < 0.01). These data link transcriptomic signatures associated with innate immunity with control following stopping ART. The results from this small sample need to be confirmed in larger trials, but could help define strategies for new therapies and identify new biomarkers for remission.
Collapse
Affiliation(s)
- P Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Grayson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - H Rees
- Wits Reproductive Health and HIV Institute of the University of the Witwatersrand in Johannesburg, Johannesburg, South Africa
| | - S Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
| | - P Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - J Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- National Institute of Health Research Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
13
|
Li TW, Kenney AD, Park JG, Fiches GN, Liu H, Zhou D, Biswas A, Zhao W, Que J, Santoso N, Martinez-Sobrido L, Yount JS, Zhu J. SARS-CoV-2 Nsp14 protein associates with IMPDH2 and activates NF-κB signaling. Front Immunol 2022; 13:1007089. [PMID: 36177032 PMCID: PMC9513374 DOI: 10.3389/fimmu.2022.1007089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Weiqiang Zhao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Jian Zhu,
| |
Collapse
|
14
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
15
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
16
|
Biswas A, Zhou D, Fiches GN, Wu Z, Liu X, Ma Q, Zhao W, Zhu J, Santoso NG. Inhibition of polo-like kinase 1 (PLK1) facilitates reactivation of gamma-herpesviruses and their elimination. PLoS Pathog 2021; 17:e1009764. [PMID: 34297745 PMCID: PMC8336821 DOI: 10.1371/journal.ppat.1009764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/04/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) establish the persistent, life-long infection primarily at the latent status, and associate with certain types of tumors, such as B cell lymphomas, especially in immuno-compromised individuals including people living with HIV (PLWH). Lytic reactivation of these viruses can be employed to kill tumor cells harboring latently infected viral episomes through the viral cytopathic effects and the subsequent antiviral immune responses. In this study, we identified that polo-like kinase 1 (PLK1) is induced by KSHV de novo infection as well as lytic switch from KSHV latency. We further demonstrated that PLK1 depletion or inhibition facilitates KSHV reactivation and promotes cell death of KSHV-infected lymphoma cells. Mechanistically, PLK1 regulates Myc that is critical to both maintenance of KSHV latency and support of cell survival, and preferentially affects the level of H3K27me3 inactive mark both globally and at certain loci of KSHV viral episomes. Furthremore, we recognized that PLK1 inhibition synergizes with STAT3 inhibition to efficiently induce KSHV reactivation. We also confirmed that PLK1 depletion or inhibition yields the similar effect on EBV lytic reactivation and cell death of EBV-infected lymphoma cells. Lastly, we noticed that PLK1 in B cells is elevated in the context of HIV infection and caused by HIV Nef protein to favor KSHV/EBV latency.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Genetics, School of Medicine, Unversity of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Zhenyu Wu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Xuefeng Liu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weiqiang Zhao
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Netty G. Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Li T, Kenney AD, Liu H, Fiches GN, Zhou D, Biswas A, Que J, Santoso N, Yount JS, Zhu J. SARS-CoV-2 Nsp14 activates NF-κB signaling and induces IL-8 upregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.26.445787. [PMID: 34075374 PMCID: PMC8168382 DOI: 10.1101/2021.05.26.445787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) protein, which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and found that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14-mediated NF-κB activation and cytokine induction. Furthermore, IMDPH2 inhibitors (RIB, MPA) efficiently blocked SARS-CoV-2 infection, indicating that IMDPH2, and possibly NF-κB signaling, is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in causing the activation of NF-κB.
Collapse
Affiliation(s)
- Taiwei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Zhou D, Park JG, Wu Z, Huang H, Fiches GN, Biswas A, Li TW, Ma Q, Martinez-Sobrido L, Santoso N, Zhu J. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of antiviral interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.21.440833. [PMID: 33907746 PMCID: PMC8077571 DOI: 10.1101/2021.04.21.440833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FACT ( FA cilitates C hromatin T ranscription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated at lysine 674 (K674) of middle domain (MD), which involves TIP60 histone acetyltransferase. Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (EZH2, HDAC1) and affects histone marks (H3K9me3, H3K27me3 and H3ac). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, CBL0137 is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that CBL0137 also causes the remarkable activation of IFN signaling in natural killer (NK) cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of CBL0137 to treat viral infections.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Zhenyu Wu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Huachao Huang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|