1
|
Fremlén H, Burmann BM. Maintaining the Integral Membrane Proteome: Revisiting the Functional Repertoire of Integral Membrane Proteases. Chembiochem 2025; 26:e202500048. [PMID: 40056010 PMCID: PMC12067869 DOI: 10.1002/cbic.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cells in all kingdoms of life employ dedicated protein quality control machineries for both their cytosolic and membrane proteome ensuring cellular functionality. These crucial systems consist besides a large variety of molecular chaperones, ensuring a proper fold and consequently function of the client's proteome, of several proteases to clean out damaged, unfunctional and potentially toxic proteins. One of the key features underlying the functional cycle of these quality control systems is the inherent flexibility of their bound clients which for a long time impaired detailed structural characterization, with advanced high-resolution NMR spectroscopy in the last decade playing a key role contributing to the present understanding of their functional properties. Although these studies laid the foundation of the present knowledge of the mechanistic details of the maintenance of cytosolic proteins, the understanding of related systems employed for membrane associated as well as integral membrane proteins remains rather sparse to date. Herein, we review the crucial contributions of structural and dynamical biology approaches, possessing the power to resolve both structure and dynamics of such systems as well as enabling the elucidation of the functional repertoire of multimeric proteases involved in maintaining a functional membrane proteome.
Collapse
Affiliation(s)
- Hannah Fremlén
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg405 30GöteborgSweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineScience for Life LaboratorySwedish NMR CentreUniversity of Gothenburg405 30GöteborgSweden
| |
Collapse
|
2
|
Cragan M, Puri N, Karzai AW. Substrate recognition and cleavage-site preferences of Lon protease. J Biol Chem 2025; 301:108365. [PMID: 40023398 PMCID: PMC11986505 DOI: 10.1016/j.jbc.2025.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
The evolutionarily conserved AAA+ Lon protease plays a pivotal role in protein homeostasis by precisely remodeling the proteome and specifically removing unfolded, damaged, and surplus natively folded regulatory proteins. Proteolysis by Lon comprises the three fundamental stages of substrate recognition via specific amino acid sequence motifs (degrons), ATP-fueled substrate unfolding and translocation into a sequestered proteolytic chamber, and cleavage of the translocated polypeptide by the peptidase domain. Although a plethora of Lon substrates have been identified in several bacterial species, broadly applicable rules that govern recognition of numerous substrates, and hence the ability to de novo identify new Lon substrates and regulatory pathways, has lagged behind. Similarly, cleavage-site preferences of Lon proteases, and whether these crucial enzymes from diverse bacterial species share similar preferences, have remained underexplored. In this study, we report the identification and characterization of a class of high-affinity autonomous C-terminal Yersinia pestis Lon recognition degrons, variants of which are present in numerous known and new Yersinia pestis-Lon substrates and broadly distributed in diverse bacterial species. Moreover, the identification of this degron group offers the predictive power to discover new Lon substrates in eubacteria. Furthermore, cleavage-site preference analyses of multiple Lon substrates reveal that the Lon peptidase domain preferentially cleaves translocated polypeptides after phenylalanine residues to generate peptides that range from 7 to 35 residues, with an average length of 11 residues, a general feature conserved among Lon proteases from phylogenetically distinct bacterial species.
Collapse
Affiliation(s)
- Melanie Cragan
- Graduate Program in Molecular and Cellular Biology, Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Neha Puri
- Graduate Program in Molecular and Cellular Biology, Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - A Wali Karzai
- Graduate Program in Molecular and Cellular Biology, Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
3
|
Wang HJ, Kuan YE, Ho MR, Chang CI. Structural basis for the allosteric activation of Lon by the heat shock protein LarA. Nat Commun 2025; 16:2212. [PMID: 40044692 PMCID: PMC11882793 DOI: 10.1038/s41467-025-57482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Lon is a conserved AAA+ (ATPases associated with diverse cellular activities) proteolytic machine that plays a key regulatory role in cells under proteotoxic stress. Lon-mediated proteolysis can be stimulated by either the unfolded or specific protein substrates accumulated under stress conditions. However, the molecular basis for this substrate-controlled proteolysis remains unclear. Here, we have found that the heat shock protein LarA, a recently discovered Lon substrate and allosteric activator, binds to the N-terminal domain (NTD) of Lon. The crystal structure of the LarA-NTD complex shows that LarA binds to a highly conserved groove in the NTD through the terminal aromatic residue of its C-terminal degron. Crystallographic and biochemical evidence further reveals that this binding exposes the hydrophobic core of LarA, which can bind a leucine residue and promote local protein unfolding. These results define the mechanistic role of the NTD in regulating Lon-mediated proteolysis in response to varying cellular conditions.
Collapse
Affiliation(s)
- Hsiu-Jung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Erh Kuan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
4
|
Li Y, Zhu J, Zhang Z, Wei J, Wang F, Meisl G, Knowles TPJ, Egelman EH, Tezcan FA. Transforming an ATP-dependent enzyme into a dissipative, self-assembling system. Nat Chem Biol 2025:10.1038/s41589-024-01811-1. [PMID: 39806067 DOI: 10.1038/s41589-024-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes. FtsH nanotubes require constant energy input to maintain their integrity and degrade over time with the concomitant hydrolysis of ATP, analogous to natural NTP-dependent cytoskeletal assemblies. Yet, in contrast to natural dissipative systems, ATP hydrolysis is catalyzed by free FtsH protomers and FtsH nanotubes serve to conserve ATP, leading to transient assemblies whose lifetimes can be tuned from days to minutes through the inclusion of external ATPases in solution.
Collapse
Affiliation(s)
- Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease via ssDNA binding and local charge changes. J Biol Chem 2025; 301:107993. [PMID: 39542252 PMCID: PMC11719849 DOI: 10.1016/j.jbc.2024.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA + proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduce ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements, we find this change in activity correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA.
| |
Collapse
|
6
|
Rosa LT, Vernhes É, Soulet AL, Polard P, Fronzes R. Structural insights into the mechanism of DNA branch migration during homologous recombination in bacteria. EMBO J 2024; 43:6180-6198. [PMID: 39424952 PMCID: PMC11612176 DOI: 10.1038/s44318-024-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024] Open
Abstract
Some DNA helicases play central and specific roles in genome maintenance and plasticity through their branch migration activity in different pathways of homologous recombination. RadA is a highly conserved bacterial helicase involved in DNA repair throughout all bacterial species. In Gram-positive Firmicutes, it also has a role in natural transformation, while in Gram-negative bacteria, ComM is the canonical transformation-specific helicase. Both RadA and ComM helicases form hexameric rings and use ATP hydrolysis as an energy source to propel themselves along DNA. In this study, we present the cryoEM structures of RadA and ComM interacting with DNA and ATP analogs. These structures reveal important molecular interactions that couple ATP hydrolysis and DNA binding in RadA, as well as the role of the Lon protease-like domain, shared by RadA and ComM, in this process. Taken together, these results provide new molecular insights into the mechanisms of DNA branch migration in different pathways of homologous recombination.
Collapse
Affiliation(s)
- Leonardo Talachia Rosa
- Structure and Function of Bacterial Nanomachines-Institut Européen de Chimie et Biologie, Microbiologie fondamentale et pathogénicité, UMR 5234, CNRS, University of Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
- Departamento de Bioquímica e Biologia Tecidual. Laboratório de Bioquímica de Complexos Bacterianos. Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 255, Campinas, 13083-862, Brasil
| | - Émeline Vernhes
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France
| | - Patrice Polard
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France.
| | - Rémi Fronzes
- Structure and Function of Bacterial Nanomachines-Institut Européen de Chimie et Biologie, Microbiologie fondamentale et pathogénicité, UMR 5234, CNRS, University of Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France.
| |
Collapse
|
7
|
Chen W, Yang J, Lander GC. Cryo-EM structures of human ClpXP reveal mechanisms of assembly and proteolytic activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623337. [PMID: 39605471 PMCID: PMC11601447 DOI: 10.1101/2024.11.12.623337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The human ClpXP complex (hClpXP) plays a central role in mitochondrial protein quality control by degrading misfolded or unneeded proteins. While bacterial ClpXP complexes have been extensively characterized, the molecular determinants underlying hClpXP assembly and regulation are not as well understood. We determined cryo-electron microscopy (cryo-EM) structures of hClpP in isolation and in complex with hClpX, revealing how hClpX binding promotes rearrangement of an asymmetric hClpP heptamer to assemble as a symmetric tetradecamer. Our hClpXP structure also highlights the stabilizing role of a previously uncharacterized eukaryotic ClpX sequence, referred to as the E-loop, and its importance in ATPase activity and hexamer assembly. We further show that peptide interaction with the hClpP proteolytic active site promotes the complex to adopt a proteolytically competent conformation. Together, these findings advance our understanding of the molecular mechanisms defining hClpXP activation and function.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Jie Yang
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
8
|
Evans R, Waterfield NR. The Pvc15 ATPase selectively associates effector proteins with the Photorhabdus virulence cassette. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240948. [PMID: 39445091 PMCID: PMC11495950 DOI: 10.1098/rsos.240948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The Photorhabdus virulence cassette (PVC) is an extracellular contractile injection system. In the producing bacterium, N-terminal signal peptides enable effector 'payloads' to be loaded into the PVC's hollow tube-facilitated by the 'ATPases associated with diverse cellular activities' (AAA) ATPase, Pvc15-ready for injection of the toxin or virulence factor into eukaryotic cytosols. Pvc15's function and its interaction with the signal peptide were unclear. This study describes the signal peptide diversity in extracellular contractile injection system clades and interrogates the Pvc15-signal peptide interaction using ATPase assays, cell respiratory assays and western blot quantification of Escherichia coli lysates and co-purifications of PVCs with their payloads. This study found that extracellular contractile injection system signal peptides can be grouped according to sequence alignment, owing to potentially homologous loading mechanisms. Pvc15 contains three domains, including tandem AAA domains D1 and D2. By constructing Pvc15 mutants, we found that while each domain is necessary for PVC-payload loading, domain D2 is the sole bioactive ATPase domain and rescues unstable payloads via the signal peptide. Finally, truncating the signal peptide abolishes Pvc15-dependent PVC loading and has varying effects on payload stability. This study provides crucial insights into extracellular contractile injection system effector loading mechanisms and their ATPase chaperones, and suggests that these devices could be bioengineered for injection of therapeutic proteins into human cells.
Collapse
Affiliation(s)
- Rhys Evans
- Warwick Medical School, University of Warwick, CoventryCV4 7AL, UK
| | | |
Collapse
|
9
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease by effector binding and local charges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611642. [PMID: 39282454 PMCID: PMC11398467 DOI: 10.1101/2024.09.06.611642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA+ proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduces ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements we find that this change in activity is correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| | - Peter Chien
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| |
Collapse
|
10
|
Mindrebo JT, Lander GC. Structural and mechanistic studies on human LONP1 redefine the hand-over-hand translocation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600538. [PMID: 38979310 PMCID: PMC11230189 DOI: 10.1101/2024.06.24.600538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AAA+ enzymes use energy from ATP hydrolysis to remodel diverse cellular targets. Structures of substrate-bound AAA+ complexes suggest that these enzymes employ a conserved hand-over-hand mechanism to thread substrates through their central pore. However, the fundamental aspects of the mechanisms governing motor function and substrate processing within specific AAA+ families remain unresolved. We used cryo-electron microscopy to structurally interrogate reaction intermediates from in vitro biochemical assays to inform the underlying regulatory mechanisms of the human mitochondrial AAA+ protease, LONP1. Our results demonstrate that substrate binding allosterically regulates proteolytic activity, and that LONP1 can adopt a configuration conducive to substrate translocation even when the ATPases are bound to ADP. These results challenge the conventional understanding of the hand-over-hand translocation mechanism, giving rise to an alternative model that aligns more closely with biochemical and biophysical data on related enzymes like ClpX, ClpA, the 26S proteasome, and Lon protease.
Collapse
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
11
|
Shein M, Hitzenberger M, Cheng TC, Rout SR, Leitl KD, Sato Y, Zacharias M, Sakata E, Schütz AK. Characterizing ATP processing by the AAA+ protein p97 at the atomic level. Nat Chem 2024; 16:363-372. [PMID: 38326645 PMCID: PMC10914628 DOI: 10.1038/s41557-024-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.
Collapse
Affiliation(s)
- Mikhail Shein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manuel Hitzenberger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Tat Cheung Cheng
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Smruti R Rout
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Kira D Leitl
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Eri Sakata
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
| | - Anne K Schütz
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany.
- Bavarian NMR Center, Technical University of Munich, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
12
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
13
|
Li S, Hsieh KY, Kuo CI, Lin TC, Lee SH, Chen YR, Wang CH, Ho MR, Ting SY, Zhang K, Chang CI. A 5+1 assemble-to-activate mechanism of the Lon proteolytic machine. Nat Commun 2023; 14:7340. [PMID: 37957149 PMCID: PMC10643698 DOI: 10.1038/s41467-023-43035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown. We show here, using cryo-electron microscopy (cryo-EM), that the activation process of the Lon AAA+ protease may involve a pentameric assembly and a substrate-dependent incorporation of the sixth protomer to form the substrate-pore-loop contacts seen in the translocating state. Based on the structural results, we design truncated monomeric mutants that inhibit Lon activity by binding to the native pentamer and demonstrated that expressing these monomeric mutants in Escherichia coli cells containing functional Lon elicits specific phenotypes associated with lon deficiency, including the inhibition of persister cell formation. These findings uncover a substrate-dependent assembly process for the activation of a AAA+ protein and demonstrate a targeted approach to selectively inhibit its function within cells.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Chi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ru Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - See-Yeun Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Ghanbarpour A, Cohen SE, Fei X, Kinman LF, Bell TA, Zhang JJ, Baker TA, Davis JH, Sauer RT. A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation. Nat Commun 2023; 14:7281. [PMID: 37949857 PMCID: PMC10638403 DOI: 10.1038/s41467-023-43145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Steven E Cohen
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Xue Fei
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Laurel F Kinman
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tristan A Bell
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Jia Jia Zhang
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tania A Baker
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Joseph H Davis
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| | - Robert T Sauer
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Shvarev D, Scholz AI, Moeller A. Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis. mBio 2023; 14:e0189323. [PMID: 37737632 PMCID: PMC10653834 DOI: 10.1128/mbio.01893-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Alischa Ira Scholz
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
16
|
Metzger MB, Scales JL, Grant GA, Molnar AE, Loncarek J, Weissman AM. Differential sensitivity of the yeast Lon protease Pim1p to impaired mitochondrial respiration. J Biol Chem 2023; 299:104937. [PMID: 37331598 PMCID: PMC10359500 DOI: 10.1016/j.jbc.2023.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Mitochondria are essential organelles whose proteome is well protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the matrix AAA-ATPase (m-AAA) (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's autoproteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.
Collapse
Affiliation(s)
- Meredith B Metzger
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | - Jessica L Scales
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Garis A Grant
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Abigail E Molnar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jadranka Loncarek
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allan M Weissman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
17
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
18
|
Wang F, Feng X, He Q, Li H, Li H. The Saccharomyces cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly. J Biol Chem 2023; 299:102852. [PMID: 36592926 PMCID: PMC9898759 DOI: 10.1016/j.jbc.2022.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier. Unexpectedly, the Yta7 BRD stabilizes a four-stranded β-helix, termed BRD-interacting motif (BIM), of the largely disordered N-terminal region. The BIM motif is unique to the baker's yeast, and we show both BRD and BIM contribute to nucleosome recognition. We found that Yta7 binds both acetylated and nonacetylated H3 peptides but with a higher affinity for the unmodified peptide. This property is consistent with the absence of key residues of canonical BRDs involved in acetylated peptide recognition and the role of Yta7 in general nucleosome remodeling. Interestingly, the BRD tier exists in a spiral and a flat-ring form on top of the Yta7 AAA+ hexamer. The spiral is likely in a nucleosome-searching mode because the bottom BRD blocks the entry to the AAA+ chamber. The flat ring may be in a nucleosome disassembly state because the entry is unblocked and the H3 peptide has entered the AAA+ chamber and is stabilized by the AAA1 pore loops 1 and 2. Indeed, we show that the BRD tier is a flat ring when bound to the nucleosome. Overall, our study sheds light on the nucleosome disassembly by Yta7.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
19
|
Nitika, Zheng B, Ruan L, Kline JT, Omkar S, Sikora J, Texeira Torres M, Wang Y, Takakuwa JE, Huguet R, Klemm C, Segarra VA, Winters MJ, Pryciak PM, Thorpe PH, Tatebayashi K, Li R, Fornelli L, Truman AW. Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 2022; 20:e3001839. [PMID: 36269765 PMCID: PMC9629621 DOI: 10.1371/journal.pbio.3001839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/02/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Hsp70 interactions are critical for cellular viability and the response to stress. Previous attempts to characterize Hsp70 interactions have been limited by their transient nature and the inability of current technologies to distinguish direct versus bridged interactions. We report the novel use of cross-linking mass spectrometry (XL-MS) to comprehensively characterize the Saccharomyces cerevisiae (budding yeast) Hsp70 protein interactome. Using this approach, we have gained fundamental new insights into Hsp70 function, including definitive evidence of Hsp70 self-association as well as multipoint interaction with its client proteins. In addition to identifying a novel set of direct Hsp70 interactors that can be used to probe chaperone function in cells, we have also identified a suite of posttranslational modification (PTM)-associated Hsp70 interactions. The majority of these PTMs have not been previously reported and appear to be critical in the regulation of client protein function. These data indicate that one of the mechanisms by which PTMs contribute to protein function is by facilitating interaction with chaperones. Taken together, we propose that XL-MS analysis of chaperone complexes may be used as a unique way to identify biologically important PTMs on client proteins.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Bo Zheng
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Jacek Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States America
| | - Mara Texeira Torres
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jade E. Takakuwa
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Romain Huguet
- Thermo Scientific, San Jose, California, United States America
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Verónica A. Segarra
- Departments of Biological Sciences and Chemistry, Goucher College, Baltimore, Maryland, United States America
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| |
Collapse
|
20
|
Mahmoud SA, Aldikacti B, Chien P. ATP hydrolysis tunes specificity of a AAA+ protease. Cell Rep 2022; 40:111405. [PMID: 36130509 DOI: 10.1016/j.celrep.2022.111405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
In bacteria, AAA+ proteases such as Lon and ClpXP degrade substrates with exquisite specificity. These machines capture the energy of ATP hydrolysis to power unfolding and degradation of target substrates. Here, we show that a mutation in the ATP binding site of ClpX shifts protease specificity to promote degradation of normally Lon-restricted substrates. However, this ClpX mutant is worse at degrading ClpXP targets, suggesting an optimal balance in substrate preference for a given protease that is easy to alter. In vitro, wild-type ClpXP also degrades Lon-restricted substrates more readily when ATP levels are reduced, similar to the shifted specificity of mutant ClpXP, which has altered ATP hydrolysis kinetics. Based on these results, we suggest that the rates of ATP hydrolysis not only power substrate unfolding and degradation, but also tune protease specificity. We consider various models for this effect based on emerging structures of AAA+ machines showing conformationally distinct states.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Berent Aldikacti
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
21
|
Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Nature 2022; 609:630-639. [PMID: 36002576 PMCID: PMC9477746 DOI: 10.1038/s41586-022-05121-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.
Collapse
Affiliation(s)
- Jiri Wald
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Dirk Fahrenkamp
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| | - Nikolaus Goessweiner-Mohr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Biophysics, Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Lugmayr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Luciano Ciccarelli
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- GlaxoSmithKline Vaccines, Siena, Italy
| | - Oliver Vesper
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
22
|
Pajak J, Arya G. Molecular dynamics of DNA translocation by FtsK. Nucleic Acids Res 2022; 50:8459-8470. [PMID: 35947697 PMCID: PMC9410874 DOI: 10.1093/nar/gkac668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterial FtsK motor harvests energy from ATP to translocate double-stranded DNA during cell division. Here, we probe the molecular mechanisms underlying coordinated DNA translocation in FtsK by performing long timescale simulations of its hexameric assembly and individual subunits. From these simulations we predict signaling pathways that connect the ATPase active site to DNA-gripping residues, which allows the motor to coordinate its translocation activity with its ATPase activity. Additionally, we utilize well-tempered metadynamics simulations to compute free-energy landscapes that elucidate the extended-to-compact transition involved in force generation. We show that nucleotide binding promotes a compact conformation of a motor subunit, whereas the apo subunit is flexible. Together, our results support a mechanism whereby each ATP-bound subunit of the motor conforms to the helical pitch of DNA, and ATP hydrolysis/product release causes a subunit to lose grip of DNA. By ordinally engaging and disengaging with DNA, the FtsK motor unidirectionally translocates DNA.
Collapse
Affiliation(s)
- Joshua Pajak
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Dept. of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gaurav Arya
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Catalytic cycling of human mitochondrial Lon protease. Structure 2022; 30:1254-1268.e7. [PMID: 35870450 DOI: 10.1016/j.str.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
The mitochondrial Lon protease (LonP1) regulates mitochondrial health by removing redundant proteins from the mitochondrial matrix. We determined LonP1 in eight nucleotide-dependent conformational states by cryoelectron microscopy (cryo-EM). The flexible assembly of N-terminal domains had 3-fold symmetry, and its orientation depended on the conformational state. We show that a conserved structural motif around T803 with a high similarity to the trypsin catalytic triad is essential for proteolysis. We show that LonP1 is not regulated by redox potential, despite the presence of two conserved cysteines at disulfide-bonding distance in its unfoldase core. Our data indicate how sequential ATP hydrolysis controls substrate protein translocation in a 6-fold binding change mechanism. Substrate protein translocation, rather than ATP hydrolysis, is a rate-limiting step, suggesting that LonP1 is a Brownian ratchet with ATP hydrolysis preventing translocation reversal. 3-fold rocking motions of the flexible N-domain assembly may assist thermal unfolding of the substrate protein.
Collapse
|
25
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
26
|
Wlodawer A, Sekula B, Gustchina A, Rotanova TV. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms. J Mol Biol 2022; 434:167504. [PMID: 35183556 PMCID: PMC9013511 DOI: 10.1016/j.jmb.2022.167504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Lon proteases, members of the AAA+ superfamily of enzymes, are key components of the protein quality control system in bacterial cells, as well as in the mitochondria and other specialized organelles of higher organisms. These enzymes have been subject of extensive biochemical and structural investigations, resulting in 72 crystal and solution structures, including structures of the individual domains, multi-domain constructs, and full-length proteins. However, interpretation of the latter structures still leaves some questions unanswered. Based on their amino acid sequence and details of their structure, Lon proteases can be divided into at least three subfamilies, designated as LonA, LonB, and LonC. Protomers of all Lons are single-chain polypeptides and contain two functional domains, ATPase and protease. The LonA enzymes additionally include a large N-terminal region, and different Lons may also include non-conserved inserts in the principal domains. These ATP-dependent proteases function as homohexamers, in which unfolded substrates are translocated to a large central chamber where they undergo proteolysis by a processive mechanism. X-ray crystal structures provided high-resolution models which verified that Lons are hydrolases with the rare Ser-Lys catalytic dyad. Full-length LonA enzymes have been investigated by cryo-electron microscopy (cryo-EM), providing description of the functional enzyme at different stages of the catalytic cycle, indicating extensive flexibility of their N-terminal domains, and revealing insights into the substrate translocation mechanism. Structural studies of Lon proteases provide an interesting case for symbiosis of X-ray crystallography and cryo-EM, currently the two principal techniques for determination of macromolecular structures.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| | - Bartosz Sekula
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
27
|
Yang J, Song AS, Wiseman RL, Lander GC. Cryo-EM structure of hexameric yeast Lon protease (PIM1) highlights the importance of conserved structural elements. J Biol Chem 2022; 298:101694. [PMID: 35143841 PMCID: PMC8913295 DOI: 10.1016/j.jbc.2022.101694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1's enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function.
Collapse
Affiliation(s)
- Jie Yang
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA
| | - Albert S Song
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA; Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA.
| | - Gabriel C Lander
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, USA.
| |
Collapse
|
28
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Graziadei A, Rappsilber J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure 2021; 30:37-54. [PMID: 34895473 DOI: 10.1016/j.str.2021.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Crosslinking mass spectrometry (crosslinking-MS) is a versatile tool providing structural insights into protein conformation and protein-protein interactions. Its medium-resolution residue-residue distance restraints have been used to validate protein structures proposed by other methods and have helped derive models of protein complexes by integrative structural biology approaches. The use of crosslinking-MS in integrative approaches is underpinned by progress in estimating error rates in crosslinking-MS data and in combining these data with other information. The flexible and high-throughput nature of crosslinking-MS has allowed it to complement the ongoing resolution revolution in electron microscopy by providing system-wide residue-residue distance restraints, especially for flexible regions or systems. Here, we review how crosslinking-MS information has been leveraged in structural model validation and integrative modeling. Crosslinking-MS has also been a key technology for cell biology studies and structural systems biology where, in conjunction with cryoelectron tomography, it can provide structural and mechanistic insights directly in situ.
Collapse
Affiliation(s)
- Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
30
|
Li S, Hsieh KY, Kuo CI, Su SC, Huang KF, Zhang K, Chang CI. Processive cleavage of substrate at individual proteolytic active sites of the Lon protease complex. SCIENCE ADVANCES 2021; 7:eabj9537. [PMID: 34757797 PMCID: PMC8580320 DOI: 10.1126/sciadv.abj9537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Lon protease is the prototype of a family of proteolytic machines with adenosine triphosphatase modules built into a substrate degradation chamber. Lon is known to degrade protein substrates in a processive fashion, cutting a protein chain processively into small peptides before commencing cleavages of another protein chain. Here, we present structural and biochemical evidence demonstrating that processive substrate degradation occurs at each of the six proteolytic active sites of Lon, which forms a deep groove that partially encloses the substrate polypeptide chain by accommodating only the unprimed residues and permits processive cleavage in the C-to-N direction. We identify a universally conserved acidic residue at the exit side of the binding groove indispensable for the proteolytic activity. This noncatalytic residue likely promotes processive proteolysis by carboxyl-carboxylate interactions with cleaved intermediates. Together, these results uncover a previously unrecognized mechanism for processive substrate degradation by the Lon protease.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Coscia F, Löwe J. Cryo-EM structure of the full-length Lon protease from Thermus thermophilus. FEBS Lett 2021; 595:2691-2700. [PMID: 34591981 PMCID: PMC8835725 DOI: 10.1002/1873-3468.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
In bacteria, Lon is a large hexameric ATP-dependent protease that targets misfolded and also folded substrates, some of which are involved in cell division and survival of cellular stress. The N-terminal domain of Lon facilitates substrate recognition, but how the domains confer such activity has remained unclear. Here, we report the full-length structure of Lon protease from Thermus thermophilus at 3.9 Å resolution in a substrate-engaged state. The six N-terminal domains are arranged in three pairs, stabilized by coiled-coil segments and forming an additional channel for substrate sensing and entry into the AAA+ ring. Sequence conservation analysis and proteolysis assays confirm that this architecture is required for the degradation of both folded and unfolded substrates in bacteria.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
32
|
Li S, Hsieh KY, Kuo CI, Lee SH, Pintilie GD, Zhang K, Chang CI. Complete three-dimensional structures of the Lon protease translocating a protein substrate. SCIENCE ADVANCES 2021; 7:eabj7835. [PMID: 34652947 PMCID: PMC8519571 DOI: 10.1126/sciadv.abj7835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.4-angstrom resolution. These structures show a multilayered architecture featuring a tensegrity triangle complex, uniquely constructed by six long N-terminal helices. The interlocked helix triangle is assembled on the top of the hexameric core to spread a web of six globular substrate-binding domains. It serves as a multipurpose platform that controls the access of substrates to the AAA+ ring, provides a ruler-based mechanism for substrate selection, and acts as a pulley device to facilitate unfolding of the translocated substrate. This work provides a complete framework for understanding the structural mechanisms of Lon.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Grigore D. Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (K.Z.); (C.-I.C.)
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Corresponding author. (K.Z.); (C.-I.C.)
| |
Collapse
|
33
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Li S, Hsieh KY, Su SC, Pintilie GD, Zhang K, Chang CI. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease. J Biol Chem 2021; 297:101239. [PMID: 34563541 PMCID: PMC8503904 DOI: 10.1016/j.jbc.2021.101239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.
Collapse
Affiliation(s)
- Shanshan Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Grigore D Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, California, USA
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Ye X, Mayne L, Englander SW. A conserved strategy for structure change and energy transduction in Hsp104 and other AAA+ protein motors. J Biol Chem 2021; 297:101066. [PMID: 34384781 PMCID: PMC8449053 DOI: 10.1016/j.jbc.2021.101066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
The superfamily of massively large AAA+ protein molecular machines functions to convert the chemical energy of cytosolic ATP into physicomechanical form and use it to perform an extraordinary number of physical operations on proteins, nucleic acids, and membrane systems. Cryo-EM studies now reveal some aspects of substrate handling at high resolution, but the broader interpretation of AAA+ functional properties is still opaque. This paper integrates recent hydrogen exchange results for the typical AAA+ protein Hsp104 with prior information on several near and distantly related others. The analysis points to a widely conserved functional strategy. Hsp104 cycles through a long-lived loosely-structured energy-input "open" state that releases spent ADP and rebinds cytosolic ATP. ATP-binding energy is transduced by allosteric structure change to poise the protein at a high energy level in a more tightly structured "closed" state. The briefly occupied energy-output closed state binds substrate strongly and is catalytically active. ATP hydrolysis permits energetically downhill structural relaxation, which is coupled to drive energy-requiring substrate processing. Other AAA+ proteins appear to cycle through states that are analogous functionally if not in structural detail. These results revise the current model for AAA+ function, explain the structural basis of single-molecule optical tweezer kinetic phases, identify the separate energetic roles of ATP binding and hydrolysis, and specify a sequence of structural and energetic events that carry AAA+ proteins unidirectionally around a functional cycle to propel their diverse physical tasks.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Biophys J 2021; 120:3437-3454. [PMID: 34181904 PMCID: PMC8391056 DOI: 10.1016/j.bpj.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.
Collapse
Affiliation(s)
- Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
37
|
Matsushima Y, Takahashi K, Yue S, Fujiyoshi Y, Yoshioka H, Aihara M, Setoyama D, Uchiumi T, Fukuchi S, Kang D. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun Biol 2021; 4:974. [PMID: 34400774 PMCID: PMC8368198 DOI: 10.1038/s42003-021-02498-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human ATP-dependent Lon protease (LONP1) forms homohexameric, ring-shaped complexes. Depletion of LONP1 causes aggregation of a broad range of proteins in the mitochondrial matrix and decreases the levels of their soluble forms. The ATP hydrolysis activity, but not protease activity, of LONP1 is critical for its chaperone-like anti-aggregation activity. LONP1 forms a complex with the import machinery and an incoming protein, and protein aggregation is linked with matrix protein import. LONP1 also contributes to the degradation of imported, aberrant, unprocessed proteins using its protease activity. Taken together, our results show that LONP1 functions as a gatekeeper for specific proteins imported into the mitochondrial matrix. Yuichi Matsushima et al. revealed that Human ATP-dependent Lon protease (LONP1), a mitochondrial protease with unfolding activity, serves as a gatekeeper for several mitochondrial matrix entering proteins: supporting the folding of required proteins and degrading the aberrant ones.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuya Takahashi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Song Yue
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Fujiyoshi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideaki Yoshioka
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamune Aihara
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
38
|
Wang Z, Huang X, Jan M, Kong D, Wang W, Zhang X. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66. Mol Microbiol 2021; 116:690-706. [PMID: 34097792 DOI: 10.1111/mmi.14764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Malik Jan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Deyu Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Shin M, Watson ER, Song AS, Mindrebo JT, Novick SJ, Griffin PR, Wiseman RL, Lander GC. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Nat Commun 2021; 12:3239. [PMID: 34050165 PMCID: PMC8163871 DOI: 10.1038/s41467-021-23495-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.
Collapse
Affiliation(s)
- Mia Shin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Edmond R Watson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Albert S Song
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Jeffrey T Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Scott J Novick
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
40
|
Split conformation of Chaetomium thermophilum Hsp104 disaggregase. Structure 2021; 29:721-730.e6. [PMID: 33651974 DOI: 10.1016/j.str.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/08/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.
Collapse
|
41
|
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66:119-128. [PMID: 33246198 PMCID: PMC7973254 DOI: 10.1016/j.sbi.2020.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
AAA+ ATPases are a diverse protein superfamily which power a vast number of cellular processes, from protein degradation to genome replication and ribosome biogenesis. The latest advances in cryo-EM have resulted in a spectacular increase in the number and quality of AAA+ ATPase structures. This abundance of new information enables closer examination of different types of structural insertions into the conserved core, revealing discrepancies in the current classification of AAA+ modules into clades. Additionally, combined with biochemical data, it has allowed rapid progress in our understanding of structure-functional relationships and provided arguments both in favour and against the existence of a unifying molecular mechanism for the ATPase activity and action on substrates, stimulating further intensive research.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| |
Collapse
|
42
|
Carvalho V, Prabudiansyah I, Kovacik L, Chami M, Kieffer R, van der Valk R, de Lange N, Engel A, Aubin-Tam ME. The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry. J Biol Chem 2021; 296:100029. [PMID: 33154162 PMCID: PMC7949044 DOI: 10.1074/jbc.ra120.014739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore toward a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains. In this work, we used both negative stain TEM and cryo-EM to determine 3D maps of the full-length Aquifex aeolicus FtsH protease. Unexpectedly, we observed that detergent solubilization induces the formation of fully active FtsH dodecamers, which consist of two FtsH hexamers in a single detergent micelle. The striking tilted conformation of the cytosolic domain in the FtsH dodecamer visualized by negative stain TEM suggests a lateral substrate entrance between the membrane and cytosolic domain. Such a substrate path was then resolved in the cryo-EM structure of the FtsH hexamer. By mapping the available structural information and structure predictions for the transmembrane helices to the amino acid sequence we identified a linker of ∼20 residues between the second transmembrane helix and the cytosolic domain. This unique polypeptide appears to be highly flexible and turned out to be essential for proper functioning of FtsH as its deletion fully eliminated the proteolytic activity of FtsH.
Collapse
Affiliation(s)
- Vanessa Carvalho
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Irfan Prabudiansyah
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Lubomir Kovacik
- BioEM Lab, C-CINA, Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, C-CINA, Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Valk
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nick de Lange
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Andreas Engel
- BioEM Lab, C-CINA, Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
43
|
Ng J, Guo Z, Mueller-Cajar O. Rubisco activase requires residues in the large subunit N terminus to remodel inhibited plant Rubisco. J Biol Chem 2020; 295:16427-16435. [PMID: 32948656 PMCID: PMC7705312 DOI: 10.1074/jbc.ra120.015759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Indexed: 11/06/2022] Open
Abstract
The photosynthetic CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) forms dead-end inhibited complexes while binding multiple sugar phosphates, including its substrate ribulose 1,5-bisphosphate. Rubisco can be rescued from this inhibited form by molecular chaperones belonging to the ATPases associated with diverse cellular activities (AAA+ proteins) termed Rubisco activases (Rcas). The mechanism of green-type Rca found in higher plants has proved elusive, in part because until recently higher-plant Rubiscos could not be expressed recombinantly. Identifying the interaction sites between Rubisco and Rca is critical to formulate mechanistic hypotheses. Toward that end here we purify and characterize a suite of 33 Arabidopsis Rubisco mutants for their ability to be activated by Rca. Mutation of 17 surface-exposed large subunit residues did not yield variants that were perturbed in their interaction with Rca. In contrast, we find that Rca activity is highly sensitive to truncations and mutations in the conserved N terminus of the Rubisco large subunit. Large subunits lacking residues 1-4 are functional Rubiscos but cannot be activated. Both T5A and T7A substitutions result in functional carboxylases that are poorly activated by Rca, indicating the side chains of these residues form a critical interaction with the chaperone. Many other AAA+ proteins function by threading macromolecules through a central pore of a disc-shaped hexamer. Our results are consistent with a model in which Rca transiently threads the Rubisco large subunit N terminus through the axial pore of the AAA+ hexamer.
Collapse
Affiliation(s)
- Jediael Ng
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhijun Guo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
44
|
Ripstein ZA, Vahidi S, Rubinstein JL, Kay LE. A pH-Dependent Conformational Switch Controls N. meningitidis ClpP Protease Function. J Am Chem Soc 2020; 142:20519-20523. [PMID: 33232135 DOI: 10.1021/jacs.0c09474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.
Collapse
Affiliation(s)
- Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Siavash Vahidi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|