1
|
Tang L, Zhang J, Shao Y, Wei Y, Li Y, Tian K, Yan X, Feng C, Zhang QC. Joint analysis of chromatin accessibility and gene expression in the same single cells reveals cancer-specific regulatory programs. Cell Syst 2025; 16:101266. [PMID: 40262617 DOI: 10.1016/j.cels.2025.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/19/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Biological analyses conducted at the single-cell scale have revealed profound impacts of heterogeneity and plasticity of chromatin states and gene expression on physiology and cancer. Here, we developed Parallel-seq, a technology for simultaneously measuring chromatin accessibility and gene expression in the same single cells. By combining combinatorial cell indexing and droplet overloading, Parallel-seq generates high-quality data in an ultra-high-throughput fashion and at a cost two orders of magnitude lower than alternative technologies (10× Multiome and ISSAAC-seq). We applied Parallel-seq to 40 lung tumor and tumor-adjacent clinical samples and obtained over 200,000 high-quality joint scATAC-and-scRNA profiles. Leveraging this large dataset, we characterized copy-number variations (CNVs) and extrachromosomal circular DNA (eccDNA) heterogeneity in tumor cells, predicted hundreds of thousands of cell-type-specific regulatory events, and identified enhancer mutations affecting tumor progression. Our analyses highlight Parallel-seq's power in investigating epigenetic and genetic factors driving cancer development at the cell-type-specific level and its utility for revealing vulnerable therapeutic targets.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinsong Zhang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yanqiu Shao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yifan Wei
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yuzhe Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kang Tian
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiang Yan
- Department of Medical Oncology, the Fifth Medical Center, Beijing 301 Hospital, Beijing 100039, China
| | - Changjiang Feng
- Department of Thoracic Surgery, the First Medical Center, Beijing 301 Hospital, Beijing 100039, China.
| | - Qiangfeng Cliff Zhang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
2
|
Ni H, Yong-Villalobos L, Gu M, López-Arredondo DL, Chen M, Geng L, Xu G, Herrera-Estrella LR. Adaptive dynamics of extrachromosomal circular DNA in rice under nutrient stress. Nat Commun 2025; 16:4150. [PMID: 40320403 PMCID: PMC12050283 DOI: 10.1038/s41467-025-59572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) have been identified in various eukaryotic organisms and are known to play crucial roles in genomic plasticity. However, in crop plants, the role of eccDNAs in responses to environmental cues, particularly nutritional stresses, remains unexplored. Rice (Oryza sativa ssp. japonica), a vital crop for over half the world's population and an excellent model plant for genomic studies, faces numerous environmental challenges during growth. Therefore, we conduct comprehensive studies investigating the distribution, sequence, and potential responses of rice eccDNAs to nutritional stresses. We describe the changes in the eccDNA landscape at various developmental stages of rice in optimal growth. We also identify eccDNAs overlapping with genes (ecGenes), transposable elements (ecTEs), and full-length repeat units (full-length ecRepeatUnits), whose prevalence responds to nitrogen (N) and phosphorus (P) deficiency. We analyze multiple-fragment eccDNAs and propose a potential TE-mediated homologous recombination mechanism as the origin of rice's multiple-fragment eccDNAs. We provide evidence for the role of eccDNAs in the rice genome plasticity under nutritional stresses and underscore the significance of their abundance and specificity.
Collapse
Affiliation(s)
- Hanfang Ni
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Damar Lizbeth López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA
| | - Min Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Liyan Geng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China.
| | - Luis Rafael Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, Mexico.
| |
Collapse
|
3
|
Song Y, Guan C, Zhang Y, Xu Y, Li P, Luo L, Feng C, Chen G. A novel CRISPR-Cas9 nickase-mediated rolling circle amplification (CRIRCA) technique for gene identification and quantitative analysis of extrachromosomal DNA. J Adv Res 2025:S2090-1232(25)00275-9. [PMID: 40274228 DOI: 10.1016/j.jare.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Extrachromosomal DNA (ecDNA) plays an important role in the initiation and progression of cancerous tumors. Although Circle-seq and other genetic technologies can be utilized for ecDNA analysis, they fail to provide multi-dimensional information from ecDNA, which is time-consuming and laborious. OBJECTIVES Herein, by combining the netlike rolling circle amplification (NRCA) with CRISPR, we developed a novel CRISPR-Cas9 nickase-mediated RCA (CRIRCA) technology that can meet the clinical analysis needs of ecDNA. METHODS Atomic force microscope (AFM) was applied to confirm the circular structure of the ecDNA. Agarose gel electrophoresis was performed to analyze the CRIRCA products. Fluorescent detection was applied to characterize the fluorescence signal of amplified products. qPCR and FISH techniques were applied to verify the CRIRCA results of gene identification of ecDNA. RESULTS Our data revealed that CRIRCA achieved more efficient signal amplification compared to traditional RCA methods, allowing it to sensitively analyze small amounts of ecDNA in single tumor cells. Utilizing computer-aided design, we successfully constructed the primer library and sgRNA library of oncogene in ecDNA, and adopted CRIRCA technology to identify the oncogenes of ecDNA in breast cancer cells. CONCLUSION Therefore, CRIRCA can simultaneously obtain the information from structure, sequence and quantitation of ecDNA. This work will fill the gap in the current research on the early monitoring of cancer targeting ecDNA, and provide support for the accurate diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuchen Song
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Chaoyang Guan
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yue Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yiming Xu
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Pengfei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
5
|
Azadegan C, Santoro J, Whetstine JR. Connecting the dots: Epigenetic regulation of extrachromosomal and inherited DNA amplifications. J Biol Chem 2025; 301:108454. [PMID: 40154613 DOI: 10.1016/j.jbc.2025.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
DNA amplification has intrigued scientists for decades. Since its discovery, significant progress has been made in understanding the mechanisms promoting DNA amplification and their associated function(s). While DNA copy gains were once thought to be regulated purely by stochastic processes, recent findings have revealed the important role of epigenetic modifications in driving these amplifications and their integration into the genome. Furthermore, advances in genomic technology have enabled detailed characterization of these genomic events in terms of size, structure, formation, and regulation. This review highlights how our understanding of DNA amplifications has evolved over time, tracing its trajectory from initial discovery to the contemporary landscape. We describe how recent discoveries have started to uncover how these genomic events occur by controlled biological processes rather than stochastic mechanisms, presenting opportunities for therapeutic modulation.
Collapse
Affiliation(s)
- Chloe Azadegan
- Drexel University, College of Medicine, Philadelphia, Pennsylvania, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - John Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Mao X, Rao G, Li G, Chen S. Insights into Extrachromosomal DNA in Cancer: Biogenesis, Methodologies, Functions, and Therapeutic Potential. Adv Biol (Weinh) 2025; 9:e2400433. [PMID: 39945006 DOI: 10.1002/adbi.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/01/2025] [Indexed: 03/17/2025]
Abstract
Originating from, but independent of, linear chromosomes, extrachromosomal DNA (ecDNA) exists in a more active state of transcription and autonomous replication. It plays a crucial role in the development of malignancies and therapy resistance. Since its discovery in eukaryotic cells more than half a century ago, the biological characteristics and functions of ecDNA have remained unclear due to limitations in detection methods. However, recent advancements in research tools have transformed ecDNA research. It is believed that ecDNA exhibits greater activity in the abnormal amplification of oncogenes, thereby driving cancer progression through their overexpression. Notably, compared to linear DNA, ecDNA can also function as a genomic element with regulatory roles, including both trans- and cis-acting functions. Its critical roles in tumorigenesis, evolution, progression, and drug resistance in malignant tumors are increasingly recognized. This review provides a comprehensive summary of the evolutionary context of ecDNA and highlights significant progress in understanding its biological functions and potential applications as a therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Xudong Mao
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Guocheng Rao
- Department of Endocrinology & Metabolism, Daepartment of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610000, P. R. China
| | - Gonghui Li
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Shihan Chen
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| |
Collapse
|
8
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
9
|
Ran XK, Zhao XF, Wei ZW, Pang HZ, Tang YF, Liu R, Wu TX, Liu XD. Circle-seq reveals that eccDNA may be a key blood biomarker for HBV-associated liver cancer. Front Genet 2025; 15:1454153. [PMID: 39850493 PMCID: PMC11754267 DOI: 10.3389/fgene.2024.1454153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
INTRODUCTION Extrachromosomal circular DNA (eccDNA) regulates tumor occurrence and development. Relevant eccDNA profiles have been established for various types of cancer; however, the eccDNA expression profiles in the blood of patients with hepatocellular carcinoma (HCC) and liver cirrhosis (LC) remain unknown. The present study aimed to investigate the eccDNA expression profiles in the blood of patients with HCC and LC. METHODS Circle-seq was used to detect eccDNAs in the blood samples. Full transcript sequencing was used to analyze the RNA in the samples. Geno Ontology enrichment and Kyoto Encyclopedia of Genes and Genome pathway analyses were performed on differentially expressed eccDNA-related genes. The identified eccDNA is combined with mRNA to screen target genes using bioinformatics analysis. EccDNAs were confirmed through polymerase chain reaction and Sanger sequencing. RESULTS Overall, 103,235 eccDNAs were identified in HCC, whereas 67,110 eccDNAs were detected in LC. In total, 7,095 upregulated eccDNAs and 1,284 downregulated eccDNAs were identified. Following analysis of differential genes using bioinformatics, six candidate genes were screened out based on gene expression and cancer relevance. Experiments have verified that LAMA4 [circle112550019-112550510] and KANK1 [circle674459-674907] are real and expressed target genes, and their source genes are closely related to the survival time of patients with liver cancer. CONCLUSION Our research results revealed the main characteristics of eccDNAs in the blood of patients with HBV-related HCC and LC. It was found that eccDNAs were mainly less than 1,000 bp in length. Difference analysis showed that some eccDNAs had consistent and overlapping expressions with mRNAs. We found that LAMA4 [circle112550019-112550510] and KANK1 [circle674459-674907] are target genes related to HCC, and both of them may become potential biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Xiao K. Ran
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao F. Zhao
- Hepatology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhen W. Wei
- Hepatology Department, Nanning Fourth People’s Hospital, Nanning, China
| | - Hua Z. Pang
- Hepatology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yan F. Tang
- Hepatology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Rong Liu
- Hepatology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Tie X. Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu D. Liu
- Hepatology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Zhu H, Huangfu L, Chen J, Ji J, Xing X. Exploring the potential of extrachromosomal DNA as a novel oncogenic driver. SCIENCE CHINA. LIFE SCIENCES 2025; 68:144-157. [PMID: 39349791 DOI: 10.1007/s11427-024-2710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
Abstract
Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution. ecDNA has also been associated with increased tumor mutation burden, chromosomal instability, and even tumor microenvironment remodeling. ecDNA may be crucial in influencing tumor heterogeneity, drug sensitivity, oncogenic senescence, and tumor immunogenicity, leading to a worsening prognosis for tumor patients. In this way, several clinical trials have been conducted to investigate the importance of ecDNA in clinical treatment. In this review, we summarize the biogenesis, characteristics, and current research methods of ecDNA, discuss the vital role of ecDNA-caused tumor heterogeneity in cancers, and highlight the potential role of ecDNA in cancer therapy.
Collapse
Affiliation(s)
- Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S, Huang L, Han P, He C, Song C, Xiang X. Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health. Mol Cancer 2024; 23:276. [PMID: 39707444 DOI: 10.1186/s12943-024-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a type of circular DNAs originating from but independent of chromosomal DNAs. Nowadays, with the rapid development of sequencing and bioinformatics, the accuracy of eccDNAs detection has significantly improved. This advancement has consequently enhanced the feasibility of exploring the biological characteristics and functions of eccDNAs. This review elucidates the potential mechanisms of eccDNA generation, the existing methods for their detection and analysis, and their basic features. Furthermore, it focuses on the biological functions of eccDNAs in regulating gene expression under both physiological and pathological conditions. Additionally, the review summarizes the clinical implications of eccDNAs in human cancers and health.
Collapse
Affiliation(s)
- Zilong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenli Zhu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhen Xu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lei Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Han
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Zhou N, Peng L, Zhang Z, Luo Q, Sun H, Bao J, Ning Y, Yuan X. ECGA: A web server to explore and analyze extrachromosomal gene in cancer. Comput Struct Biotechnol J 2024; 23:3955-3966. [PMID: 39582892 PMCID: PMC11584521 DOI: 10.1016/j.csbj.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Circular extrachromosomal DNA (ecDNA) plays a crucial role in the onset, progression, and evolution of many types of cancers, with dysregulated gene expression driven by ecDNA as a key mechanism. Although database resources for ecDNA are now available, a sophisticated web application dedicated to ecDNA gene analysis remains absent. Therefore, we developed ecDNA gene analyzer (ECGA). ECGA catalogues 23,274 unique ecDNA genes of 27 cancers across 27 tissues. ECGA also offers five specialized analysis tools: (1) 'Venn analysis' looks for overlaps between a given gene list and ecDNA genes; (2) 'Enrichment analysis' performs over-representation analysis and gene set enrichment analysis of input gene list within predefined ecDNA gene sets; (3) 'Target discovery' identifies upregulated ecDNA genes as targets by comparing with reference expression in normal samples; (4) 'DE analysis' finds differentially expressed ecDNA genes; (5) 'Signature discovery' discerns ecDNA gene signatures capable of classifying samples into phenotypic groups, and it is accompanied by 'Signature validation' for model test on unseen data. In summary, ECGA emerges as an indispensable platform in cancer genetics, bridging gaps in basic research, medical reporting, and pharmaceutical development, and propelling ecDNA research forward. ECGA is freely available at https://www.zhounan.org/ecga/.
Collapse
Affiliation(s)
- Nan Zhou
- Research Center, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Li Peng
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhiyu Zhang
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qiqi Luo
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huiran Sun
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinku Bao
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuping Ning
- Research Center, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510000, China
| | - Xiaoqing Yuan
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516621, China
| |
Collapse
|
13
|
Sun X, Liu X, Wang C, Ren Z, Yang X, Liu Y. Deciphering Mechanisms of Adipocyte Differentiation in Abdominal Fat of Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25403-25413. [PMID: 39483088 PMCID: PMC11565640 DOI: 10.1021/acs.jafc.4c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The excessive deposition of abdominal fat tissue (AFT) in broilers has emerged as a major concern in the poultry industry. Despite some progress in recent years, the molecular mechanisms underlying AFT development remain ambiguous. The current study combined RNA-seq with transposase-accessible chromatin sequencing (ATAC-seq) to map the dynamic profiling of chromatin accessibility and transcriptional reprogramming in AFT adipocyte differentiation in broilers at day 3 (D3) and D14. Our results found that the levels of CDK1 and PCNA were down-regulated at D14, D28, and D42 compared to D3, while the levels of C/EBPα and FABP4 were up-regulated at D14 and D42 compared to D3. Meanwhile, PPARγ was significantly up-regulated at D28 and D42. RNA-seq of AFT identified 1705 up-regulated and 1112 down-regulated differential expression genes (DEGs) between D3 and D14. Pathways based on up-regulated DEGs mainly enriched some pathways related to adipocyte differentiation, while down-regulated DEGs pointed to DNA replication, cell cycle, and gap junction. Gene set enrichment analysis (GSEA) revealed that DNA replication and the cell cycle were down-regulated at D14, while the insulin signaling pathway was up-regulated. In the OA-induced immortalized chicken preadipocyte (ICP2) model, protein dynamic changes were consistent with AFT from D3 to D14. Same pathways were enriched in ICP2. In addition, based on overlapped DEGs from AFT and ICP2, enriched pathways related to adipocyte differentiation or proliferation mentioned above were all involved. A total of 1600 gain and 16727 loss differential peaks (DPs) were identified in ICP2 by ATAC-seq. Predicted genes from DPs at the promoter regions were enriched in glycerophospholipid metabolism, TGF-β signaling, FoxO signaling, and ubiquitin-mediated proteolysis. DNA motifs predicted 159 transcription factors (TFs) based on gain and loss peaks from the promoter regions, where 1 and 10 TFs were overlapped with up or down TFs from DEGs. Overall, this study presents a framework for the comprehension of the epigenetic regulatory mechanisms of adipocyte differentiation and identifies candidate genes and potential TFs involved in AFT adipocyte differentiation in broilers.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Hung KL, Jones MG, Wong ITL, Curtis EJ, Lange JT, He BJ, Luebeck J, Schmargon R, Scanu E, Brückner L, Yan X, Li R, Gnanasekar A, Chamorro González R, Belk JA, Liu Z, Melillo B, Bafna V, Dörr JR, Werner B, Huang W, Cravatt BF, Henssen AG, Mischel PS, Chang HY. Coordinated inheritance of extrachromosomal DNAs in cancer cells. Nature 2024; 635:201-209. [PMID: 39506152 PMCID: PMC11541006 DOI: 10.1038/s41586-024-07861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
The chromosomal theory of inheritance dictates that genes on the same chromosome segregate together while genes on different chromosomes assort independently1. Extrachromosomal DNAs (ecDNAs) are common in cancer and drive oncogene amplification, dysregulated gene expression and intratumoural heterogeneity through random segregation during cell division2,3. Distinct ecDNA sequences, termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells4. How multiple ecDNA species within a tumour cell are assorted and maintained across somatic cell generations is unclear. Here we show that cooperative ecDNA species are coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. ecDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy-number gains in multiple ecDNA species before any selection. Intermolecular proximity and active transcription at the start of mitosis facilitate the coordinated segregation of ecDNA species, and transcription inhibition reduces co-segregation. Computational modelling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Matthew G Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ellis J Curtis
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Joshua T Lange
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Rachel Schmargon
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Scanu
- Department of Mathematics, Queen Mary University of London, London, UK
| | - Lotte Brückner
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Xiaowei Yan
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Aditi Gnanasekar
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rocío Chamorro González
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia A Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Zhonglin Liu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Jan R Dörr
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Weini Huang
- Department of Mathematics, Queen Mary University of London, London, UK
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
- Vividion Therapeutics, San Diego, CA, USA
| | - Anton G Henssen
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul S Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Gao X, Liu K, Luo S, Tang M, Liu N, Jiang C, Fang J, Li S, Hou Y, Guo C, Qu K. Comparative analysis of methodologies for detecting extrachromosomal circular DNA. Nat Commun 2024; 15:9208. [PMID: 39448595 PMCID: PMC11502736 DOI: 10.1038/s41467-024-53496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research.
Collapse
Affiliation(s)
- Xuyuan Gao
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Liu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Songwen Luo
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meifang Tang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang, China
| | - Shouzhen Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbing Hou
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Pharmacy, Bengbu Medical University, Bengbu, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
16
|
Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y. Bioinformatics advances in eccDNA identification and analysis. Oncogene 2024; 43:3021-3036. [PMID: 39209966 DOI: 10.1038/s41388-024-03138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a unique class of chromosome-originating circular DNA molecules, which are closely linked to oncogene amplification. Due to recent technological advances, particularly in high-throughput sequencing technology, bioinformatics methods based on sequencing data have become primary approaches for eccDNA identification and functional analysis. Currently, eccDNA-relevant databases incorporate previously identified eccDNA and provide thorough functional annotations and predictions, thereby serving as a valuable resource for eccDNA research. In this review, we collected around 20 available eccDNA-associated bioinformatics tools, including identification tools and annotation databases, and summarized their properties and capabilities. We evaluated some of the eccDNA detection methods in simulated data to offer recommendations for future eccDNA detection. We also discussed the current limitations and prospects of bioinformatics methodologies in eccDNA research.
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xianjun Dong
- Adams Center of Parkinson's Disease Research, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
- Department of Neurology, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
17
|
Zhang H, Liu B, Cheng J, Li Z, Jia M, Li M, Zhao L, Wang L, Xi Y. Characterization and integrated analysis of extrachromosomal DNA amplification in hematological malignancies. Neoplasia 2024; 56:101025. [PMID: 38996538 PMCID: PMC11301242 DOI: 10.1016/j.neo.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The study of extrachromosomal DNA (ecDNA), an element existing beyond classical chromosomes, contributes to creating a more comprehensive map of the cancer genome. In hematological malignancies, research on ecDNA has lacked comprehensive investigation into its frequency, structure, function, and mechanisms of formation. We re-analyzed WGS data from 208 hematological cancer samples across 11 types, focusing on ecDNA characteristics. Amplification of ecDNA was observed in 7 of these cancer types, with no instances found in normal blood cells. Patients with leukemia carrying ecDNA showed a low induction therapy remission rate (<30 %), a high relapse rate (75 %) among those who achieved complete remission, and a significantly lower survival rate compared to the general leukemia population, even those with complex chromosomal karyotypes. Among the 55 identified ecDNA amplicons, 268 genes were detected, of which 38 are known cancer-related genes exhibiting significantly increased copy numbers. By integrating RNA-Seq data, we discovered that the increased copy number, resulting in a higher amount of available DNA templates, indeed leads to the elevated expression of genes encoded on ecDNA. Additionally, through the integration of H3K4me3/H3K27ac chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin with sequencing, and high-throughput chromosome conformation capture data, we identified that ecDNA amplifications can also facilitate efficient, copy number-independent amplification of oncogenes. This process is linked to active histone modifications, improved chromatin accessibility, and enhancer hijacking, all of which are effects of ecDNA amplification. Mechanistically, chromothripsis and dysfunction of the DNA repair pathway can, to some extent, explain the origin of ecDNA.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zijian Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingfeng Jia
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ming Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lina Wang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
18
|
Zajanckauskaite A, Lingelbach M, Juozapaitė D, Utkus A, Rukšnaitytė G, Jonuškienė G, Gulla A. Utilization of Microfluidic Droplet-Based Methods in Diagnosis and Treatment Methods of Hepatocellular Carcinoma: A Review. Genes (Basel) 2024; 15:1242. [PMID: 39457366 PMCID: PMC11508129 DOI: 10.3390/genes15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is associated with high morbidity and mortality. One of the main challenges in the management of HCC is late clinical presentation and thus diagnosis of the disease, which results in poor survival. The pathogenesis of HCC is complex and involves chronic liver injury and genetic alterations. Diagnosis of HCC can be made either by biopsy or imaging; however, conventional tissue-based biopsy methods and serological biomarkers such as AFP have limited clinical applications. While hepatocellular carcinoma is associated with a range of molecular alterations, including the activation of oncogenic signaling pathways, such as Wnt-TGFβ, PI3K-AKT-mTOR, RAS-MAPK, MET, IGF, and Wnt-β-catenin and TP53 and TERT promoter mutations, microfluidic applications have been limited. Early diagnosis is crucial for advancing treatments that would address the heterogeneity of HCC. In this context, microfluidic droplet-based methods are crucial, as they enable comprehensive analysis of the genome and transcriptome of individual cells. Single-cell RNA sequencing (scRNA-seq) allows the examination of individual cell transcriptomes, identifying their heterogeneity and cellular evolutionary relationships. Other microfluidic methods, such as Drop-seq, InDrop, and ATAC-seq, are also employed for single-cell analysis. Here, we examine and compare these microfluidic droplet-based methods, exploring their advantages and limitations in liver cancer research. These technologies provide new opportunities to understand liver cancer biology, diagnosis, treatment, and prognosis, contributing to scientific efforts in combating this challenging disease.
Collapse
Affiliation(s)
- Akvilė Zajanckauskaite
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Miah Lingelbach
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, USA;
| | - Dovilė Juozapaitė
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | | | - Goda Jonuškienė
- Clinic of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, 01513 Vilnius, Lithuania
| | - Aistė Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
- Department of Surgery, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
19
|
Yuan XQ, Zhou N, Song SJ, Xie YX, Chen SQ, Yang TF, Peng X, Zhang CY, Zhu YH, Peng L. Decoding the genomic enigma: Approaches to studying extrachromosomal circular DNA. Heliyon 2024; 10:e36659. [PMID: 39263178 PMCID: PMC11388731 DOI: 10.1016/j.heliyon.2024.e36659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a pervasive yet enigmatic component of the eukaryotic genome, exists autonomously from its chromosomal counterparts. Ubiquitous in eukaryotes, eccDNA plays a critical role in the orchestration of cellular processes and the etiology of diseases, particularly cancers. However, the full scope of its influence on health and disease remains elusive, presenting a rich vein of research yet to be mined. Unraveling the complexities of eccDNA necessitates a distillation of methodologies - from biogenesis to functional analysis - a landscape we overview in this study with precision and clarity. Here, we systematically outline cutting-edge methodologies from high-throughput sequencing and bioinformatics to experimental validations, showcasing the intricate world of eccDNAs. We combed through a treasure trove of auxiliary research resources and analytical tools. Moreover, we chart a course for future inquiry, illuminating the horizon with potential groundbreaking strategies for designing eccDNA research projects and pioneering new methodological frontiers.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nan Zhou
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Shi-Jian Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi-Xia Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shui-Qin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Teng-Fei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xian Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Puai Medical College, Shaoyang University, Shaoyang, 422100, China
| | - Chao-Yang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Ying-Hua Zhu
- Department of Genetic Medicine, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, 523325, China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
20
|
Han R, Li X, Gao X, Lv G. Cinnamaldehyde: Pharmacokinetics, anticancer properties and therapeutic potential (Review). Mol Med Rep 2024; 30:163. [PMID: 38994757 PMCID: PMC11267250 DOI: 10.3892/mmr.2024.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer incidence is increasing globally, presenting a growing public health challenge. While anticancer drugs are crucial in treatment, their limitations, including poor targeting ability and high toxicity, hinder effectiveness and patient safety, requiring relentless scientific research and technological advancements to develop safer and more effective therapeutics. Cinnamaldehyde (CA), an active compound derived from the natural plant cinnamon, has garnered attention in pharmacological research due to its diverse therapeutic applications. CA has potential in treating a wide array of conditions, including cardiovascular diseases, diabetes, inflammatory disorders and various forms of cancer. The present review comprehensively summarizes the physicochemical and pharmacokinetic profiles of CA, and delves into the latest advancements in elucidating its potential mechanisms and targets across various cancer types. CA and its derivatives have antitumor effects, which encompass inhibiting cell proliferation, arresting the cell cycle, inducing apoptosis, limiting cell migration and invasion, and suppressing angiogenesis. Additionally, the present review explores targeted formulations of CA, laying a scientific foundation for further exploration of its implications in cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Ruxia Han
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xueying Li
- School of Health, Binzhou Polytechnic, Binzhou, Shandong 256600, P.R. China
| | - Xinfu Gao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Guangyao Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
21
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
22
|
Jin W, Xu Z, Song Y, Chen F. Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis. Cell Mol Biol Lett 2024; 29:103. [PMID: 38997648 PMCID: PMC11245840 DOI: 10.1186/s11658-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Fangjie Chen
- Department of Medical Genetics, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, 110022, Liaoning, People's Republic of China.
| |
Collapse
|
23
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
24
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
26
|
Yoon I, Kim U, Jung KO, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
27
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Li D, Qian X, Wang Y, Yin Y, Sun H, Zhao H, Wu J, Qiu L. Molecular characterization and functional roles of circulating cell-free extrachromosomal circular DNA. Clin Chim Acta 2024; 556:117822. [PMID: 38325714 DOI: 10.1016/j.cca.2024.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Circular DNA segments isolated from chromosomes are known as extrachromosomal circular DNA (eccDNA). Its distinct structure and characteristics, along with the variations observed in different disease states, makes it a promising biomarker. Recent studies have revealed the presence of eccDNAs in body fluids, indicating their involvement in various biological functions. This finding opens up avenues for utilizing eccDNAs as convenient and real-time biomarkers for disease diagnosis, treatment monitoring, and prognosis assessment through noninvasive analysis of body fluids. In this comprehensive review, we focused on elucidating the size profiles, potential mechanisms of formation and clearance, detection methods, and potential clinical applications of eccDNAs. We aimed to provide a valuable reference resource for future research in this field.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xia Qian
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Jie Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
29
|
Wang S, Wu CY, He MM, Yong JX, Chen YX, Qian LM, Zhang JL, Zeng ZL, Xu RH, Wang F, Zhao Q. Machine learning-based extrachromosomal DNA identification in large-scale cohorts reveals its clinical implications in cancer. Nat Commun 2024; 15:1515. [PMID: 38373991 PMCID: PMC10876971 DOI: 10.1038/s41467-024-45479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
The clinical implications of extrachromosomal DNA (ecDNA) in cancer therapy remain largely elusive. Here, we present a comprehensive analysis of ecDNA amplification spectra and their association with clinical and molecular features in multiple cohorts comprising over 13,000 pan-cancer patients. Using our developed computational framework, GCAP, and validating it with multifaceted approaches, we reveal a consistent pan-cancer pattern of mutual exclusivity between ecDNA amplification and microsatellite instability (MSI). In addition, we establish the role of ecDNA amplification as a risk factor and refine genomic subtypes in a cohort from 1015 colorectal cancer patients. Importantly, our investigation incorporates data from four clinical trials focused on anti-PD-1 immunotherapy, demonstrating the pivotal role of ecDNA amplification as a biomarker for guiding checkpoint blockade immunotherapy in gastrointestinal cancer. This finding represents clinical evidence linking ecDNA amplification to the effectiveness of immunotherapeutic interventions. Overall, our study provides a proof-of-concept of identifying ecDNA amplification from cancer whole-exome sequencing (WES) data, highlighting the potential of ecDNA amplification as a valuable biomarker for facilitating personalized cancer treatment.
Collapse
Affiliation(s)
- Shixiang Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chen-Yi Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Xin Yong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin-Ling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
30
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
31
|
Wu N, Wei L, Zhu Z, Liu Q, Li K, Mao F, Qiao J, Zhao X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024; 15:6-20. [PMID: 37233789 PMCID: PMC10762679 DOI: 10.1093/procel/pwad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Collapse
Affiliation(s)
- Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
32
|
Gerovska D, Fernández Moreno P, Zabala A, Araúzo-Bravo MJ. Cell-Free Genic Extrachromosomal Circular DNA Profiles of DNase Knockouts Associated with Systemic Lupus Erythematosus and Relation with Common Fragile Sites. Biomedicines 2023; 12:80. [PMID: 38255187 PMCID: PMC10813657 DOI: 10.3390/biomedicines12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Cell-free extrachromosomal circular DNA (cf-eccDNA) has been proposed as a promising early biomarker for disease diagnosis, progression and drug response. Its established biomarker features are changes in the number and length distribution of cf-eccDNA. Another novel promising biomarker is a set of eccDNA excised from a panel of genes specific to a condition compared to a control. Deficiencies in two endonucleases that specifically target DNA, Dnase1 and Dnase1l3, are associated with systemic lupus erythematosus (SLE). To study the genic eccDNA profiles in the case of their deficiencies, we mapped sequenced eccDNA data from plasma, liver and buffy coat from Dnase1 and Dnase1l3 knockouts (KOs), and wild type controls in mouse. Next, we performed an eccDNA differential analysis between KO and control groups using our DifCir algorithm. We found a specific genic cf-eccDNA fingerprint of the Dnase1l3 group compared to the wild type controls involving 131 genes; 26% of them were associated with human chromosomal fragile sites (CFSs) and with a statistically significant enrichment of CFS-associated genes. We found six genes in common with the genic cf-eccDNA profile of SLE patients with DNASE1L3 deficiency, namely Rorb, Mvb12b, Osbpl10, Fto, Tnik and Arhgap10; all of them were specific and present in all human plasma samples, and none of them were associated with CFSs. A not so distinctive genic cf-eccDNA difference involving only seven genes was observed in the case of the Dnase1 group compared to the wild type. In tissue-liver and buffy coat-we did not detect the same genic eccDNA difference observed in the plasma samples. These results point to a specific role of a set of genic eccDNA in plasma from DNase KOs, as well as a relation with CFS genes, confirming the promise of the genic cf-eccDNA in studying diseases and the need for further research on the relationship between eccDNA and CFSs.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Patricia Fernández Moreno
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Aitor Zabala
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
33
|
Narykov O, Zhu Y, Brettin T, Evrard YA, Partin A, Shukla M, Xia F, Clyde A, Vasanthakumari P, Doroshow JH, Stevens RL. Integration of Computational Docking into Anti-Cancer Drug Response Prediction Models. Cancers (Basel) 2023; 16:50. [PMID: 38201477 PMCID: PMC10777918 DOI: 10.3390/cancers16010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a heterogeneous disease in that tumors of the same histology type can respond differently to a treatment. Anti-cancer drug response prediction is of paramount importance for both drug development and patient treatment design. Although various computational methods and data have been used to develop drug response prediction models, it remains a challenging problem due to the complexities of cancer mechanisms and cancer-drug interactions. To better characterize the interaction between cancer and drugs, we investigate the feasibility of integrating computationally derived features of molecular mechanisms of action into prediction models. Specifically, we add docking scores of drug molecules and target proteins in combination with cancer gene expressions and molecular drug descriptors for building response models. The results demonstrate a marginal improvement in drug response prediction performance when adding docking scores as additional features, through tests on large drug screening data. We discuss the limitations of the current approach and provide the research community with a baseline dataset of the large-scale computational docking for anti-cancer drugs.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Yitan Zhu
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Thomas Brettin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Yvonne A. Evrard
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Alexander Partin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Maulik Shukla
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Fangfang Xia
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - Austin Clyde
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| | - Priyanka Vasanthakumari
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
| | - James H. Doroshow
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Rick L. Stevens
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (T.B.); (A.P.); (M.S.); (F.X.); (P.V.); (R.L.S.)
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Lu W, Li F, Ouyang Y, Jiang Y, Zhang W, Bai Y. A comprehensive analysis of library preparation methods shows high heterogeneity of extrachromosomal circular DNA but distinct chromosomal amount levels reflecting different cell states. Analyst 2023; 149:148-160. [PMID: 37987554 DOI: 10.1039/d3an01300f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) was discovered several decades ago, but little is known about its function. With the development of sequencing technology, several library preparation methods have been developed to elucidate the biogenesis and function of eccDNA. However, different treatment methods have certain biases that can lead to their erroneous interpretation. To address these issues, we compared the performance of different library preparation methods. Our investigation revealed that the utilization of rolling-circle amplification (RCA) and restriction enzyme linearization of mitochondrial DNA (mtDNA) significantly enhanced the efficiency of enriching extrachromosomal circular DNA (eccDNA). However, it also introduced certain biases, such as an unclear peak in ∼160-200 bp periodicity and the absence of a typical motif pattern. Furthermore, given that RCA can lead to a disproportionate change in copy numbers, eccDNA quantification using split and discordant reads should be avoided. Analysis of the genomic and elements distribution of the overall population of eccDNA molecules revealed a high correlation between the replicates, and provided a possible stability signature for eccDNA, which could potentially reflect different cell lines or cell states. However, we found only a few eccDNA with identical junction sites in each replicate, showing a high degree of heterogeneity of eccDNA. The emergence of different motif patterns flanking junctional sites in eccDNAs of varying sizes suggests the involvement of multiple potential mechanisms in eccDNA generation. This study comprehensively compares and discusses various essential approaches for eccDNA library preparation, offering valuable insights and practical advice to researchers involved in characterizing eccDNA.
Collapse
Affiliation(s)
- Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yunfei Ouyang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, Xinjiang Uygur Autonomous Region, 835000, China
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
35
|
Zhu Q, Zhao X, Zhang Y, Li Y, Liu S, Han J, Sun Z, Wang C, Deng D, Wang S, Tang Y, Huang Y, Jiang S, Tian C, Chen X, Yuan Y, Li Z, Yang T, Lai T, Liu Y, Yang W, Zou X, Zhang M, Cui H, Liu C, Jin X, Hu Y, Chen A, Xu X, Li G, Hou Y, Liu L, Liu S, Fang L, Chen W, Wu L. Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell lines. Nat Commun 2023; 14:8170. [PMID: 38071219 PMCID: PMC10710513 DOI: 10.1038/s41467-023-43991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Human cancer cell lines have long served as tools for cancer research and drug discovery, but the presence and the source of intra-cell-line heterogeneity remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-sequencing on 42 and 39 human cell lines, respectively, to illustrate both transcriptomic and epigenetic heterogeneity within individual cell lines. Our data reveal that transcriptomic heterogeneity is frequently observed in cancer cell lines of different tissue origins, often driven by multiple common transcriptional programs. Copy number variation, as well as epigenetic variation and extrachromosomal DNA distribution all contribute to the detected intra-cell-line heterogeneity. Using hypoxia treatment as an example, we demonstrate that transcriptomic heterogeneity could be reshaped by environmental stress. Overall, our study performs single-cell multi-omics of commonly used human cancer cell lines and offers mechanistic insights into the intra-cell-line heterogeneity and its dynamics, which would serve as an important resource for future cancer cell line-based studies.
Collapse
Affiliation(s)
- Qionghua Zhu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Xin Zhao
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanhang Zhang
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanping Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Shang Liu
- BGI Research, 518083, Shenzhen, China
| | - Jingxuan Han
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhiyuan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Chunqing Wang
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Daqi Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | | | - Yisen Tang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | | | - Siyuan Jiang
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chi Tian
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xi Chen
- BGI Research, 518083, Shenzhen, China
| | - Yue Yuan
- BGI Research, 518083, Shenzhen, China
| | - Zeyu Li
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Yang
- China National GeneBank, 518120, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, 518120, Shenzhen, China
| | - Yiqun Liu
- China National GeneBank, 518120, Shenzhen, China
| | - Wenzhen Yang
- China National GeneBank, 518120, Shenzhen, China
| | - Xuanxuan Zou
- BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, China
| | | | - Xin Jin
- BGI Research, 518083, Shenzhen, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ao Chen
- BGI Research, 518083, Shenzhen, China
- JFL-BGI STOmics Center, Jinfeng Laboratory, 401329, Chongqing, China
- The Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
| | - Guipeng Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yong Hou
- BGI Research, 518083, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, 518100, Shenzhen, China
| | - Longqi Liu
- BGI Research, 518083, Shenzhen, China.
- BGI Research, 310012, Hangzhou, China.
- Shenzhen Bay Laboratory, 518000, Shenzhen, China.
| | - Shiping Liu
- BGI Research, 518083, Shenzhen, China.
- The Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, 518100, Shenzhen, China.
- BGI Research, 310012, Hangzhou, China.
- Shenzhen Bay Laboratory, 518000, Shenzhen, China.
| | - Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Liang Wu
- BGI Research, 518083, Shenzhen, China.
- JFL-BGI STOmics Center, Jinfeng Laboratory, 401329, Chongqing, China.
- BGI Research, 401329, Chongqing, China.
| |
Collapse
|
36
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
37
|
Wen K, Zhang L, Cai Y, Teng H, Liang J, Yue Y, Li Y, Huang Y, Liu M, Zhang Y, Wei R, Sun J. Identification and characterization of extrachromosomal circular DNA in patients with high myopia and cataract. Epigenetics 2023; 18:2192324. [PMID: 36945837 PMCID: PMC10038054 DOI: 10.1080/15592294.2023.2192324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
To explore the presence of extrachromosomal circular DNA (eccDNA) in the anterior capsule of the lens in the eyes of patients with cataract and with high myopia. Circle-Seq was performed to identify differences in the eccDNA and gene expression between the anterior capsule of the lens of patients with simple nuclear cataract (C, n = 6 cases) and patients with nuclear cataract along with high myopia (HM, n = 6 cases). The expression of eccDNA was confirmed using routine quantitative polymerase chain reaction. The eccDNA ranked in C and HM ranged in length from 0.017 kb - 9.9 Mb with two distinctive peaks detected at 0.2 kb and 0.5 kb, while eccDNA that were differentially expressed ranged in size from 0.05 kb - 57.8 kb with two distinctive peaks observed at 0.1 kb and 0.5 kb. Only 2.5% of the eccDNA in C and 2% in HM were>25 kb in size. The gene-rich chromosomes contributed to more number of eccDNA/Mb, while several well-known high myopia candidate genes, including catenin delta 2 (CTNND2) and ubiquitin-like with PHD, exhibited significantly increased levels of eccDNA in the anterior capsule of the lens in patients with high myopia. This study highlighted the topologic analysis of the anterior capsule of eyes with high myopia, which is an emerging direction for research and clinical applications. These findings suggested that eccDNA was commonly detected in eyes with high myopia and cataracts, and the candidate genes for high myopia identified in previous studies were also observed in the eccDNA.
Collapse
Affiliation(s)
- Kai Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | | | - Yang Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - He Teng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Jingli Liang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yi Yue
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yaoling Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yifang Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Ming Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yufeng Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Jing Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| |
Collapse
|
38
|
Chapman OS, Luebeck J, Sridhar S, Wong ITL, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, He BJ, Hung KL, Lange JT, Dehkordi SR, Chandran S, Adam M, Morgan L, Wani S, Tiwari A, Guccione C, Lin Y, Dutta A, Lo YY, Juarez E, Robinson JT, Korshunov A, Michaels JEA, Cho YJ, Malicki DM, Coufal NG, Levy ML, Hobbs C, Scheuermann RH, Crawford JR, Pomeroy SL, Rich JN, Zhang X, Chang HY, Dixon JR, Bagchi A, Deshpande AJ, Carter H, Fraenkel E, Mischel PS, Wechsler-Reya RJ, Bafna V, Mesirov JP, Chavez L. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 2023; 55:2189-2199. [PMID: 37945900 PMCID: PMC10703696 DOI: 10.1038/s41588-023-01551-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.
Collapse
Affiliation(s)
- Owen S Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Sunita Sridhar
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Deobrat Dixit
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shanqing Wang
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Gino Prasad
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jon D Larson
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | | | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ling Morgan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Sameena Wani
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Ashutosh Tiwari
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Caitlin Guccione
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Yingxi Lin
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Aditi Dutta
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yan Yuen Lo
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Edwin Juarez
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - James T Robinson
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - John-Edward A Michaels
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Yoon-Jae Cho
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Denise M Malicki
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael L Levy
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - John R Crawford
- Department of Pediatrics, University of California Irvine and Children's Hospital Orange County, Irvine, CA, USA
| | - Scott L Pomeroy
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeremy N Rich
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anindya Bagchi
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | | | - Hannah Carter
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Robert J Wechsler-Reya
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
39
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
40
|
Zhao X, Zhao H, Liu Y, Guo Z. Methods, bioinformatics tools and databases in ecDNA research: An overview. Comput Biol Med 2023; 167:107680. [PMID: 37976817 DOI: 10.1016/j.compbiomed.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Extrachromosomal DNA (ecDNA), derived from chromosomes, is a cancer-specific circular DNA molecule. EcDNA drives tumor initiation and progression, which is associated with poor clinical outcomes and drug resistance in a wide range of cancers. Although ecDNA was first discovered in 1965, tremendous technological revolutions in recent years have provided crucial new insights into its key biological functions and regulatory mechanisms. Here, we provide a thorough overview of the methods, bioinformatics tools, and database resources used in ecDNA research, mainly focusing on their performance, strengths, and limitations. This study can provide important reference for selecting the most appropriate method in ecDNA research. Furthermore, we offer suggestions for the current bioinformatics analysis of ecDNA and provide an outlook to the future research.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Huan Zhao
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation, Dalian Ocean University, Dalian, 116023, China
| | - Yupeng Liu
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiyun Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
41
|
Cheng H, Ma W, Wang K, Chu H, Bao G, Liao Y, Yuan Y, Gou Y, Dong L, Yang J, Cai H. ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data. BMC Genomics 2023; 24:678. [PMID: 37950200 PMCID: PMC10638764 DOI: 10.1186/s12864-023-09792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to chromosomal DNA interference. RESULTS In the present study, an algorithm called "ATACAmp" that can identify ecDNA/HSRs in tumor genomes using ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, which linked ecDNA to specific cells. CONCLUSIONS ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/chsmiss/ATAC-amp . Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity associated ecDNA analysis.
Collapse
Affiliation(s)
- Hansen Cheng
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Wenhao Ma
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Kun Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Han Chu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Guangchao Bao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yu Liao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yawen Yuan
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yixiong Gou
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Liting Dong
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
42
|
Wu S, Tao T, Zhang L, Zhu X, Zhou X. Extrachromosomal DNA (ecDNA): Unveiling its role in cancer progression and implications for early detection. Heliyon 2023; 9:e21327. [PMID: 38027570 PMCID: PMC10643110 DOI: 10.1016/j.heliyon.2023.e21327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is a special class of circular DNA in eukaryotes, which is independent of conventional chromosomes. These circular molecules play important roles in biology, especially in cancer biology. The emergence of sequencing technologies such as CCDA-seq and Amplicon Architect has led to a progressive unraveling of the mystery of ecDNA. Consequently, insights into its function and potential applications have begun to surface. Among these studies, the most noteworthy research pertains to cancer-related investigations into ecDNA. Numerous studies have underscored the significance of ecDNA in the pathogenesis of cancer and its role in accelerating cancer evolution. This review provides an overview of the source, structure, and function of ecDNA, while compiling recent advancements in ecDNA in the field of cancer. Nonetheless, further research is imperative to determine its effectiveness and specificity as a biomarker for early cancer detection.
Collapse
Affiliation(s)
- Shuhong Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Lin Zhang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
43
|
Kim J, Hong SP, Lee S, Lee W, Lee D, Kim R, Park YJ, Moon S, Park K, Cha B, Kim JI. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids. Hum Genomics 2023; 17:96. [PMID: 37898819 PMCID: PMC10613368 DOI: 10.1186/s40246-023-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.
Collapse
Affiliation(s)
- Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seyoon Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dakyung Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rokhyun Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
45
|
Gerovska D, Noer JB, Qin Y, Ain Q, Januzi D, Schwab M, Witte OW, Araúzo-Bravo MJ, Kretz A. A distinct circular DNA profile intersects with proteome changes in the genotoxic stress-related hSOD1 G93A model of ALS. Cell Biosci 2023; 13:170. [PMID: 37705092 PMCID: PMC10498603 DOI: 10.1186/s13578-023-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Julie B Noer
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yating Qin
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Quratul Ain
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Department of Internal Medicine IV, Hepatology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Donjetë Januzi
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
- Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain.
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics Group, 48149, Münster, North Rhine-Westphalia, Germany.
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Alexandra Kretz
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany.
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany.
| |
Collapse
|
46
|
Scharfenstein HJ, Alvarez‐Roa C, Peplow LM, Buerger P, Chan WY, van Oppen MJH. Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs. Evol Appl 2023; 16:1549-1567. [PMID: 37752965 PMCID: PMC10519419 DOI: 10.1111/eva.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.
Collapse
Affiliation(s)
- Hugo J. Scharfenstein
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | | | - Lesa M. Peplow
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Patrick Buerger
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Applied BioSciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Wing Yan Chan
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| |
Collapse
|
47
|
Luo X, Zhang L, Cui J, An Q, Li H, Zhang Z, Sun G, Huang W, Li Y, Li C, Jia W, Zou L, Zhao G, Xiao F. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin Transl Med 2023; 13:e1393. [PMID: 37649244 PMCID: PMC10468585 DOI: 10.1002/ctm2.1393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Xuanmei Luo
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Lili Zhang
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Jian Cui
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Qi An
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Hexin Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Zaifeng Zhang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gaoyuan Sun
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Wei Huang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Yifei Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chang Li
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Wenzhuo Jia
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Lihui Zou
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gang Zhao
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Fei Xiao
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
48
|
郭 晓, 陈 丽, 吕 芹, 杜 瑞, 罗 琴, 张 阳, 卞 华, 韩 立. [ Guizhi Fuling Capsule inhibits migration and induces apoptosis of human ovarian cancer cells by regulating the NF-κB signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1315-1321. [PMID: 37712267 PMCID: PMC10505568 DOI: 10.12122/j.issn.1673-4254.2023.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To study the inhibitory effect of Guizhi Fuling Capsule (GFC) on migration of human ovarian cancer cells and explore the possible mechanism. METHODS Sixty Wistar rats were randomized into 4 groups for daily gavage of saline or 4, 8, or 16 g/kg GFC suspension for 5 days to prepare blank and low-, medium- and high-dose GFC-medicated sera. Cisplatinresistant ovarian cancer SKOV3/DDP cells were treated with these sera with nuclear factor-κB (NF-κB) inhibitor SN50 as the positive control, and the changes in migration ability and apoptosis of the cells were examined using scratch assay and flow cytometry, respectively; the changes in the mRNA and protein expressions of CDH1, CDH2, caspase 3 and NF- κB were detected using RT-qPCR and Western blotting. ATAC-seq was used to analyze the changes in expressions of CDH1, CDH2, caspase 3 and NF-κB genes in the open chromatin. RESULTS Treatment with GFC-medicated sera dose-dependently inhibited the migration (P < 0.05), increased apoptosis (P < 0.01), inhibited CDH2 and NF-κB mRNA expression (P < 0.05), and enhanced caspase 3 and CDH1 mRNA expressions (P < 0.01) in SKOV3/DDP cells. The effects of high-dose GFC-medicated serum were comparable to those of SN50 (P>0.05), but its effect for enhancing DH1 protein expression was weaker than that of SN50 (P < 0.01). GFC-medicated sera significantly lowered the expressions of NF-κB and CDH2 and increased CDH1 expression in the open chromatin without obviously affecting caspase 3 expression. CONCLUSION GFC- medicated sera inhibits the migration ability of SKOV3/DDP cells possibly by promoting cell apoptosis and caspase 3 and CDH1 expressions, inhibiting CDH2 and NF-κB expressions, and regulating the expressions of NF-κB, CDH2 and CDH1 in the open chromatin.
Collapse
Affiliation(s)
- 晓娟 郭
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
| | - 丽平 陈
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
- 南阳理工学院河南省张仲景方药与免疫调节重点实验室,河南 南阳 473004Henan Key Laboratory of ZHANG Zhongjing Formulae and Herbs for Immunoregulation,Nanyang Institute of Technology, Nanyang 473061, China
| | - 芹 吕
- 南阳医学高等专科学校中医系,河南 南阳 473061Department of Chinese Medicine, Nanyang Medical College, Nanyang 473061, China
| | - 瑞娟 杜
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
- 南阳理工学院河南省张仲景方药与免疫调节重点实验室,河南 南阳 473004Henan Key Laboratory of ZHANG Zhongjing Formulae and Herbs for Immunoregulation,Nanyang Institute of Technology, Nanyang 473061, China
| | - 琴 罗
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
| | - 阳 张
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
| | - 华 卞
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
- 南阳理工学院河南省张仲景方药与免疫调节重点实验室,河南 南阳 473004Henan Key Laboratory of ZHANG Zhongjing Formulae and Herbs for Immunoregulation,Nanyang Institute of Technology, Nanyang 473061, China
| | - 立 韩
- 南阳理工学院张仲景国医学院,河南 南阳 473061Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology, Nanyang 473061, China
- 南阳理工学院河南省张仲景方药与免疫调节重点实验室,河南 南阳 473004Henan Key Laboratory of ZHANG Zhongjing Formulae and Herbs for Immunoregulation,Nanyang Institute of Technology, Nanyang 473061, China
| |
Collapse
|
49
|
Hung KL, Jones MG, Wong ITL, Lange JT, Luebeck J, Scanu E, He BJ, Brückner L, Li R, González RC, Schmargon R, Dörr JR, Belk JA, Bafna V, Werner B, Huang W, Henssen AG, Mischel PS, Chang HY. Coordinated inheritance of extrachromosomal DNA species in human cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549597. [PMID: 37503111 PMCID: PMC10371175 DOI: 10.1101/2023.07.18.549597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The chromosomal theory of inheritance has dominated human genetics, including cancer genetics. Genes on the same chromosome segregate together while genes on different chromosomes assort independently, providing a fundamental tenet of Mendelian inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives oncogene amplification, dysregulated gene expression and intratumoral heterogeneity, including through random segregation during cell division. Distinct ecDNA sequences, herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and maintained across somatic cell generations to drive cancer cell evolution is not known. Here we show that cooperative ecDNA species can be coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy number gains in multiple ecDNA species prior to any selection. Computational modeling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.
Collapse
Affiliation(s)
- King L. Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joshua T. Lange
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Elisa Scanu
- Department of Mathematics, Queen Mary University of London, London, UK
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Lotte Brückner
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Rocío Chamorro González
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rachel Schmargon
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan R. Dörr
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Weini Huang
- Department of Mathematics, Queen Mary University of London, London, UK
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Paul S. Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|