1
|
Yang L, Xiao JJ, Zhang L, Lu Q, Hu BB, Liu Y, Pu JX, Hu JW, Yu H, Wu X, Zhang BF. Methionine sulfoxide reductase A deficiency aggravated ferroptosis in LPS-induced acute kidney injury by inhibiting the AMPK/NRF2 axis and activating the CaMKII/HIF-1α pathway. Free Radic Biol Med 2025; 234:248-263. [PMID: 40288699 DOI: 10.1016/j.freeradbiomed.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Methionine sulfoxide reductase A (MsrA) is an important antioxidant enzyme that is present in various tissues and play a crucial role in many pathological processes. However, the role of MsrA in acute kidney injury (AKI) requires further exploration. Here, we aimed to explore whether MsrA is involved in sepsis-associated AKI and the underlying mechanisms. In the present study, AKI was induced by lipopolysaccharide (LPS) in WT mice and MsrA knockout mice. The role of MsrA in LPS-induced injury in the human renal proximal tubule epithelial cell line HK-2 was also examined by MsrA knockdown. MsrA deficiency exacerbated LPS-induced kidney damage in vivo. In addition, MsrA deficiency and silencing intensified iron overload, lipid peroxidation and ferroptosis in LPS-stimulated renal tubular cells. The mechanistic study revealed that MsrA knockout or knockdown led to the oxidation of calcium/calmodulin-dependent protein kinase II (CaMKII) at methionine 281/282, resulting in sustained activation of CaMKII, which upregulated iron metabolism-related proteins such as transferrin receptor 1 (TFR1) by promoting phosphorylation and nuclear translocation of hypoxia-inducible factor-1α (HIF-1α) and induced abnormal iron metabolism. Meanwhile, CaMKII activation downregulated the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) by inhibiting the activity of AMP-activated protein kinase (AMPK) and phosphorylation of nuclear factor erythroid 2-related factor 2 (NRF2), resulting in lipid peroxidation. Consequently, LPS-induced ferroptosis was exacerbated. Our study is the first to reveal that MsrA deficiency intensifies LPS-induced ferroptosis through CaMKII activation in renal tubular cells. There are two major mechanisms: one is the promotion of lipid peroxidation by inhibiting the AMPK/NRF2 axis, and the other is abnormal iron metabolism by activating the HIF-1α/TFR1 pathway. MsrA may be a potential therapeutic target for organ and cell damage induced by ferroptosis.
Collapse
Affiliation(s)
- LiJiao Yang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Lian Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin-Bin Hu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yu Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jun-Xing Pu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jun-Wei Hu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| |
Collapse
|
2
|
Lu S, Shi Z, Ding C, Wang W, Zhang W, Huang L, Lin J, Wang X, Luo R, Zeng X, Zhou W, Chen H, Wang Q, Mei L. BRD4-targeted photodegradation nanoplatform for light activatable melanoma therapy. Biomaterials 2025; 317:123101. [PMID: 39799698 DOI: 10.1016/j.biomaterials.2025.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The targeted protein degradation (TPD) strategy modulates tumor growth pathways by degrading proteins of interest (POIs) and has reshaped anti-tumor drug research and development. Recently, the emergence of photodegradation-targeting chimeras (PDTACs) and laser irradiation at specific sites enables precise spatiotemporal controllability of TPD. Capitalizing on the advances of PDTACs, herein, we report a nanoplatform for efficiently delivering PDTAC molecule for photodegradation of bromodomain-containing protein 4 (BRD4) proteins, the key activators of oncogenic transcription. The PDTAC molecule, named as PPa-JQ1, is synthesized through the covalent attachment of the BRD4-targeting ligand JQ1-acid, to the photosensitizer pyropheophorbide-a (PPa), utilizing a 1,6-hexanediamine linker. The PPa-JQ1 is further encapsulated by human serum albumin (HSA) to obtain the HSA@PPa-JQ1 nanoplatform, which facilitates targeted and efficacious delivery to melanoma lesions. Both in vitro and in vivo therapeutic outcomes demonstrate that HSA@PPa-JQ1 can efficiently generate reactive oxygen species (ROS) to degrade BRD4 upon light irradiation, which eventually induces tumor death. Our study represents the first case to validate the anti-tumor therapeutic efficacy of PDTACs by systemic administration, providing the foundation for further application of PDTACs.
Collapse
Affiliation(s)
- Shiman Lu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhaoqing Shi
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chendi Ding
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Weilang Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Li Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiachan Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, 410219, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
3
|
Wang B, Liu ZH, Li JJ, Xu JX, Guo YM, Zhang JX, Chu T, Feng ZF, Jiang QY, Wu DD. Role of ferroptosis in breast cancer: Molecular mechanisms and therapeutic interventions. Cell Signal 2025; 134:111869. [PMID: 40379233 DOI: 10.1016/j.cellsig.2025.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Ferroptosis, an iron-dependent cell death pathway distinct from apoptosis, is crucial in breast cancer (BC) research, especially for overcoming resistance in triple-negative breast cancer (TNBC). Unlike traditional apoptosis, ferroptosis involves the glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, iron-driven oxidative reactions, and phospholipid peroxidation. TNBC, characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), is particularly prone to ferroptosis due to acyl-coenzyme A synthetase (ACSL) 4-related lipid changes and solute carrier family 7 member 11 (SLC7A11)-mediated cystine transport. Recent advancements in biomarkers and therapeutic strategies targeting ferroptosis hold significant promise for the diagnosis and prognosis of TNBC. Notable innovations encompass the development of small-molecule compounds and various methodologies designed to enhance ferroptosis. Combination therapies have demonstrated improved antitumor efficacy by counteracting chemotherapy resistance and inducing immunogenic cell death. Nonetheless, challenges persist in optimizing drug delivery mechanisms and minimizing off-target effects. This review underscores the progress in ferroptosis research and proposes precision oncology strategies that exploit metabolic flexibility in BC, intending to transform TNBC treatment and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Bo Wang
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jun-Jie Li
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Xing Xu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Mei Guo
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jing-Xue Zhang
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Kumari R, Banerjee S. Regulation of Different Types of Cell Death by Noncoding RNAs: Molecular Insights and Therapeutic Implications. ACS Pharmacol Transl Sci 2025; 8:1205-1226. [PMID: 40370994 PMCID: PMC12070317 DOI: 10.1021/acsptsci.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Noncoding RNAs (ncRNAs) are crucial regulatory molecules in various biological processes, despite not coding for proteins. ncRNAs are further divided into long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) based on the size of their nucleotides. These ncRNAs play crucial roles in transcriptional, post-transcriptional, and epigenetic regulation. The regulatory roles of noncoding RNAs, including lncRNAs, miRNAs, and circRNAs, are essential in various modalities of cellular death, such as apoptosis, ferroptosis, cuproptosis, pyroptosis, disulfidptosis, and necroptosis. These noncoding RNAs are integral to modulating gene expression and protein functionality during cellular death mechanisms. In apoptosis, lncRNAs, miRNAs, and circRNAs influence the transcription of apoptotic genes. In ferroptosis, these noncoding RNAs target genes and proteins involved in iron homeostasis and oxidative stress responses. For cuproptosis, noncoding RNAs regulate pathways associated with the accumulation of copper ions, leading to cellular death. During pyroptosis, noncoding RNAs modulate inflammatory mediators and caspases, affecting the proinflammatory cell death pathway. In necroptosis, noncoding RNAs oversee the formation and functionality of necrosomes, thereby influencing the balance between cellular survival and death. Disulfidptosis is a unique type of regulated cell death caused by the excessive formation of disulfide bonds within cells, leading to cytoskeletal collapse and oxidative stress, especially under glucose-limited conditions. This investigation highlights the complex mechanisms through which noncoding RNAs coordinate cellular death, emphasizing their therapeutic promise as potential targets, particularly in the domain of cancer treatment.
Collapse
Affiliation(s)
- Reshmi Kumari
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Liang Y, Zhao Y, Qi Z, Li X, Zhao Y. Ferroptosis: CD8 +T cells' blade to destroy tumor cells or poison for self-destruction. Cell Death Discov 2025; 11:128. [PMID: 40169575 PMCID: PMC11962101 DOI: 10.1038/s41420-025-02415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Ferroptosis represents an emerging, iron-dependent form of cell death driven by lipid peroxidation. In recent years, it has garnered significant attention in the realm of cancer immunotherapy, particularly in studies involving immune checkpoint inhibitors. This form of cell death not only enhances our comprehension of the tumor microenvironment but is also considered a promising therapeutic strategy to address tumor resistance, investigate immune activation mechanisms, and facilitate the development of cancer vaccines. The combination of immunotherapy with ferroptosis provides innovative targets and fresh perspectives for advancing cancer treatment. Nevertheless, tumor cells appear to possess a wider array of ferroptosis evasion strategies compared to CD8+T cells, which have been conclusively shown to be more vulnerable to ferroptosis. Furthermore, ferroptosis in the TME can create a favorable environment for tumor survival and invasion. Under this premise, both inducing tumor cell ferroptosis and inhibiting T cell ferroptosis will impact antitumor immunity to some extent, and even make the final result run counter to our therapeutic purpose. This paper systematically elucidates the dual-edged sword role of ferroptosis in the antitumor process of T cells, briefly outlining the complexity of ferroptosis within the TME. It explores potential side effects associated with ferroptosis-inducing therapies and critically considers the combined application of ferroptosis-based therapies with ICIs. Furthermore, it highlights the current challenges faced by this combined therapeutic approach and points out future directions for development.
Collapse
Affiliation(s)
- Yuan Liang
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaoyang Qi
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Liu Y, Fu Z, Wang X, Yang Q, Liu S, Zhu D. Metformin attenuates diabetic osteoporosis by suppressing ferroptosis via the AMPK/Nrf2 pathway. Front Pharmacol 2025; 16:1527316. [PMID: 40206070 PMCID: PMC11979264 DOI: 10.3389/fphar.2025.1527316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Background Ferroptosis is a critical factor in the impairment of osteoblast function in osteoporosis. Metformin (Met), a biguanide antidiabetic drug, has demonstrated anti-osteoporotic effects and has been confirmed to exert therapeutic benefits in diabetic osteoporosis (DOP). Nevertheless, the underlying mechanisms through which Met affects bone metabolism remain ambiguous. Objective This study seeks to elucidate the function of Met in DOP and to explore the potential mechanisms through which it mediates treatment effects. Methods In vitro, we utilized osteoblasts to explore the impact of Met on osteoblast differentiation and anti-ferroptosis in a high glucose and palmitic acid (HGHF) environment. In vivo, we developed a DOP model utilizing a high-fat diet along with streptozocin injections and evaluated the bone-protective effects of Met through micro-CT and histomorphological analyses. Results Met inhibits HGHF-induced ferroptosis in osteoblasts, as indicated by the elevation of ferroptosis-protective proteins (GPX4, FTH1, and SLAC7A11), along with decreased lipid peroxidation and ferrous ion levels. Furthermore, Met augmented the levels of osteogenic markers (RUNX2 and COL1A1) and enhanced alkaline phosphatase activity in osteoblasts under HGHF conditions. Mechanistic investigations revealed that Met activates the AMPK/Nrf2 pathway, effectively preventing ferroptosis progression. Additionally, in vivo results demonstrated Met alleviates bone loss and microstructural deterioration in DOP rats. Conclusion Met can activate the AMPK/Nrf2 pathway to prevent ferroptosis, thereby protecting against DOP.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Zhaoyu Fu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, China
| | - Xinyu Wang
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Qifan Yang
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Shun Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang Y, Chen D, Zhu Y, Zhang M, Zhao H. Kinsenoside Suppresses DGAT1-Mediated Lipid Droplet Formation to Trigger Ferroptosis in Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:2322. [PMID: 40076939 PMCID: PMC11900917 DOI: 10.3390/ijms26052322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents limited therapeutic options and is characterized by a poor prognosis. Although Kinsenoside (KIN) possesses a wide range of pharmacological activities, its effect and mechanism in TNBC remain unclear. The objective of this research was to explore the therapeutic effectiveness and the molecular mechanisms of KIN on TNBC. Xenograft experiment was carried out to assess the impact of KIN on TNBC in vivo. The effect of KIN on TNBC in vitro was evaluated through the analysis of cell cytotoxicity and colony formation assays. Oil Red O staining and BODIPY 493/503 fluorescence staining were employed to detect the effect of KIN on lipid droplet (LD) formation. Transcriptomics and inhibitor-rescue experiments were conducted to investigate the role of KIN on TNBC. Mechanistic experiments, including quantitative real-time polymerase chain reaction (RT-qPCR), Western blotting, diacylglycerol acyltransferase 1 (DGAT1) overexpression assay, and flow cytometric assay, were employed to uncover the regulatory mechanisms of KIN on TNBC. KIN inhibited tumor growth without causing obvious toxicity to the liver and kidneys. In vitro experiments demonstrated that KIN significantly inhibited the viability and proliferation of TNBC cells, accompanied by decreased LD formation and lipid content. Polyunsaturated fatty acids (PUFAs) levels were significantly increased by KIN. Furthermore, transcriptomics and inhibitor-rescue experiments revealed that KIN induced ferroptosis in TNBC cells. KIN could significantly regulate ferroptosis-related proteins. Lipid peroxidation, iron accumulation, and GSH depletion also confirmed this. The LD inducer mitigated the KIN-induced ferroptosis in TNBC. The overexpression of DGAT1 attenuated the effects of KIN on cell viability and proliferation. Furthermore, the overexpression of DGAT1 inhibited the effect of KIN to trigger ferroptosis in TNBC cells. Our findings confirmed that KIN could trigger ferroptosis by suppressing DGAT1-mediated LD formation, thereby demonstrating a promising therapeutic effect of KIN in TNBC.
Collapse
Affiliation(s)
- Yaqin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Dandan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Yuru Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China; (Y.Y.); (D.C.); (Y.Z.); (M.Z.)
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
8
|
Chaudhary N, Choudhary BS, Shivashankar A, Manna S, Ved K, Shaikh S, Khanna S, Baar J, Dani J, Sahoo S, Soundharya R, Jolly MK, Verma N. EGFR-to-Src family tyrosine kinase switching in proliferating-DTP TNBC cells creates a hyperphosphorylation-dependent vulnerability to EGFR TKI. Cancer Cell Int 2025; 25:55. [PMID: 39972345 PMCID: PMC11841279 DOI: 10.1186/s12935-025-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive type of breast malignancy, with chemotherapy as the only mainstay treatment. TNBC patients have the worst prognoses as a large fraction of them do not achieve complete pathological response post-treatment and develop drug-resistant residual disease. Molecular mechanisms that trigger proliferation in drug-resistant chemo-residual TNBC cells are poorly understood due to the lack of investigations using clinically relevant cellular models. In this study, we have established TNBC subtype-specific cellular models of proliferating drug-tolerant persister (PDTP) cells using different classes of chemotherapeutic agents that recapitulate clinical residual disease with molecular heterogeneity. Analysis of total phospho-tyrosine signals in TNBC PDTPs showed an enhanced phospho-tyrosine content compared to the parental cells (PC). Interestingly, using mass-spectrometry analysis, we identified a dramatic decrease in epidermal growth factor receptor (EGFR) expression in the PDTPs, while the presence of hyper-activated tyrosine phosphorylation of EGFR compared to PC. Further, we show that EGFR has enhanced lysosomal trafficking in PDTPs with a concomitant increase in N-Myc Downstream Regulated-1 (NDRG1) expression that co-localizes with EGFR to mediate receptor degradation. More surprisingly, we found that reduced protein levels of EGFR are coupled with a robust increase in Src family kinases, including Lyn and Fyn kinases, that creates a hyper-phosphorylation state of EGFR-Src tyrosine kinases axis in PDTPs and mediates downstream over-activation of STAT3, AKT and MAP kinases. Moreover, paclitaxel-derived PDTPs show increased sensitivity to EGFR TKI Gefitinib and its combination with paclitaxel selectively induced cell death in Paclitaxel-derived PDTP (PDTP-P) TNBC cells and 3D spheroids by strongly downregulating phosphorylation of EGFR-Src with concomitant downregulation of Lyn and Fyn tyrosine kinases. Collectively, this study identifies a unique hyper-phosphorylation cellular state of TNBC PDTPs established by switching of EGFR-Src family tyrosine kinases, creating a vulnerability to EGFR TKI.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Bhagya Shree Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Anusha Shivashankar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Subhakankha Manna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Khyati Ved
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Shagufa Shaikh
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Sonal Khanna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jeetnet Baar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jagruti Dani
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - R Soundharya
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India.
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
9
|
Shen X, Chen Y, Tang Y, Lu P, Liu M, Mao T, Weng Y, Yu F, Liu Y, Tang Y, Wang L, Niu N, Xue J. Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis. Cell Rep Med 2025; 6:101928. [PMID: 39879992 PMCID: PMC11866519 DOI: 10.1016/j.xcrm.2025.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC. A CRISPR-Cas9 screen identifies an epigenetic regulator, Paxip1, which promotes H3K4me3 upregulation and Hmox1 transcription upon DON treatment. Additionally, ferroptosis-related repressors (e.g., Slc7a11 and Gpx4) are increased as an adaptive response, thereby predisposing PDAC cells to ferroptosis upon Gln deprivation. Moreover, DON sensitizes PDAC cells to GPX4 inhibitor-induced ferroptosis, both in vitro and in patient-derived xenografts (PDXs). Taken together, our findings reveal that targeting Gln dependency confers susceptibility to GPX4-dependent ferroptosis via epigenetic remodeling and provides a combination strategy for PDAC therapy.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Aishajiang R, Liu Z, Liang Y, Du P, Wei Y, Zhuo X, Liu S, Lei P, Wang T, Yu D. Concurrent Amplification of Ferroptosis and Immune System Activation Via Nanomedicine-Mediated Radiosensitization for Triple-Negative Breast Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407833. [PMID: 39721034 PMCID: PMC11831504 DOI: 10.1002/advs.202407833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Radiation therapy (RT) is one of the core therapies for current cancer management. However, the emergence of radioresistance has become a major cause of radiotherapy failure and disease progression. Therefore, overcoming radioresistance to achieve highly effective treatment for refractory tumors is significant yet challenging. Here, pH-responsive DSPE-PEoz modified hollow Bi2Se3-RSL3/diABZi (DP-HBN/RA) nanomedicine is designed as a radiation sensitizer for efficient treatment of triple-negative breast cancer by simultaneously amplifying ferroptosis and immune system activation. DP-HBN/RA can efficiently concentrate X-ray radiation energy inside the tumor, thereby promoting precise ionizing radiation exposure in tumor cells to produce large amounts of reactive oxygen species (ROS), leading to lipid peroxidation-induced ferroptosis. Meanwhile, ferroptotic cell death is intensified through the inactivation of GPX4 by RSL3 released from DP-HBN/RA to acidic conditions in the tumor microenvironment. Additionally, DP-HBN/RA enhances RT efficacy to exacerbate unrepairable DNA damage and release DNA fragments that activate the cGAS-STING signal pathway, evoking a systematic immune response. Ingeniously, the released diABZi reinforces cGAS-STING activation to boost the immunology antitumor effect. This work links the induction of ferroptosis and the initiation of systematic immune response to achieve highly effective tumor suppression, which opens up new avenues for future treatments of refractory tumors.
Collapse
Affiliation(s)
- Reyida Aishajiang
- Department of RadiotherapyThe Second Hospital of Jilin UniversityChangchun130022China
| | - Zhongshan Liu
- Department of RadiotherapyThe Second Hospital of Jilin UniversityChangchun130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Xiqian Zhuo
- Department of RadiotherapyThe Second Hospital of Jilin UniversityChangchun130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Tiejun Wang
- Department of RadiotherapyThe Second Hospital of Jilin UniversityChangchun130022China
| | - Duo Yu
- Department of RadiotherapyThe Second Hospital of Jilin UniversityChangchun130022China
| |
Collapse
|
11
|
Verbeke S, Bourdon A, Lafon M, Chaire V, Frederic B, Naït Eldjoudi A, Derieppe MA, Giles F, Italiano A. Dual inhibition of BET and EP300 has antitumor activity in undifferentiated pleomorphic sarcomas and synergizes with ferroptosis induction. Transl Oncol 2025; 52:102236. [PMID: 39681067 PMCID: PMC11713734 DOI: 10.1016/j.tranon.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is the most frequent and the most aggressive sarcoma subtype for which therapeutic options are limited. The identification of new therapeutic strategies is therefore an important medical need. Epigenetic modifiers has been extensively investigated in recent years leading to the development of novel therapeutic agents. Dual BET/EP300 inhibitors have shown synergistic antitumor activity and have recently entered clinical development. To date, no data related to potential of BET/EP300 inhibition as a treatment in UPS have been reported. To investigate the therapeutic potential of BET/EP300 inhibition, we evaluated the antitumor activity of three compounds in vitro via MTT, apoptosis and cell cycle assays. The most potent inhibitor was evaluated in vivo in two animal models and the mechanisms of action were investigated by RNA sequencing, Western blotting and immunofluorescence staining. A CRISPR knockout screen was performed to identify resistance mechanisms. Among the three compounds tested, the dual inhibitor NEO2734 was the most potent, decreased the viability of UPS cells in vitro through a regulation of E2F targets and cell cycle and decreased the tumor growth in vivo. Moreover, we identified GPX4 as a gene involved in resistance and showed synergy between BET inhibition and ferroptosis induction. The present study demonstrated that dual BET/EP300 inhibitors have a relevant antitumor activity in a subgroup of UPS characterized by expression of MYC-targets pathway and identified a potent combination therapeutic strategy that deserves further investigation in the clinical setting.
Collapse
Affiliation(s)
- Stéphanie Verbeke
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Aurélien Bourdon
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Mathilde Lafon
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Vanessa Chaire
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Bertolo Frederic
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Amina Naït Eldjoudi
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Marie-Alix Derieppe
- Service Commun des Animaleries, University of Bordeaux 33000 Bordeaux, France
| | | | - Antoine Italiano
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France; Faculty of Medicine, University of Bordeaux 33000 Bordeaux, France.
| |
Collapse
|
12
|
Kung CP, Terzich ND, Ilagen MXG, Prinsen MJ, Kaushal M, Kladney RD, Weber JH, Mabry AR, Torres LS, Bramel ER, Freeman EC, Sabloak T, Cottrell KA, Ryu S, Weber WM, Maggi L, Shriver LP, Patti GJ, Weber JD. ADAR1 Regulates Lipid Remodeling through MDM2 to Dictate Ferroptosis Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633410. [PMID: 39896528 PMCID: PMC11785053 DOI: 10.1101/2025.01.16.633410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Triple-negative breast cancer (TNBC), lacking expression of estrogen, progesterone, and HER2 receptors, is aggressive and lacks targeted treatment options. An RNA editing enzyme, adenosine deaminase acting on RNA 1 (ADAR1), has been shown to play important roles in TNBC tumorigenesis. We posit that ADAR1 functions as a homeostatic factor protecting TNBC from internal and external pressure, including metabolic stress. We tested the hypothesis that the iron- dependent cell death pathway, ferroptosis, is a ADAR1-protected metabolic vulnerability in TNBC by showing that ADAR1 knockdown sensitizes TNBC cells to GPX4 inhibitors. By performing single-reaction monitoring-based liquid chromatography coupled to mass spectrometry (LC-MS) to measure intracellular lipid contents, we showed that ADAR1 loss increased the abundance of polyunsaturated fatty acid phospholipids (PUFA-PL), of which peroxidation is the primary driver of ferroptosis. Transcriptomic analyses led to the discovery of the proto-oncogene MDM2 contributing to the lipid remodeling in TNBC upon ADAR1 loss. A phenotypic drug screen using a ferroptosis-focused library was performed to identify FDA- approved cobimetinib as a drug-repurposing candidate to synergize with ADAR1 loss to suppress TNBC tumorigenesis. By demonstrating that ADAR1 regulates the metabolic fitness of TNBC through desensitizing ferroptosis, we aim to leverage this metabolic vulnerability to inform basic, pre-clinical, and clinical studies to develop novel therapeutic strategies for TNBC.
Collapse
|
13
|
Cao J, Zhou T, Wu T, Lin R, Huang J, Shi D, Yu J, Ren Y, Qian C, He L, Wu G, Dong Z, Yuan S, Gu H. Targeting estrogen-regulated system x c- promotes ferroptosis and endocrine sensitivity of ER+ breast cancer. Cell Death Dis 2025; 16:30. [PMID: 39833180 PMCID: PMC11756422 DOI: 10.1038/s41419-025-07354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Estrogen receptor positive (ER+) breast cancer accounts for approximately 70% of cases. Endocrine therapies targeting estrogen are the first line therapies for ER+ breast cancer. However, resistance to these therapies occurs in about half of patients, leading to decreased survival rates. Inducing ferroptosis is a promising therapeutic strategy for cancer treatment for refractory and malignant cancers including triple-negative breast cancer. Nevertheless, ER+ breast cancer is relatively resistant to ferroptosis inducers. Here, we uncovered that ERα suppressed ferroptosis in ER+ breast cancer. Silencing ERα triggered ferroptosis, which was attenuated by ferroptosis inhibitor Ferrostatin-1, and was enhanced by ferroptosis inducer Erastin. Mechanistically, ERα transcriptionally upregulated the expression of SLC7A11 and SLC3A2, two subunits of the system xc-, which is one key inhibitory regulator of ferroptosis. Overexpression of the exogenous SLC7A11 and SLC3A2 was able to mitigate ferroptosis induced by ERα inhibition. Moreover, SLC7A11 and SLC3A2 levels were elevated in endocrine-resistant breast cancer cells and tumors. Importantly, the system xc- inhibitor Sorafenib or Imidazole ketone erastin effectively inhibited the growth of tamoxifen-resistant breast cells in vitro and in vivo. In conclusion, our data reveal that targeting estrogen-regulated SLC7A11 and SLC3A2 enhances ferroptosis in ER+ breast cancer, offering a novel therapeutic option for patients with ER+ breast cancer, particularly those with endocrine resistance.
Collapse
Affiliation(s)
- Jiawei Cao
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Tong Zhou
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Tao Wu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, China
| | - Ju Huang
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Dejin Shi
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiawei Yu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yinrui Ren
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Licai He
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Guang Wu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhixiong Dong
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Shaofei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, China.
| | - Haihua Gu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
14
|
Cao J, Wu T, Zhou T, Jiang Z, Ren Y, Yu J, Wang J, Qian C, Wu G, He L, Li H, Lin R, Liu M, Gu H. USP35 promotes the growth of ER positive breast cancer by inhibiting ferroptosis via BRD4-SLC7A11 axis. Commun Biol 2025; 8:64. [PMID: 39820080 PMCID: PMC11739500 DOI: 10.1038/s42003-025-07513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Anti-estrogen endocrine therapies greatly improve survival of estrogen receptor positive (ER + ) breast cancer. Unfortunately, about 30% of patients do not respond to endocrine therapies initially. We previously showed that deubiquitinase USP35 and ERα act in a positive feedback loop to promote the carcinogenesis of ER+ breast cancer although it is unclear whether USP35 regulates cell death in ER+ breast cancer. In this study, we uncovered that USP35 inhibited ferroptosis of ER+ breast cancer cells. Mechanistically, USP35 interacted with, deubiquitinated, and stabilized BRD4. Consequentially, BRD4 mediated USP35-induced SLC7A11 upregulation, inhibiting ferroptosis and promoting the growth of ER+ breast cancer cells. Furthermore, BRD4 inhibitor (+)-JQ-1 inhibited USP35-enhanced tumorigenesis in vivo. Our findings demonstrated that the USP35-BRD4-SLC7A11 axis contributes to the growth of ER+ breast cancer by inhibiting ferroptosis. Targeting USP35 together with ferroptosis inducer may represent a potential promising strategy for treating ER+ breast cancer that does not respond to endocrine therapies.
Collapse
Affiliation(s)
- Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zewei Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinrui Ren
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Min Liu
- Department of Orthopedics, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Chen Z, Zhao Y. The mechanism underlying metastasis in triple-negative breast cancer: focusing on the interplay between ferroptosis, epithelial-mesenchymal transition, and non-coding RNAs. Front Pharmacol 2025; 15:1437022. [PMID: 39881868 PMCID: PMC11774878 DOI: 10.3389/fphar.2024.1437022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices. It is urgent to focus on identifying a workable and effective target for the treatment of TNBC. Cancer metastasis is significantly influenced by epithelial-mesenchymal transition (EMT). Ferroptosis is an iron-dependent cell death form, and changes its key factor to affect the proliferation and metastasis of TNBC. Several reports have established associations between EMT and ferroptosis in TNBC metastasis. Furthermore, non-coding RNA (ncRNA), which has been previously described, can also control cancer cell death and metastasis. Thus, in this review, we summarize the correlation and pathways among the ferroptosis, EMT, and ncRNAs in TNBC metastasis. Also, aim to find out a novel strategy for TNBC treatment through the ncRNA-ferroptosis-EMT axis.
Collapse
Affiliation(s)
- Ziyi Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Healthcare Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
16
|
Xiang L, Li Q, Guan Z, Wang G, Yu X, Zhang X, Zhang G, Hu J, Yang X, Li M, Bao X, Wang Y, Wang D. Oxyresveratrol as a novel ferroptosis inducer exhibits anticancer activity against breast cancer via the EGFR/PI3K/AKT/GPX4 signalling axis. Front Pharmacol 2025; 15:1527286. [PMID: 39881871 PMCID: PMC11775479 DOI: 10.3389/fphar.2024.1527286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Oxyresveratrol (ORes) exhibits significant anticancer activity, particularly against breast cancer. However, its exact mechanism of action (MOA) remains unclear. This study aimed to investigate the pharmacological activity and underlying MOA. Methods The inhibitory effect of ORes on breast cancer cell growth was confirmed, and the effective concentrations were determined for further experiments. Gene expression profiles (GEPs) were collected from MDA-MB-231 cells treated with ORes at varying concentrations using HTS2. Bioinformatics tools were used to predict the anticancer activity and MOA of ORes. Ferroptosis markers (ferrous ions, reactive oxygen species, lipid peroxidation, and GPX4 expression) were assessed, and mitochondrial morphology was observed. The effect of ORes on tumour growth was evaluated in vivo, along with the analysis of ferroptosis in tissues. The MOA was explored using L1000, Drug Gene DataBase (DGDB), and Western blotting analyses. Results ORes significantly reduces breast cancer cell viability and proliferation in a concentration-dependent manner, with IC50 values of 104.8 μM, 150.2 μM, and 143.6 μM in MDA-MB-231, BT-549, and 4T1 cells, respectively. GEPs induced by ORes were significantly enriched in the ferroptosis and PI3K/AKT signalling pathways. ORes inhibited breast cancer cell growth, increased intracellular ferrous ion levels, reactive oxygen species, and lipid peroxidation, and induced ferroptosis-related mitochondrial alterations. These effects were associated with decreased GPX4 expression and suppression of EGFR, phosphorylated PI3K, and phosphorylated AKT. ORes inhibited tumour growth, enhanced iron deposition, and reduced GPX4 expression in tumour tissues in vivo. Notably, treatment with the ferroptosis inhibitor ferrostatin-1 (Ferr-1) attenuated the anticancer effects of ORes, confirming the pivotal role of ferroptosis in ORes-mediated breast cancer inhibition. Conclusion ORes inhibits breast cancer cell growth by inducing ferroptosis through suppression of the EGFR/PI3K/AKT/GPX4 signalling axis. This study suggests that ORes holds promise as a potential therapeutic agent for breast cancer and warrants further investigation into its clinical applications and potential integration into existing treatment regimens.
Collapse
Affiliation(s)
- Lei Xiang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiwei Guan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guilin Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiankuo Yu
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianwen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jushan Hu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingrui Li
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xilinqiqige Bao
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2025; 62:501-517. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
18
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
19
|
Hu F, Hu T, He A, Yuan Y, Wang X, Zou C, Qiao Y, Xu H, Liu L, Wang Q, Liu J, Lai S, Huang H. Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1. J Cell Mol Med 2024; 28:e70313. [PMID: 39730981 DOI: 10.1111/jcmm.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice. Our findings demonstrate that pretreatment with PUE effectively mitigated cardiomyocyte ferroptosis, restored redox balance, preserved mitochondrial energy production and maintained mitochondrial function following MI/RI. Furthermore, these cardioprotective effects of PUE were found to be mediated by the downregulation of voltage-dependent anion channel 1 (VDAC1) protein. These data reveal a novel mechanism by which PUE inhibits MI/RI and reveal that this protective effect of PUE is dependent on the downregulation of VDAC1.
Collapse
Affiliation(s)
- Fajia Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tie Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Andi He
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Yuan
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqi Wang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chenchao Zou
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huaihan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lanxiang Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Lin YS, Tsai YC, Li CJ, Wei TT, Wang JL, Lin BW, Wu YN, Wu SR, Lin SC, Lin SC. Overexpression of NUDT16L1 sustains proper function of mitochondria and leads to ferroptosis insensitivity in colorectal cancer. Redox Biol 2024; 77:103358. [PMID: 39317106 PMCID: PMC11465047 DOI: 10.1016/j.redox.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cancer research is continuously exploring new avenues to improve treatments, and ferroptosis induction has emerged as a promising approach. However, the lack of comprehensive analysis of the ferroptosis sensitivity in different cancer types has limited its clinical application. Moreover, identifying the key regulator that influences the ferroptosis sensitivity during cancer progression remains a major challenge. In this study, we shed light on the role of ferroptosis in colorectal cancer and identified a novel ferroptosis repressor, NUDT16L1, that contributes to the ferroptosis insensitivity in this cancer type. Mechanistically, NUDT16L1 promotes ferroptosis insensitivity in colon cancer by enhancing the expression of key ferroptosis repressor and mitochondrial genes through direct binding to NAD-capped RNAs and the indirect action of MALAT1. Our findings also reveal that NUDT16L1 localizes to the mitochondria to maintain its proper function by preventing mitochondrial DNA leakage after treatment of ferroptosis inducer in colon cancer cells. Importantly, our orthotopic injection and Nudt16l1 transgenic mouse models of colon cancer demonstrated the critical role of NUDT16L1 in promoting tumor growth. Moreover, clinical specimens revealed that NUDT16L1 was overexpressed in colorectal cancer, indicating its potential as a therapeutic target. Finally, our study shows the therapeutic potential of a NUDT16L1 inhibitor in vitro, in vivo and ex vivo. Taken together, these findings provide new insights into the crucial role of NUDT16L1 in colorectal cancer and highlight its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Lin Wang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chih Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Ye H, Ding X, Lv X, Du Y, Guo R, Qiu J, Li R, Cao L. KLF14 directly downregulates the expression of GPX4 to exert antitumor effects by promoting ferroptosis in cervical cancer. J Transl Med 2024; 22:923. [PMID: 39390559 PMCID: PMC11465826 DOI: 10.1186/s12967-024-05714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Cervical cancer is the fourth leading cause of cancer-related death among women worldwide, and effective therapeutic strategies for its treatment are limited. Recent studies have indicated that ferroptosis, a form of regulated cell death, is a promising therapeutic strategy. KLF14 has been shown to regulate both cell proliferation and apoptosis in cervical cancer. However, its role in modulating lipid peroxidation and ferroptosis remains largely unexplored and enigmatic. METHODS SiHa and HeLa cells were transduced with lentiviral vectors to overexpress KLF14. Protein levels were analyzed via western blotting and immunohistochemistry (IHC). LDH assays, calcein-AM/propidium iodide (PI) staining, and generation of cell growth curves using a real-time cell analysis (RTCA) system were used to detect cell damage and proliferation. Cellular ROS, lipid ROS, transmission electron microscopy (TEM), and Fe2+ assays and a xenograft mouse model were used to measure the level of ferroptosis. Proteomics combined with bioinformatics methods was used to screen target genes regulated by KLF14, and CUT&Tag and dual-luciferase assays confirmed the repression of GPX4 by KLF14 via direct binding to its promoter. RESULTS KLF14 is abnormally expressed in various tumors and downregulated in cervical cancer. Overexpression of KLF14 induced ferroptosis and inhibited cell proliferation in vitro as well as xenograft tumorigenicity in vivo. Mechanistic studies revealed that KLF14 binds to the promoter of GPX4, suppressing its transcriptional activity and thereby decreasing its expression, which contributes to the induction of ferroptosis. Truncation and point mutation analyses of the GPX4 promoter revealed multiple binding sites for KLF14 within the - 1000 bp to + 35 bp region, which are responsible for its inhibitory effect on GPX4 transcription. Additionally, deletion of the zinc finger motif in KLF14 abolished its inhibitory effect on GPX4 promoter activity and cell proliferation. CONCLUSION Our data revealed a previously unidentified function of KLF14 in promoting ferroptosis, which results in the suppression of cell proliferation. Mechanistically, we revealed a novel regulatory mechanism by which KLF14 targets GPX4. These findings suggest a novel strategy to induce ferroptosis through the targeting of KLF14 in human cervical cancer cells.
Collapse
Affiliation(s)
- Hui Ye
- Oncology Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
- Blood Center of Shandong Province, Jinan, 250014, China
| | - XuChao Ding
- Department of Blood Transfusion, Binzhou People's Hospital, Binzhou, 256601, China
| | - XinRan Lv
- Shandong Public Health Clinical Center, Shandong University, Shandong, 250013, China
| | - Ying Du
- Department of Laboratory Medicine, Linyi Peoples' Hospital, Linyi, 276003, China
| | - Rui Guo
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Jin Qiu
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - RuoNan Li
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - LiLi Cao
- Oncology Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China.
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Laboratory of Clinical Immunology and Translational Medicine, Shandong Provincial University, Jinan, 250014, China.
- Shandong Lung Cancer Institute, Jinan, 250014, China.
| |
Collapse
|
22
|
Xu M, Gao X, Yue L, Li J, Feng X, Huang D, Cai H, Qi Y. Sensitivity of triple negative breast cancer cells to ATM-dependent ferroptosis induced by sodium selenite. Exp Cell Res 2024; 442:114222. [PMID: 39214329 DOI: 10.1016/j.yexcr.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Targeting ferroptosis, a type of cell death elicited by Fe2+ and lipid reactive oxygen species (L-ROS), provides a novel strategy for cancer therapy. Selenium has the potential to treat cancers by acting as a pro-oxidative agent, thus leading to cancer cell death. Here, we found that the triple negative breast cancer (TNBC) MDA-MB-231 cells were more sensitive to ferroptosis induced by sodium selenite (Na2SeO3) than that of non-TNBC MCF-7 cells. Na2SeO3 significantly elevated the level of L-ROS, MDA and Fe2+, decreased the content of GSH and the enzyme activity of GPx, disrupted the expression of ferroptosis related proteins such as GPx4 and FTH1, as well as compromised mitochondrial morphology in MDA-MB-231 cells. Moreover, ATM was activated by Na2SeO3 in MDA-MB-231 cells. Notably, Na2SeO3-induced ferroptosis was inhibited by ATM kinase inhibitor KU55933 or siATM, suggesting that Na2SeO3-induced ferroptosis was mediated by ATM protein in MDA-MB-231 cells. Our findings suggest a therapeutic strategy by ferroptosis against TNBC and deepened our understanding of ATM function.
Collapse
Affiliation(s)
- Mengchen Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Yue
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinyu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 222 South Tianshui R.D., Lanzhou, 730000, China.
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Huang G, Cai Y, Ren M, Zhang X, Fu Y, Cheng R, Wang Y, Miao M, Zhu L, Yan T. Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy. J Adv Res 2024:S2090-1232(24)00429-6. [PMID: 39353532 DOI: 10.1016/j.jare.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the primary cause of breast cancer-induced death in women. Literature has confirmed the benefits of Salidroside (Sal) in treating TNBC. However, the study about potential therapeutic targets and mechanisms of Sal-anchored TNBC remains limited. OBJECTIVE This study was designed to explore the main targets and potential mechanisms of Sal against TNBC. METHODS Network pharmacology, bioinformatics, and machine learning algorithm strategies were integrated to examine the role, potential targets, and mechanisms of the Sal act in TNBC. MDA-MB-231 cells and tumor-bearing nude mice were chosen for in vitro and in vivo experimentation. Cell viability and cytotoxicity were determined using CCK-8, LDH test, and Calcein-AM/PI staining. Antioxidant defense, lipid peroxidation, and iron metabolism were explored using glutathione, glutathione peroxidase, malondialdehyde (MDA), C11-BODIPY 581/591 probe, and FerroOrange dye. Glutathione peroxidase 4 (GPX4) or stearoyl-CoA desaturase 1 (SCD1) overexpression or nuclear receptor co-activator 4 (NCOA4) deficiency was performed to demonstrate the mechanism of Sal on TNBC. RESULTS The prediction results confirmed that 22 ferroptosis-related genes were identified in Sal and TNBC, revealing that the potential mechanism of the Sal act on TNBC was linked with ferroptosis. Besides, these genes were mainly involved in the mTOR, PI3K/AKT, and autophagy signaling pathway by functional enrichment analysis. The in vitro validation results confirmed that Sal inhibited TNBC cell proliferation by modulating ferroptosis via elevation of intracellular Fe2+ and lipid peroxidation. Mechanistically, Sal sensitized TNBC cells to ferroptosis by inhibiting the PI3K/AKT/mTOR axis, thereby suppressing SCD1-mediated lipogenesis of monounsaturated fatty acids to induce lipid peroxidation, additionally facilitating NCOA4-mediated ferritinophagy to increase intracellular Fe2+ content. The GPX4 or SCD1 overexpression or NCOA4 deficiency results further supported our mechanistic studies. In vivo experimentation confirmed that Sal is vital for slowing down tumor growth by inducing ferroptosis. CONCLUSIONS Overall, this study elucidates TNBC pathogenesis closely linked to ferroptosis and identifies potential biomarkers in TNBC. Meanwhile, the study elucidates that Sal sensitizes TNBC to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy, regulated by PI3K/AKT/mTOR signaling pathways. Our findings provide a theoretical basis for applying Sal to treat TNBC.
Collapse
Affiliation(s)
- Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yawen Cai
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Xiaoyu Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yu Fu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Run Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yingdi Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Mingxing Miao
- National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
24
|
Xie D, Jiang Y, Wang H, Zhu L, Huang S, Liu S, Zhang W, Li T. Formononetin triggers ferroptosis in triple-negative breast cancer cells by regulating the mTORC1/SREBP1/SCD1 pathway. Front Pharmacol 2024; 15:1441105. [PMID: 39399463 PMCID: PMC11470441 DOI: 10.3389/fphar.2024.1441105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer, and its prognosis is still the worst. It is necessary to constantly explore the pathogenesis and effective therapeutic targets of TNBC. Formononetin is an active ingredient with anti-tumor effects that we screened earlier. The main purpose of this study is to elucidate mechanism of the inhibitory effect of Formononetin on TNBC. Methods We conducted experiments through both in vivo and in vitro methodologies. The in vivo experiments utilized a nude mice xenotransplantation model, while the in vitro investigations employed two breast cancer cell lines, MDA-MB-231 and MDA-MB-468. Concurrently, ferroptosis associated proteins, lipid peroxide levels, and proteins related to the rapamycin complex 1 were analyzed in both experimental settings. Results In our study, Formononetin exhibits significant inhibitory effects on the proliferation of triple TNBC, both in vivo and in vitro. Moreover, it elicits an increase in lipid peroxide levels, downregulates the expression of ferroptosis-associated proteins GPX4 and xCT, and induces ferroptosis in breast cancer cells. Concurrently, Formononetin impedes the formation of the mammalian target of rapamycin complex 1 (mTORC1) and suppresses the expression of downstream Sterol regulatory element-binding protein 1(SREBP1). The utilization of breast cancer cells with SREBP1 overexpression or knockout demonstrates that Formononetin induces ferroptosis by modulating the mTORC1-SREBP1 signaling axis. Discussion In conclusion, this study provides evidence that Formononetin exerts an anti-proliferative effect on triple-negative breast cancer by inducing ferroptosis. Moreover, the mTORC1-SREBP1 signal axis is identified as the primary mechanism through which formononetin exerts its therapeutic effects. These findings suggest that formononetin holds promise as a potential targeted drug for clinical treatment of TNBC.
Collapse
Affiliation(s)
- Dong Xie
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulang Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyi Zhu
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shuangqin Huang
- General department, Songnan Town Community Health Service Center, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Tian Li
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Vinik Y, Maimon A, Raj H, Dubey V, Geist F, Wienke D, Lev S. Computational pipeline predicting cell death suppressors as targets for cancer therapy. iScience 2024; 27:110859. [PMID: 39310772 PMCID: PMC11416655 DOI: 10.1016/j.isci.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Identification of promising targets for cancer therapy is a global effort in precision medicine. Here, we describe a computational pipeline integrating transcriptomic and vulnerability responses to cell-death inducing drugs, to predict cell-death suppressors as candidate targets for cancer therapy. The prediction is based on two modules; the transcriptomic similarity module to identify genes whose targeting results in similar transcriptomic responses of the death-inducing drugs, and the correlation module to identify candidate genes whose expression correlates to the vulnerability of cancer cells to the same death-inducers. The combined predictors of these two modules were integrated into a single metric. As a proof-of-concept, we selected ferroptosis inducers as death-inducing drugs in triple negative breast cancer. The pipeline reliably predicted candidate genes as ferroptosis suppressors, as validated by computational methods and cellular assays. The described pipeline might be used to identify repressors of various cell-death pathways as potential therapeutic targets for different cancer types.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Maimon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harsha Raj
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vinay Dubey
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Geist
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Dirk Wienke
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Nakamura T, Conrad M. Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol 2024; 26:1407-1419. [PMID: 38858502 DOI: 10.1038/s41556-024-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis is a distinct lipid peroxidation-dependent form of necrotic cell death. This process has been increasingly contemplated as a new target for cancer therapy because of an intrinsic or acquired ferroptosis vulnerability in difficult-to-treat cancers and tumour microenvironments. Here we review recent advances in our understanding of the molecular mechanisms that underlie ferroptosis and highlight available tools for the modulation of ferroptosis sensitivity in cancer cells and communication with immune cells within the tumour microenvironment. We further discuss how these new insights into ferroptosis-activating pathways can become new armouries in the fight against cancer.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
27
|
Schwab A, Rao Z, Zhang J, Gollowitzer A, Siebenkäs K, Bindel N, D'Avanzo E, van Roey R, Hajjaj Y, Özel E, Armstark I, Bereuter L, Su F, Grander J, Bonyadi Rad E, Groenewoud A, Engel FB, Bell GW, Henry WS, Angeli JPF, Stemmler MP, Brabletz S, Koeberle A, Brabletz T. Zeb1 mediates EMT/plasticity-associated ferroptosis sensitivity in cancer cells by regulating lipogenic enzyme expression and phospholipid composition. Nat Cell Biol 2024; 26:1470-1481. [PMID: 39009641 PMCID: PMC11392809 DOI: 10.1038/s41556-024-01464-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFβ stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1. We demonstrate that Zeb1 increases the ratio of phospholipids containing pro-ferroptotic polyunsaturated fatty acids over cyto-protective monounsaturated fatty acids by modulating the differential expression of the underlying crucial enzymes stearoyl-Co-A desaturase 1 (SCD), fatty acid synthase (FASN), fatty acid desaturase 2 (FADS2), elongation of very long-chain fatty acid 5 (ELOVL5) and long-chain acyl-CoA synthetase 4 (ACSL4). Pharmacological inhibition of selected lipogenic enzymes (SCD and FADS2) allows the manipulation of ferroptosis sensitivity preferentially in high-Zeb1-expressing cancer cells. Our data are of potential translational relevance and suggest a combination of ferroptosis activators and SCD inhibitors for the treatment of aggressive cancers expressing high Zeb1.
Collapse
Affiliation(s)
- Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jie Zhang
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina Siebenkäs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nino Bindel
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Elisabetta D'Avanzo
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ece Özel
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ehsan Bonyadi Rad
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Arwin Groenewoud
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Dept. of Biology, MIT, Cambridge, MA, USA
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
28
|
Huang J, Tan R. HMOX1: A pivotal regulator of prognosis and immune dynamics in ovarian cancer. BMC Womens Health 2024; 24:476. [PMID: 39210460 PMCID: PMC11363456 DOI: 10.1186/s12905-024-03309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study investigates the intricate role of Heme Oxygenase 1 (HMOX1) in ovarian cancer, emphasizing its prognostic significance, influence on immune cell infiltration, and impact on the malignant characteristics of primary ovarian cancer cells. MATERIALS AND METHODS Our research began with an analysis of HMOX1 expression and its prognostic implications using data from The Cancer Genome Atlas (TCGA) dataset, supported by immunohistochemical staining. Further analyses encompassed co-expression studies, Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. We utilized the TIMER and TISIDB platforms to evaluate the immunotherapeutic potential of HMOX1. Additionally, in vitro studies that involved modulating HMOX1 levels in primary ovarian cancer cells were conducted to confirm its biological functions. RESULTS Our findings indicate a significant overexpression of HMOX1 in ovarian cancer, which correlates with increased tumor malignancy and poorer prognosis. HMOX1 was shown to significantly modulate the infiltration of immune cells, particularly neutrophils and macrophages. Single-cell RNA sequencing (scRNA-seq) analysis revealed that HMOX1 is predominantly expressed in tumor-associated macrophages (TAMs), with a positive correlation to chemokines and their receptors. An increase in HMOX1 levels was associated with heightened levels of immunoinhibitors, immunostimulators, and MHC molecules. Functional assays demonstrated that HMOX1 knockdown promotes apoptosis, attenuating cell proliferation and invasion, while its overexpression yields opposing effects. CONCLUSION HMOX1 emerges as a critical therapeutic target, intricately involved in immunomodulation, prognosis, and the malignant behavior of ovarian cancer. This highlights HMOX1 as a potential biomarker and therapeutic target in the fight against ovarian cancer.
Collapse
Affiliation(s)
- Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China
| | - Ruiwan Tan
- Department of Ultrasound, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China.
| |
Collapse
|
29
|
Li K, Yang B, Du Y, Ding Y, Shen S, Sun Z, Liu Y, Wang Y, Cao S, Ren W, Wang X, Li M, Zhang Y, Wu J, Zheng W, Yan W, Li L. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res 2024; 12:47. [PMID: 39191757 PMCID: PMC11349752 DOI: 10.1038/s41413-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Bo Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Ding
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shihui Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China
| | - Zhengwang Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yun Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuhan Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Siyuan Cao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenjie Ren
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangyu Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mengjuan Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wu
- Department of Pharmacy The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wei Zheng
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu, 610000, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lei Li
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China.
| |
Collapse
|
30
|
Zhang J, Zhang S, Liu M, Yang Z, Huang R. Research Progress on Ferroptosis and Nanotechnology-Based Treatment in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:347-358. [PMID: 39050766 PMCID: PMC11268712 DOI: 10.2147/bctt.s475199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In recent years, more and more researches on cell death mode in breast cancer, including apoptosis, ferroptosis, etc. Ferroptosisis a regulated form of cell death characterized by iron-dependent accumulation of lipid peroxidation to lethal levels, and numerous studies have shown that ferroptosis is closely associated with tumor cells. Breast cancer is one of the malignant tumors with the highest incidence in women, and TNBC accounts for about 15-20% of all types of breast cancer. Due to the poor prognosis, strong aggressiveness, high drug resistance and lack of molecular targeting characteristics of TNBC, the treatment of TNBC faces many difficulties and great challenges. A large number of studies have shown that ferroptosis plays an important role in the occurrence and development of TNBC, tumor diagnosis, treatment and prognosis, among which the main mechanisms inducing ferroptosis include oxidative stress pathway, iron metabolism pathway and lipid metabolism pathway. Since TNBC is highly sensitive to oxidative stress pathways, intracellular GSH reduces reactive oxygen species under the action of GSH peroxidase (GPX), and when intracellular lipid peroxidase (LPO) accumulates to a certain level, ferroptosis will be induced, thus achieving the purpose of killing TNBC cells. In addition, lipid metabolism is highly consistent with the high lipid level of TNBC tumor cells. As a new therapeutic method, nanotechnology has added security to the treatment of cancer with its high safety and excellent biocompatibility. Therefore, the combination of nanotechnology with iron-based radiotherapy, chemotherapy, targeting and immunization has great research value for the treatment of TNBC In addition, the novel idea of treating TNBC with ethnopharmacology combined with ferroptosis is also involved. This article reviews the mechanism of ferroptosis and the recent research on the treatment prospects of TNBC based on ferroptosis and nanotechnology, hoping to provide references for the treatment of diseases based on ferroptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Shengjun Zhang
- Department of General Surgery, Affiliated Hospital of Yan ‘an University, Yan ‘an, People’s Republic of China
| | - Minli Liu
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Zhe Yang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Rong Huang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| |
Collapse
|
31
|
Dong S, Zhang M, Cheng Z, Zhang X, Liang W, Li S, Li L, Xu Q, Song S, Liu Z, Yang G, Zhao X, Tao Z, Liang S, Wang K, Zhang G, Hu S. Redistribution of defective mitochondria-mediated dihydroorotate dehydrogenase imparts 5-fluorouracil resistance in colorectal cancer. Redox Biol 2024; 73:103207. [PMID: 38805974 PMCID: PMC11152977 DOI: 10.1016/j.redox.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Mingguang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Weili Liang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Songhan Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Linchuan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Siyi Song
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Zitian Liu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Guangwei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Ze Tao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, No. 4, Duanxing West Road, Jinan, Shandong,250022, China.
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| |
Collapse
|
32
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
33
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
34
|
Wang H, Liu X, Yan X, Du Y, Pu F, Ren J, Qu X. An ATPase-Mimicking MXene nanozyme pharmacologically breaks the ironclad defense system for ferroptosis cancer therapy. Biomaterials 2024; 307:122523. [PMID: 38432004 DOI: 10.1016/j.biomaterials.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Anticancer nanomedicines used for ferroptosis therapy generally rely on the direct delivery of Fenton catalysts to drive lipid peroxidation in cancer cells. However, the therapeutic efficacy is limited by the ferroptosis resistance caused by the intracellular anti-ferroptotic signals. Herein, we report the intrinsic ATPase-mimicking activity of a vanadium carbide MXene nanozyme (PVCMs) to pharmacologically modulate the nuclear factor erythroid 2-related factor 2 (Nrf2) program, which is the master anti-ferroptotic mediator in the ironclad defense system in triple-negative breast cancer (TNBC) cells. The PVCMs perform high ATPase-like activity that can effectively and selectively catalyze the dephosphorylation of ATP to generate ADP. Through a cascade mechanism initiated by falling energy status, PVCMs can powerfully hinder the Nrf2 program to selectively drive ferroptosis in TNBC cells in response to PVCMs-induced glutathione depletion. This study provides a paradigm for the use of pharmacologically active nanozymes to moderate specific cellular signals and elicit desirable pharmacological activities for therapeutic applications.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
35
|
Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci 2024; 115:2067-2081. [PMID: 38566528 PMCID: PMC11145128 DOI: 10.1111/cas.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Song Wang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Yueyao Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Dan Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Jie Meng
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Tieju Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
36
|
Lian K, Li Y, Yang W, Ye J, Liu H, Wang T, Yang G, Cheng Y, Xu X. Hub genes, a diagnostic model, and immune infiltration based on ferroptosis-linked genes in schizophrenia. IBRO Neurosci Rep 2024; 16:317-328. [PMID: 38390236 PMCID: PMC10882140 DOI: 10.1016/j.ibneur.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Background Schizophrenia (SCZ) is a prevalent and serious mental disorder, and the exact pathophysiology of this condition is not fully understood. In previous studies, it has been proven that ferroprotein levels are high in SCZ. It has also been shown that this inflammatory response may modify fibromodulin. Accumulating evidence indicates a strong link between metabolism and ferroptosis. Therefore, the present study aims to identify ferroptosis-linked hub genes to further investigate the role that ferroptosis plays in the development of SCZ. Material and methods From the GEO database, four microarray data sets on SCZ (GSE53987, GSE38481, GSE18312, and GSE38484) and ferroptosis-linked genes were extracted. Using the prefrontal cortex expression matrix of SCZ patients and healthy individuals as the control group from GSE53987, weighted gene co-expression network analysis (WGCNA) was performed to discover SCZ-linked module genes. From the feed, genes associated with ferroptosis were retrieved. The intersection of the module and ferroptosis-linked genes was done to obtain the hub genes. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were conducted. The SCZ diagnostic model was established using logistic regression, and the GSE38481, GSE18312, and GSE38484 data sets were used to validate the model. Finally, hub genes linked to immune infiltration were examined. Results A total of 13 SCZ module genes and 7 hub genes linked to ferroptosis were obtained: DECR1, GJA1, EFN2L2, PSAT1, SLC7A11, SOX2, and YAP1. The GO/KEGG/GSEA study indicated that these hub genes were predominantly enriched in mitochondria and lipid metabolism, oxidative stress, immunological inflammation, ferroptosis, Hippo signaling pathway, AMP-activated protein kinase pathway, and other associated biological processes. The diagnostic model created using these hub genes was further confirmed using the data sets of three blood samples from patients with SCZ. The immune infiltration data showed that immune cell dysfunction enhanced ferroptosis and triggered SCZ. Conclusion In this study, seven critical genes that are strongly associated with ferroptosis in patients with SCZ were discovered, a valid clinical diagnostic model was built, and a novel therapeutic target for the treatment of SCZ was identified by the investigation of immune infiltration.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
- Department of Neurosurgery, People's Hospital of Yiliang County
| | - Yongmei Li
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Wei Yang
- Department of Psychiatry, The Second People's Hospital of Yuxi, Yuxi, Yunnan 653100, China
| | - Jing Ye
- Sleep Medical Center, The First People's Hospital of Yunnan, Kunming, Yunnan 650101, China
| | - Hongbing Liu
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Tianlan Wang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Guangya Yang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
37
|
Wei R, Fu G, Li Z, Liu Y, Qi L, Liu K, Zhao Z, Xue M. Au-Fe 3O 4 Janus nanoparticles for imaging-guided near infrared-enhanced ferroptosis therapy in triple negative breast cancer. J Colloid Interface Sci 2024; 663:644-655. [PMID: 38430834 DOI: 10.1016/j.jcis.2024.02.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is insensitive to conventional therapy due to its highly invasive nature resulting in poor therapeutic outcomes. Recent studies have shown multiple genes associated with ferroptosis in TNBC, suggesting an opportunity for ferroptosis-based treatment of TNBC. However, the efficiency of present ferroptosis agents for cancer is greatly restricted due to lack of specificity and low intracellular levels of H2O2 in cancer cells. Herein, we report a nano-theranostic platform consisting of gold (Au)-iron oxide (Fe3O4) Janus nanoparticles (GION@RGD) that effectively enhances the tumor-specific Fenton reaction through utilization of near-infrared (NIR) lasers, resulting in the generation of substantial quantities of toxic hydroxyl radicals (•OH). Specifically, Au nanoparticles (NPs) converted NIR light energy into thermal energy, inducing generation of abundant intracellular H2O2, thereby enhancing the iron-induced Fenton reaction. The generated •OH not only lead to apoptosis of malignant tumor cells but also induce the accumulation of lipid peroxides, causing ferroptosis of tumor cells. After functionalizing with the activity-targeting ligand RGD (Arg-Gly-Asp), precise synergistic treatment of TNBC was achieved in vivo under the guidance of Fe3O4 enhanced T2-weighted magnetic resonance imaging (MRI). This synergistic treatment strategy of NIR-enhanced ferroptosis holds promise for the treatment of TNBC.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lingxiao Qi
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kun Liu
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
38
|
Vinik Y, Lev S. A snapshot into the transcriptomic landscape of apoptosis and ferroptosis in cancer. Cell Death Dis 2024; 15:371. [PMID: 38811541 PMCID: PMC11137012 DOI: 10.1038/s41419-024-06766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Vinik Y, Maimon A, Dubey V, Raj H, Abramovitch I, Malitsky S, Itkin M, Ma'ayan A, Westermann F, Gottlieb E, Ruppin E, Lev S. Programming a Ferroptosis-to-Apoptosis Transition Landscape Revealed Ferroptosis Biomarkers and Repressors for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307263. [PMID: 38441406 PMCID: PMC11077643 DOI: 10.1002/advs.202307263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/11/2024] [Indexed: 05/09/2024]
Abstract
Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Maimon
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Vinay Dubey
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Harsha Raj
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Ifat Abramovitch
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Sergey Malitsky
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Maxim Itkin
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Ma'ayan
- Department of Pharmacological SciencesMount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Frank Westermann
- Neuroblastoma GenomicsGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Eyal Gottlieb
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Eytan Ruppin
- Cancer Data Science LaboratoryNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Sima Lev
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
40
|
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024; 42:513-534. [PMID: 38593779 DOI: 10.1016/j.ccell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
41
|
Song Y, Xu X, Wang Z, Zhao Y. Metal-Organic Framework-Based Nanomedicines for Ferroptotic Cancer Therapy. Adv Healthc Mater 2024; 13:e2303533. [PMID: 38221753 DOI: 10.1002/adhm.202303533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 01/16/2024]
Abstract
As an iron-dependent, non-apoptosis, regulated cell death (RCD) modality, ferroptosis has gained growing attention for cancer therapy. With the development of nanomaterials in the biomedical field, ferroptotic cancer nanomedicine is extensively investigated. Amongst various nanomaterials, metal-organic frameworks (MOFs) are hybridized porous materials consisting of metal ions or clusters bridged by organic linkers. The superior properties of MOFs, such as high porosity and cargo loading, ease of surface modification, and good biocompatibility, make them appealing in inducing or sensitizing ferroptotic cell death. There are remarkable achievements in the field of MOF-based ferroptosis cancer therapy. However, this topic is not reviewed. This review will introduce the fundamentals of MOF and ferroptosis machinery, summarize the recent progress of MOF-based ferroptotic anticancer drug delivery, discuss the benefits and problems of MOFs as vehicles and sensitizers for cancer ferroptosis, and provide the perspective on future research direction on this promising field.
Collapse
Affiliation(s)
- Yue Song
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Xinran Xu
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University Affiliated Maternity Hospital, Tianjin, 300100, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
42
|
Su H, Peng C, Liu Y. Regulation of ferroptosis by PI3K/Akt signaling pathway: a promising therapeutic axis in cancer. Front Cell Dev Biol 2024; 12:1372330. [PMID: 38562143 PMCID: PMC10982379 DOI: 10.3389/fcell.2024.1372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The global challenge posed by cancer, marked by rising incidence and mortality rates, underscores the urgency for innovative therapeutic approaches. The PI3K/Akt signaling pathway, frequently amplified in various cancers, is central in regulating essential cellular processes. Its dysregulation, often stemming from genetic mutations, significantly contributes to cancer initiation, progression, and resistance to therapy. Concurrently, ferroptosis, a recently discovered form of regulated cell death characterized by iron-dependent processes and lipid reactive oxygen species buildup, holds implications for diseases, including cancer. Exploring the interplay between the dysregulated PI3K/Akt pathway and ferroptosis unveils potential insights into the molecular mechanisms driving or inhibiting ferroptotic processes in cancer cells. Evidence suggests that inhibiting the PI3K/Akt pathway may sensitize cancer cells to ferroptosis induction, offering a promising strategy to overcome drug resistance. This review aims to provide a comprehensive exploration of this interplay, shedding light on the potential for disrupting the PI3K/Akt pathway to enhance ferroptosis as an alternative route for inducing cell death and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xinyi, China
| | - Chao Peng
- Xingyi People’s Hospital, Xinyi, China
| | - Yang Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Ding Y, Zhou Q, Ding B, Zhang Y, Shen Y. Transcriptome analysis reveals the clinical significance of CXCL13 in Pan-Gyn tumors. J Cancer Res Clin Oncol 2024; 150:116. [PMID: 38459390 PMCID: PMC10923744 DOI: 10.1007/s00432-024-05619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Gynecologic and breast tumors (Pan-Gyn) exhibit similar characteristics, and the role of CXCL13 in anti-tumor immunity and it's potential as a biomarker for immune checkpoint blockade (ICB) therapy have been gradually revealed. However, the precise role of CXCL13 in Pan-Gyn remains unclear, lacking a systematic analysis. METHODS We analyzed 2497 Pan-Gyn samples from the TCGA database, categorizing them into high and low CXCL13 expression groups. Validation was conducted using tumor expression datasets sourced from the GEO database. Correlation between CXCL13 and tumor immune microenvironment (TIME) was evaluated using multiple algorithms. Finally, we established nomograms for 3-year and 5-year mortality. RESULTS High expression of CXCL13 in Pan-Gyn correlates with a favorable clinical prognosis, increased immune cell infiltration, and reduced intra-tumor heterogeneity. Model was assessed using the C-index [BRCA: 0.763 (0.732-0.794), UCEC: 0.821 (0.793-0.849), CESC: 0.736 (0.684-0.788), and OV: 0.728 (0.707-0.749)], showing decent prediction of discrimination and calibration. CONCLUSION Overall, this study provides comprehensive insights into the commonalities and differences of CXCL13 in Pan-Gyn, potentially opening new avenues for personalized treatment.
Collapse
Affiliation(s)
- Yue Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Quan Zhou
- Zhongda Hospital Southeast University, Nanjing, China
| | - Bo Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China
| | - Yang Shen
- Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
44
|
Xu CY, Xu C, Xu YN, Du SQ, Dai ZH, Jin SQ, Zheng G, Xie CL, Fang WL. Poliumoside protects against type 2 diabetes-related osteoporosis by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155342. [PMID: 38295665 DOI: 10.1016/j.phymed.2024.155342] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/27/2023] [Accepted: 01/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Type 2 diabetes is often linked with osteoporosis (T2DOP), a condition that accelerates bone degeneration and increases the risk of fractures. Unlike conventional menopausal osteoporosis, the diabetic milieu exacerbates the likelihood of fractures and osteonecrosis. In particular poliumoside (Pol), derived from Callicarpa kwangtungensis Chun, has shown promising anti-oxidant and anti-inflammatory effects. Yet, its influence on T2DOP remains to be elucidated. PURPOSE The focus of this study was to elucidate the influence of Pol in HGHF-associated ferroptosis and its implications in T2DOP. STUDY DESIGN A murine model of T2DOP was established using a minimal dosage of streptozotocin (STZ) through intraperitoneal infusion combined with a diet high in fat and sugar. Concurrently, to mimic the diabetic condition in a lab environment, bone mesenchymal stem cells (BMSCs) were maintained in a high-glucose and high-fat (HGHF) setting. METHODS The impact of Pol on BMSCs in an HGHF setting was determined using methods, such as BODIPY-C11, FerroOrange staining, mitochondrial functionality evaluations, and Western blot methodologies, coupled with immunoblotting and immunofluorescence techniques. To understand the role of Pol in a murine T2DOP model, techniques including micro-CT, hematoxylin and eosin (H&E) staining, dual-labeling with calcein-alizarin red, and immunohistochemistry were employed for detailed imaging and histological insights. RESULTS Our findings suggest that Pol acts against HGHF-induced bone degradation and ferroptosis, as evidenced by an elevation in glutathione (GSH) and a decline in malondialdehyde (MDA) levels, lipid peroxidation, and mitochondrial reactive oxygen species (ROS). Furthermore, Pol treatment led to increased bone density, enhanced GPX4 markers, and reduced ROS in the distal femur region. On investigating the underlying mechanism of action, it was observed that Pol triggers the Nrf2/GPX4 pathway, and the introduction of lentivirus-Nrf2 negates the beneficial effects of Pol in HGHF-treated BMSCs. CONCLUSION Pol is effective in treating T2DOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Chao-Yi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun Xu
- Department of Pathology, Cixi Maternity and Child Health Care Hospital, Cixi 315300, China
| | - Yi-Ning Xu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shi-Qi Du
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zi-Han Dai
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shu-Qing Jin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Gang Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Cheng-Long Xie
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wen-Lai Fang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
45
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
46
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
47
|
Song YH, Lei HX, Yu D, Zhu H, Hao MZ, Cui RH, Meng XS, Sheng XH, Zhang L. Endogenous chemicals guard health through inhibiting ferroptotic cell death. Biofactors 2024; 50:266-293. [PMID: 38059412 DOI: 10.1002/biof.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Ferroptosis is a new form of regulated cell death caused by iron-dependent accumulation of lethal polyunsaturated phospholipids peroxidation. It has received considerable attention owing to its putative involvement in a wide range of pathophysiological processes such as organ injury, cardiac ischemia/reperfusion, degenerative disease and its prevalence in plants, invertebrates, yeasts, bacteria, and archaea. To counter ferroptosis, living organisms have evolved a myriad of intrinsic efficient defense systems, such as cyst(e)ine-glutathione-glutathione peroxidase 4 system (cyst(e)ine-GPX4 system), guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin (BH4) system (GCH1/BH4 system), ferroptosis suppressor protein 1/coenzyme Q10 system (FSP1/CoQ10 system), and so forth. Among these, GPX4 serves as the only enzymatic protection system through the reduction of lipid hydroperoxides, while other defense systems ultimately rely on small compounds to scavenge lipid radicals and prevent ferroptotic cell death. In this article, we systematically summarize the chemical biology of lipid radical trapping process by endogenous chemicals, such as coenzyme Q10 (CoQ10), BH4, hydropersulfides, vitamin K, vitamin E, 7-dehydrocholesterol, with the aim of guiding the discovery of novel ferroptosis inhibitors.
Collapse
Affiliation(s)
- Yuan-Hao Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Hong-Xu Lei
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Dou Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Meng-Zhu Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Rong-Hua Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Xiang-Shuai Meng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Jinan, China
- Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
48
|
Li N, Jiang X, Zhang Q, Huang Y, Wei J, Zhang H, Luo H. Synergistic suppression of ovarian cancer by combining NRF2 and GPX4 inhibitors: in vitro and in vivo evidence. J Ovarian Res 2024; 17:49. [PMID: 38396022 PMCID: PMC10885431 DOI: 10.1186/s13048-024-01366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Ovarian cancer is a significant challenge in women's health due to the lack of effective screening and diagnostic methods, often leading to late detection and the highest mortality rate among all gynecologic tumors worldwide. Recent research has shown that ovarian cancer has an "iron addiction" phenotype which makes it vulnerable to ferroptosis inducers. We tested the combination of NRF2-targeted inhibitors with GPX4-targeted inhibitors in ovarian cancer through in vitro and in vivo experiment. The data showed that combination treatment effectively suppressed adherent cell growth, inhibited suspended cell spheroid formation, and restrained the ability of spheroid formation in 3D-culture. Mechanistically, the combination induced accumulation of ROS, 4-HNE, as well as activation of caspase-3 which indicates that this combination simultaneously increases cell ferroptosis and apoptosis. Notably, inhibition of GPX4 or NRF2 can suppress ovarian cancer spreading and growth in the peritoneal cavity of mice, while the combination of NRF2 inhibitor ML385 with GPX4 inhibitors showed a significant synergistic effect compared to individual drug treatment in a syngeneic mouse ovarian cancer model. Overall, these findings suggest that combining NRF2 inhibitors with GPX4 inhibitors results in a synergy suppression of ovarian cancer in vitro and in vivo, and maybe a promising therapeutic strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Xingmei Jiang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Yongmei Huang
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haitao Zhang
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, 534023, China.
| | - Hui Luo
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
49
|
Huang Q, Wu M, Pu Y, Zhou J, Zhang Y, Li R, Xia Y, Zhang Y, Ma Y. Inhibition of TNBC Cell Growth by Paroxetine: Induction of Apoptosis and Blockage of Autophagy Flux. Cancers (Basel) 2024; 16:885. [PMID: 38473249 DOI: 10.3390/cancers16050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The strategy of drug repurposing has gained traction in the field of cancer therapy as a means of discovering novel therapeutic uses for established pharmaceuticals. Paroxetine (PX), a selective serotonin reuptake inhibitor typically utilized in the treatment of depression, has demonstrated promise as an agent for combating cancer. Nevertheless, the specific functions and mechanisms by which PX operates in the context of triple-negative breast cancer (TNBC) remain ambiguous. This study aimed to examine the impact of PX on TNBC cells in vitro as both a standalone treatment and in conjunction with other pharmaceutical agents. Cell viability was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, apoptosis was assessed through flow cytometry, and the effects on signaling pathways were analyzed using RNA sequencing and Western blot techniques. Furthermore, a subcutaneous tumor model was utilized to assess the in vivo efficacy of combination therapy on tumor growth. The results of our study suggest that PX may activate the Ca2+-dependent mitochondria-mediated intrinsic apoptosis pathway in TNBC by potentially influencing the PI3K/AKT/mTOR pathway as well as by inducing cytoprotective autophagy. Additionally, the combination of PX and chemotherapeutic agents demonstrated moderate inhibitory effects on 4T1 tumor growth in an in vivo model. These findings indicate that PX may exert its effects on TNBC through modulation of critical molecular pathways, offering important implications for improving chemosensitivity and identifying potential therapeutic combinations for clinical use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yamin Pu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junyou Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
- Department of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Yang T, Li W, Zhou J, Xu M, Huang Z, Ming J, Huang T. A novel bystander effect in tamoxifen treatment: PPIB derived from ER+ cells attenuates ER- cells via endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2024; 15:147. [PMID: 38360722 PMCID: PMC10869711 DOI: 10.1038/s41419-024-06539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Tamoxifen (TAM) is the frontline therapy for estrogen receptor-positive (ER+) breast cancer in premenopausal women that interrupts ER signaling. As tumors with elevated heterogeneity, amounts of ER-negative (ER-) cells are present in ER+ breast cancer that cannot be directly killed by TAM. Despite complete remissions have been achieved in clinical practice, the mechanism underlying the elimination of ER- cells during TAM treatment remains an open issue. Herein, we deciphered the elimination of ER- cells in TAM treatment from the perspective of the bystander effect. Markable reductions were observed in tumorigenesis of ER- breast cancer cells by applying both supernatants from TAM-treated ER+ cells and a transwell co-culture system, validating the presence of a TAM-induced bystander effect. The major antitumor protein derived from ER+ cells, peptidyl-prolyl cis-trans isomerase B (PPIB), is the mediator of the TAM-induced bystander effect identified by quantitative proteomics. The attenuation of ER- cells was attributed to activated BiP/eIF2α/CHOP axis and promoted endoplasmic reticulum stress (ERS)-induced apoptosis, which can also be triggered by PPIB independently. Altogether, our study revealed a novel TAM-induced bystander effect in TAM treatment of ER+ breast cancer, raising the possibility of developing PPIB as a synergistic antitumor agent or even substitute endocrine therapy.
Collapse
Affiliation(s)
- Tinglin Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|