1
|
Meng X, Gong Y, Xiao F, Cao Z, Zhuang Z, Yi X, Wang J, Feng R, Gong C, Ni P. Curcumin's multi-target mechanisms in the treatment of Alzheimer's disease and creative modification techniques. J Alzheimers Dis 2025:13872877251344188. [PMID: 40397414 DOI: 10.1177/13872877251344188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Alzheimer's disease (AD) is a well-established neurodegenerative disorder characterized by memory impairment, cognitive dysfunction, and behavioral disturbances. With the global population aging, the prevalence of AD continues to rise, presenting significant challenges to both society and healthcare systems. Curcumin, a polyphenolic compound derived from turmeric rhizomes, has demonstrated considerable potential in AD treatment due to its anti-inflammatory, antioxidant, and neuroprotective properties. However, its clinical application remains constrained by chemical instability, poor water solubility, rapid metabolism, and accelerated elimination. To overcome these limitations, various curcumin derivatives have been synthesized, and combination therapy strategies have been explored. This review examines the potential mechanisms through which curcumin may exert therapeutic effects in AD, including the inhibition of neuroinflammation, regulation of tau protein hyperphosphorylation, modulation of amyloid-β peptides, and provision of antioxidant benefits. Additionally, the advantages of curcumin derivatives and combination therapy approaches are discussed, offering novel perspectives and promising strategies for AD treatment. It is anticipated that advancements in drug design and therapeutic approaches will contribute to the development of more effective treatment options for AD.
Collapse
Affiliation(s)
- Xiaoyuan Meng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yong Gong
- Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Fengxin Xiao
- Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Zhao Cao
- Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Zheyu Zhuang
- Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xinan Yi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Juan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Renjun Feng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Chunmei Gong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Panli Ni
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
McGuckin MM, Wang D, Ortiz J, Dobrinskikh E, Tong W, Botting-Lawford KJ, Niu Y, Giussani DA, Wesolowski SR. Hypoxic pregnancy promotes fibrosis and increases stress metabolites in the ovine fetal liver. J Physiol 2025; 603:3223-3243. [PMID: 40320974 DOI: 10.1113/jp288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/03/2025] [Indexed: 06/02/2025] Open
Abstract
Fetal chronic hypoxia is a common pregnancy complication associated with fetal growth restriction. Growth-restricted offspring have a higher risk for liver metabolic disease. Our objective was to better understand how chronic hypoxia impacts the developing fetal liver. We hypothesized that hypoxia promotes hepatocellular injury, shifts nutrient metabolism, and activates energetic and oxidative stress in the fetal liver. We used an ovine model of chronic hypoxia where pregnant ewes were housed under normoxic (CON) or hypoxic (HOX) conditions for 30 days in late gestation. Fetal liver was obtained, histologically analysed and profiled using bulk-RNA sequencing and metabolomics. Nutrient and oxidative stress signalling pathways were also measured. HOX fetuses had greater hepatic periportal collagen deposition. Metabolomics and transcriptomics predicted disruptions in central carbon metabolism, mitochondrial dysfunction and decreased oxidative phosphorylation. In support, we found potentiation of the gluconeogenic pathway and increased lactate production, pyruvate oxidation and AMPK activation. By contrast to the predicted effects, hypoxic livers maintained mitochondrial oxidation and antioxidant capacity. Interestingly, acylcarnitines were increased, yet hepatic triglyceride content was similar. Although there was little activation of oxidative stress markers, such as lipid peroxidation or oxidized glutathione, we uncovered a unique profile of liver stress-related metabolites in association with periportal collagen. Thus, hypoxic pregnancy increased fetal hepatic collagen deposition, indicating liver injury, in association with a unique profile of liver stress metabolites and adaptations in central carbon metabolism. These results provide new insight into how chronic fetal hypoxia may initiate fibrotic and metabolic liver disease risk in offspring of adverse pregnancy. KEY POINTS: Chronic exposure to hypoxic pregnancy increased fetal hepatic collagen deposition, indicating hepatocellular injury. Hypoxic fetal livers had a unique profile of stress metabolites and adaptations in central carbon metabolism. This provides new insight into how hypoxia, a common pregnancy complication associated with fetal growth restriction, may initiate fibrotic and metabolic liver disease risk.
Collapse
Affiliation(s)
- Molly M McGuckin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jasmine Ortiz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- The Cambridge Reproduction Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
3
|
Bennett MGA, Meakin AS, Botting-Lawford KJ, Niu Y, Ford SG, Murphy MP, Wiese MD, Giussani DA, Morrison JL. Maternal MitoQ Treatment Is Protective Against Programmed Alterations in CYP Activity Due to Antenatal Dexamethasone. Pharmaceutics 2025; 17:285. [PMID: 40142951 PMCID: PMC11944367 DOI: 10.3390/pharmaceutics17030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: In pregnancy threatened by preterm birth, antenatal corticosteroids (ACS) are administered to accelerate fetal lung maturation. However, they have side effects, including the production of reactive oxygen species that can impact cytochrome P450 (CYP) activity. We hypothesised that antioxidants could protect a fetus treated with ACS during gestation and prevent the programming of altered hepatic CYP activity in the offspring. The primary outcome of our study was the impact of different maternal treatments on the activity of hepatic drug-metabolising enzymes in offspring. Methods: At 100 ± 1 days gestational age (dGA, term = 147 dGA), 73 ewes were randomly allocated to the following: saline (5 mL IV daily 105-137 ± 2 dGA, n = 17), ACS (Dexamethasone (Dex); 12 mg IM at 115 and 116 dGA; n = 25), MitoQ (6 mg/kg MS010 IV, daily bolus 105-137 ± 2 dGA; n = 17) or Dex and MitoQ (Dex+MitoQ; n = 14). CYP activity and protein abundance were assessed using functional assays and Western blot. Results: Dex decreased the hepatic activity of fetal CYP3A (-56%, PDex = 0.0322), and 9 mo lamb CYP1A2 (-22%, PDex = 0.0003), CYP2B6 (-36%, PDex = 0.0234), CYP2C8 (-34%, PDex = 0.0493) and CYP2E1 (-57%, PDex = 0.0009). For all, except CYP1A2, activity returned to control levels with Dex+MitoQ in 9 mo lambs. In 9 mo lambs, MitoQ alone increased activity of CYP2B6 (+16%, PMitoQ = 0.0011) and CYP3A (midazolam, +25%, PMitoQ = 0.0162) and increased CAT expression (PMitoQ = 0.0171). Dex+MitoQ increased CYP3A4/5 activity (testosterone, +65%, PIntx < 0.0003), decreased CYP1A2 activity (-14%, PIntx = 0.0036) and decreased mitochondrial abundance (PIntx = 0.0051). All treatments decreased fetal hepatic DRP1, a regulator of mitochondrial fission (PDex = 0.0055, PMitoQ = 0.0006 and PIntx = 0.0034). Conclusions: Antenatal Dex reduced activity of only one CYP in the fetus but programmed the reduced activity of several hepatic CYPs in young adult offspring, and this effect was ameliorated by combination with MitoQ.
Collapse
Affiliation(s)
- Millicent G. A. Bennett
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Kimberley J. Botting-Lawford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Sage G. Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Michael D. Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.J.B.-L.); (Y.N.); (S.G.F.); (D.A.G.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA 5000, Australia; (M.G.A.B.); (A.S.M.); (M.D.W.)
| |
Collapse
|
4
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PFB, Lyu Q, Zhang L, Ma J, Sowton AP, O'Brien KA, Cindrova-Davies T, Yung HW, Burton GJ, Murray AJ, Giussani DA. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. J Physiol 2025. [PMID: 39868991 DOI: 10.1113/jp287897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy. We show that hypoxic pregnancy in sheep triggers a shift in capacity away from β-oxidation and complex I-mediated respiration, while maintaining total oxidative phosphorylation capacity. There are also complex-specific changes to electron transport chain composition and a switch in mitochondrial dynamics towards fission. Hypoxic placentas show increased activation of the non-canonical mitochondrial unfolded protein response pathway and enhanced insulin like growth factor 2 signalling. Combined, therefore, the data show that the hypoxic placenta undergoes significant metabolic and morphological adaptations to maintain cellular energy balance. Chronic hypoxia during pregnancy in sheep activated placental mitochondrial stress pathways, leading to alterations in mitochondrial respiration, mitochondrial energy metabolism and mitochondrial dynamics, as seen in the placenta of women with pre-eclampsia. KEY POINTS: Hypoxia shifts mitochondrial respiration away from β-oxidation and complex I. Complex-specific changes occur in the electron transport chain composition. Activation of the non-canonical mitochondrial unfolded protein response pathway is heightened in hypoxic placentas. Enhanced insulin like growth factor 2 signalling is observed in hypoxic placentas. Hypoxic placentas undergo significant functional adaptations for energy balance.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Sage G Ford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tess A Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Peter F B Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
McGillick EV, Orgeig S, Allison BJ, Brain KL, Bertossa MR, Holman SL, Meakin AS, Wiese MD, Niu Y, Itani N, Skeffington KL, Beck C, Botting-Lawford KJ, Morrison JL, Giussani DA. Chronic fetal hypoxia and antenatal Vitamin C exposure differentially regulate molecular signalling in the lung of female lambs in early adulthood. Front Physiol 2025; 15:1488152. [PMID: 39882327 PMCID: PMC11775154 DOI: 10.3389/fphys.2024.1488152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress in utero to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood. Methods Chronically catheterised pregnant sheep were exposed to normoxia (N; n = 20) or hypoxia (H; n = 18; 10% O2) ± maternal daily i. v. saline (N = 11; H = 8) or Vitamin C (VC; NVC = 9; HVC = 10) from 105 to 138 days (term, ∼145 days). Lungs were collected from female lambs 9 months after birth (early adulthood). Lung tissue expression of genes and proteins regulating oxidative stress, mitochondrial function, hypoxia signalling, glucocorticoid signalling, surfactant maturation, inflammation and airway remodelling were measured. Results Chronic fetal hypoxia upregulated lung expression of markers of prooxidant, surfactant lipid transport and airway remodelling pathways in early adulthood. Antenatal Vitamin C normalized prooxidant and airway remodelling markers, increased endogenous antioxidant, vasodilator and inflammatory markers, and altered regulation of hypoxia signalling and glucocorticoid availability. Conclusion There are differential effects of antenatal Vitamin C on molecular markers in the lungs of female lambs from normoxic and hypoxic pregnancy in early adulthood.
Collapse
Affiliation(s)
- Erin V. McGillick
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Michael D. Wiese
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christian Beck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Paz AA, Jiménez TA, Ibarra-Gonzalez J, Astudillo-Maya C, Beñaldo FA, Figueroa EG, Llanos AJ, Gonzalez-Candia A, Herrera EA. Gestational hypoxia elicits long-term cardiovascular dysfunction in female guinea pigs. Life Sci 2025; 361:123282. [PMID: 39615619 DOI: 10.1016/j.lfs.2024.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Gestational hypoxia (GH) has been implicated in the developmental programming of cardiovascular diseases (CVDs) in the offspring, with most studies focusing on males, conversely, the effects on female cardiovascular health remain understudied. We aimed to investigate the impact of GH on the cardiovascular system of female guinea pig offspring from the early postnatal period to adulthood. METHODS Pregnant guinea pigs were subjected to normoxic or hypoxic conditions from gestational day 30 until delivery (∼70 days). Female offspring were monitored with biometric parameters and peripheral vascular function (ultrasound) from birth to one year old. In addition, we assessed cardiovascular structure, oxidative stress, inflammatory state (IHC, qPCR, and immunoblot assays), and thoracic aorta reactivity (wire-myography) at one year of age. KEY FINDINGS GH increased heart rate and peripheral pulsatility index. At one year old, GH-exposed females exhibited cardiac remodeling, characterized by increased left ventricular luminal area and coronary artery muscle occupation. Furthermore, GH increased aortic vascular wall, intima-media thickness and contractile capacity. This was accompanied by reduced endothelium-dependent vasodilation and enhanced oxidative stress. Additionally, GH increased collagen deposition and oxidative stress in the right ventricle, accompanied by reduced antioxidant enzymes expression and reduced inflammatory mediator levels. SIGNIFICANCE GH exerts long-lasting effects on the cardiovascular health of female guinea pig offspring, contributing to cardiac remodeling, vascular dysfunction, oxidative stress, and inflammatory changes. These findings highlight the importance of GH as a risk factor for developing CVDs in female offspring and emphasize the need for sex-specific interventions to mitigate adverse long-term gestational effects.
Collapse
Affiliation(s)
- Adolfo A Paz
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tamara A Jiménez
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Julieta Ibarra-Gonzalez
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Astudillo-Maya
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe A Beñaldo
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Aníbal J Llanos
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile.
| |
Collapse
|
7
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Lock MC, Patey OV, Smith KLM, Niu Y, Jaggs B, Trafford AW, Giussani DA, Galli GLJ. Maladaptive cardiomyocyte calcium handling in adult offspring of hypoxic pregnancy: protection by antenatal maternal melatonin. J Physiol 2024; 602:6683-6703. [PMID: 39572933 DOI: 10.1113/jp287325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic fetal hypoxia is one of the most common complications of pregnancy and can programme cardiac abnormalities in adult offspring including ventricular remodelling, diastolic dysfunction and sympathetic dominance. However, the underlying mechanisms at the level of the cardiomyocyte are unknown, preventing the identification of targets for therapeutic intervention. Therefore, we aimed to link echocardiographic data with cardiomyocyte function to reveal cellular mechanism for cardiac dysfunction in rat offspring from hypoxic pregnancy. Further, we investigated the potential of maternal treatment with melatonin as antenatal antioxidant therapy. Wistar rats were randomly allocated into normoxic (21% O2) or hypoxic (13% O2) pregnancy with or without melatonin treatment (5 µg/ml; normoxic melatonin in the maternal drinking water from gestational day 6 to 20 (term = 22 days). After delivery, male and female offspring were maintained to adulthood (16 weeks). Cardiomyocytes were isolated from the left and right ventricles, and calcium (Ca2+) handling was investigated in field-stimulated myocytes. Systolic and diastolic function was negatively impacted in male and female offspring of hypoxic pregnancy demonstrating biventricular systolic and diastolic dysfunction and compensatory increases in cardiac output. Ca2+ transients from isolated cardiomyocytes in offspring of both sexes in hypoxic pregnancy displayed diastolic dysfunction with a reduced rate of [Ca2+]i recovery. Cardiac and cardiomyocyte dysfunction in male and female adult offspring was ameliorated by maternal antenatal treatment with melatonin in hypoxic pregnancy. Therefore, cardiomyocyte Ca2+ mishandling provides a cellular mechanism explaining functional deficits in hearts of male and female offspring in pregnancies complicated by chronic fetal hypoxia. KEY POINTS: This study identified significant changes in Ca2+ handling within cardiomyocytes isolated from offspring of hypoxic pregnancy including reduced systolic Ca2+ transients, impaired diastolic recovery of [Ca2+]i and a greater increase in systolic [Ca2+]i amplitude to β-adrenergic stimulation. These changes in cardiomyocyte Ca2+ handling help to explain dysregulation of biventricular systolic and diastolic dysfunction determined by echocardiography. The data show protection against maladaptive cardiomyocyte calcium handling and thereby improvement in cardiac function in adult offspring of hypoxic pregnancy treated with melatonin with doses lower than those recommended for overcoming jet lag in humans. Melatonin treatment alone in healthy pregnancy did cause some alterations in cardiac structure. Therefore, maternal treatment with melatonin should only be given to pregnancies affected by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Mitchell C Lock
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kerri L M Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ben Jaggs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Rock CR, Miller SL, Allison BJ. The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review. Antioxidants (Basel) 2024; 13:1400. [PMID: 39594542 PMCID: PMC11591491 DOI: 10.3390/antiox13111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Fetal growth restriction (FGR) increases the risk of cardiovascular disease. There are currently no treatment options available; however, antioxidants have shown potential to improve cardiovascular deficits associated with FGR. This systematic review aimed to determine whether antenatal antioxidant intervention can effectively protect the developing cardiovascular system in FGR. We searched for interventional studies that used an antenatal antioxidant intervention to improve cardiac and/or vascular outcomes in FGR published between 01/1946 and 09/2024 using MEDLINE and Embase (PROSPERO: CRD42024503756). The risk of bias was assessed with SYRCLE. The studies were assessed for cardiovascular protection based on the percentage of cardiac and/or vascular deficits that were restored with the antioxidant treatment. Studies were characterised as showing strong cardiovascular protection (≥50% restoration), mild cardiovascular protection (>0% but <50% restoration), an antioxidant-only effect (this did not include control group which showed a change with antioxidant intervention compared to FGR) or no cardiovascular protection (0% restoration). Thirty-eight publications met the inclusion criteria, encompassing 43 studies and investigating 15 antioxidant interventions. Moreover, 29/43 studies (71%) reported the restoration of at least one cardiac or vascular deficit with antioxidant intervention, and 21/43 studies (51%) were classified as strong cardiovascular protection. An ex vivo analysis of the arterial function in seven studies revealed endothelial dysfunction in growth-restricted offspring and antioxidant interventions restored the endothelial function in all cases. Additionally, four studies demonstrated that antioxidants reduced peroxynitrite-mediated oxidative stress. Notably, only 13/43 studies (32%) delayed antioxidant administration until after the induction of FGR. Antenatal antioxidant interventions show promise for providing cardiovascular protection in FGR. Melatonin was the most frequently studied intervention followed by nMitoQ, vitamin C and N-acetylcysteine, all of which demonstrated a strong capacity to reduce oxidative stress and improve nitric oxide bioavailability in the cardiovascular system of growth-restricted offspring; however, this systematic review highlights critical knowledge gaps and inconsistencies in preclinical research, which hinder our ability to determine which antioxidant treatments are currently suitable for clinical translation.
Collapse
Affiliation(s)
- Charmaine R. Rock
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia;
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
10
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
11
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Xie Y, Li X, Shi Q, Le L, Wang C, Xu H, Wu G, Du X, Chen Z. The synergistic effect of curcumin and mitoquinol mesylate on cognitive impairment and the neuropathology of Alzheimer's disease. Brain Res 2024; 1837:148959. [PMID: 38670478 DOI: 10.1016/j.brainres.2024.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Given the complexity and heterogeneity of Alzheimer's disease (AD) pathology, targeted monotherapy drugs may not be effective. Therefore, synergistic combination therapy of curcumin and Mito Q was proposed and evaluated in a triple-transgenic AD model mice (3 × Tg-AD mice). The cognitive ability was assessed using behavioral tests and typical pathological changes were observed through Western blotting and histological analysis. The results demonstrated a significant enhancement in cognitive ability along with the mitigation of typical AD pathological features such as Aβ aggregation, tau phosphorylation, and synaptic damage. Notably, the combination therapy demonstrated superior efficacy over individual drugs alone. These findings provide valuable insights for optimizing the development of AD drugs.
Collapse
Affiliation(s)
- Yongli Xie
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Xuexia Li
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shanxi, China
| | - Linfeng Le
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hao Xu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Guoli Wu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zetao Chen
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen 518133, China.
| |
Collapse
|
13
|
Krause BJ, Paz AA, Garrud TAC, Peñaloza E, Vega-Tapia F, Ford SG, Niu Y, Giussani DA. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos. J Physiol 2024; 602:3833-3852. [PMID: 38985827 DOI: 10.1113/jp286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Adolfo A Paz
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Tessa A C Garrud
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Sage G Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Dawoud M, Attallah KM, Ibrahim IT, Karam HM, Ibrahim AA. MitoQ and its hyaluronic acid-based nanopreparation mitigating gamma radiation-induced intestinal injury in mice: alleviation of oxidative stress and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5193-5205. [PMID: 38252300 DOI: 10.1007/s00210-024-02948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Perturbations produced by ionizing radiation on intestinal tissue are considered one of highly drastic challenges in radiotherapy. Animals were randomized into five groups. The first group was allocated as control, and the second was subjected to whole body γ-irradiation (10 Gy). The third was administered HA NP (17.6 mg/kg/day; i.p.) and then irradiated. The fourth one received MitoQ (2 mg/kg/day; i.p.) and then irradiated. The last group received MitoQ/HA NP (2 mg/kg/day; i.p.) for 5 days prior to irradiation. Mice were sacrificed a week post-γ-irradiation for evaluation. MitoQ/HA NP ameliorated mitochondrial oxidative stress as indicated by rising (TAC) and glutathione peroxidase and decreasing malondialdehyde, showing its distinguished antioxidant yield. That impacted the attenuation of apoptosis, which was revealed by the restoration of the anti-apoptotic marker and lessening proapoptotic caspase-3. Inflammatory parameters dwindled via treatment with MitoQ/HA NP. Moreover, this new NP exerts its therapeutic action through a distinguished radioprotective pathway (Hmgb1/TLR-4.) Subsequently, these antioxidants and their nanoparticles conferred protection to intestinal tissue as manifested by histopathological examination. These findings would be associated with its eminent antioxidant potential through high mitochondria targeting, enhanced cellular uptake, and ROS scavenging. This research underlines MitoQ/HA NP as a new treatment for the modulation of intestinal damage caused by radiotherapy modalities.
Collapse
Affiliation(s)
- Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura, University, Makkah, Saudi Arabia
| | - Khalid M Attallah
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
15
|
Pan H, Chen X, Xiao M, Xu H, Guo J, Lu Z, Cen D, Yu X, Shi S. Multifunctional RGD coated a single-atom iron nanozyme: A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer. NANO RESEARCH 2024; 17:5469-5478. [DOI: 10.1007/s12274-024-6492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2025]
|
16
|
Lian K, Li Y, Yang W, Ye J, Liu H, Wang T, Yang G, Cheng Y, Xu X. Hub genes, a diagnostic model, and immune infiltration based on ferroptosis-linked genes in schizophrenia. IBRO Neurosci Rep 2024; 16:317-328. [PMID: 38390236 PMCID: PMC10882140 DOI: 10.1016/j.ibneur.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Background Schizophrenia (SCZ) is a prevalent and serious mental disorder, and the exact pathophysiology of this condition is not fully understood. In previous studies, it has been proven that ferroprotein levels are high in SCZ. It has also been shown that this inflammatory response may modify fibromodulin. Accumulating evidence indicates a strong link between metabolism and ferroptosis. Therefore, the present study aims to identify ferroptosis-linked hub genes to further investigate the role that ferroptosis plays in the development of SCZ. Material and methods From the GEO database, four microarray data sets on SCZ (GSE53987, GSE38481, GSE18312, and GSE38484) and ferroptosis-linked genes were extracted. Using the prefrontal cortex expression matrix of SCZ patients and healthy individuals as the control group from GSE53987, weighted gene co-expression network analysis (WGCNA) was performed to discover SCZ-linked module genes. From the feed, genes associated with ferroptosis were retrieved. The intersection of the module and ferroptosis-linked genes was done to obtain the hub genes. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were conducted. The SCZ diagnostic model was established using logistic regression, and the GSE38481, GSE18312, and GSE38484 data sets were used to validate the model. Finally, hub genes linked to immune infiltration were examined. Results A total of 13 SCZ module genes and 7 hub genes linked to ferroptosis were obtained: DECR1, GJA1, EFN2L2, PSAT1, SLC7A11, SOX2, and YAP1. The GO/KEGG/GSEA study indicated that these hub genes were predominantly enriched in mitochondria and lipid metabolism, oxidative stress, immunological inflammation, ferroptosis, Hippo signaling pathway, AMP-activated protein kinase pathway, and other associated biological processes. The diagnostic model created using these hub genes was further confirmed using the data sets of three blood samples from patients with SCZ. The immune infiltration data showed that immune cell dysfunction enhanced ferroptosis and triggered SCZ. Conclusion In this study, seven critical genes that are strongly associated with ferroptosis in patients with SCZ were discovered, a valid clinical diagnostic model was built, and a novel therapeutic target for the treatment of SCZ was identified by the investigation of immune infiltration.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
- Department of Neurosurgery, People's Hospital of Yiliang County
| | - Yongmei Li
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Wei Yang
- Department of Psychiatry, The Second People's Hospital of Yuxi, Yuxi, Yunnan 653100, China
| | - Jing Ye
- Sleep Medical Center, The First People's Hospital of Yunnan, Kunming, Yunnan 650101, China
| | - Hongbing Liu
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Tianlan Wang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Guangya Yang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
17
|
Avalani KH, Patterson ND, Murray KO. Uterine artery dysfunction in hypoxic pregnancy: a mitochondrial perspective. J Physiol 2024; 602:2153-2155. [PMID: 38635337 PMCID: PMC11096013 DOI: 10.1113/jp286475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Affiliation(s)
- Krisha H Avalani
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Noah D Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Wang Z, Camm EJ, Nuzzo AM, Spiroski AM, Skeffington KL, Ashmore TJ, Rolfo A, Todros T, Logan A, Ma J, Murphy MP, Niu Y, Giussani DA. In vivo mitochondria-targeted protection against uterine artery vascular dysfunction and remodelling in rodent hypoxic pregnancy. J Physiol 2024; 602:1211-1225. [PMID: 38381050 DOI: 10.1113/jp286178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca2+ -activated K+ -channels. Maternal in vivo oral treatment with the mitochondria-targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6-20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13-14% O2 ) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13-dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+ -activated K+ -channel activator NS1619 and ACh via increased nitric oxide-dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy. KEY POINTS: Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude. Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy. Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria-targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy.
Collapse
Affiliation(s)
- Zhongchao Wang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Anna Maria Nuzzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Li J, Dong X, Liu JY, Gao L, Zhang WW, Huang YC, Wang Y, Wang H, Wei W, Xu DX. FUNDC1-mediated mitophagy triggered by mitochondrial ROS is partially involved in 1-nitropyrene-evoked placental progesterone synthesis inhibition and intrauterine growth retardation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168383. [PMID: 37951264 DOI: 10.1016/j.scitotenv.2023.168383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Intrauterine growth retardation (IUGR) is a major cause of perinatal morbidity and mortality. Previous studies showed that 1-nitropyrene (1-NP), an atmospheric pollutant, induces placental dysfunction and IUGR, but the exact mechanisms remain uncertain. In this research, we aimed to explore the role of mitophagy on 1-NP-evoked placental progesterone (P4) synthesis inhibition and IUGR in a mouse model. As expected, P4 levels were decreased in 1-NP-exposed mouse placentas and maternal sera. Progesterone synthases, CYP11A1 and 3βHSD1, were correspondingly declined in 1-NP-exposed mouse placentas and JEG-3 cells. Mitophagy, as determined by LC3B-II elevation and TOM20 reduction, was evoked in 1-NP-exposed JEG-3 cells. Mdivi-1, a specific mitophagy inhibitor, relieved 1-NP-evoked downregulation of progesterone synthases in JEG-3 cells. Additional experiments showed that ULK1/FUNDC1 signaling was activated in 1-NP-exposed JEG-3 cells. ULK1 inhibitor or FUNDC1-targeted siRNA blocked 1-NP-induced mitophagy and progesterone synthase downregulation in JEG-3 cells. Further analysis found that mitochondrial reactive oxygen species (ROS) were increased and GCN2 was activated in 1-NP-exposed JEG-3 cells. GCN2iB, a selective GCN2 inhibitor, and MitoQ, a mitochondria-targeted antioxidant, attenuated GCN2 activation, FUNDC1-mediated mitophagy, and downregulation of progesterone synthases in JEG-3 cells. In vivo, gestational MitoQ supplement alleviated 1-NP-evoked reduction of placental P4 synthesis and IUGR. These results suggest that FUNDC1-mediated mitophagy triggered by mitochondrial ROS may contribute partially to 1-NP-induced placental P4 synthesis inhibition and IUGR.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xin Dong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jia-Yu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory & Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
20
|
Opichka MA, Livergood MC, Balapattabi K, Ritter ML, Brozoski DT, Wackman KK, Lu KT, Kozak KN, Wells C, Fogo AB, Gibson-Corley KN, Kwitek AE, Sigmund CD, McIntosh JJ, Grobe JL. Mitochondrial-targeted antioxidant attenuates preeclampsia-like phenotypes induced by syncytiotrophoblast-specific Gαq signaling. SCIENCE ADVANCES 2023; 9:eadg8118. [PMID: 38039359 PMCID: PMC10691776 DOI: 10.1126/sciadv.adg8118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Syncytiotrophoblast stress is theorized to drive development of preeclampsia, but its molecular causes and consequences remain largely undefined. Multiple hormones implicated in preeclampsia signal via the Gαq cascade, leading to the hypothesis that excess Gαq signaling within the syncytiotrophoblast may contribute. First, we present data supporting increased Gαq signaling and antioxidant responses within villous and syncytiotrophoblast samples of human preeclamptic placenta. Second, Gαq was activated in mouse placenta using Cre-lox and DREADD methodologies. Syncytiotrophoblast-restricted Gαq activation caused hypertension, kidney damage, proteinuria, elevated circulating proinflammatory factors, decreased placental vascularization, diminished spiral artery diameter, and augmented responses to mitochondrial-derived superoxide. Administration of the mitochondrial-targeted antioxidant Mitoquinone attenuated maternal proteinuria, lowered circulating inflammatory and anti-angiogenic mediators, and maintained placental vascularization. These data demonstrate a causal relationship between syncytiotrophoblast stress and the development of preeclampsia and identify elevated Gαq signaling and mitochondrial reactive oxygen species as a cause of this stress.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Kaleigh N. Kozak
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, USA
| | - Clive Wells
- Electron Microscopy Core Facility, Medical College of Wisconsin, Milwaukee, USA
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, USA
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
21
|
Bhullar SK, Dhalla NS. Status of Mitochondrial Oxidative Phosphorylation during the Development of Heart Failure. Antioxidants (Basel) 2023; 12:1941. [PMID: 38001794 PMCID: PMC10669359 DOI: 10.3390/antiox12111941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are specialized organelles, which serve as the "Power House" to generate energy for maintaining heart function. These organelles contain various enzymes for the oxidation of different substrates as well as the electron transport chain in the form of Complexes I to V for producing ATP through the process of oxidative phosphorylation (OXPHOS). Several studies have shown depressed OXPHOS activity due to defects in one or more components of the substrate oxidation and electron transport systems which leads to the depletion of myocardial high-energy phosphates (both creatine phosphate and ATP). Such changes in the mitochondria appear to be due to the development of oxidative stress, inflammation, and Ca2+-handling abnormalities in the failing heart. Although some investigations have failed to detect any changes in the OXPHOS activity in the failing heart, such results appear to be due to a loss of Ca2+ during the mitochondrial isolation procedure. There is ample evidence to suggest that mitochondrial Ca2+-overload occurs, which is associated with impaired mitochondrial OXPHOS activity in the failing heart. The depression in mitochondrial OXPHOS activity may also be due to the increased level of reactive oxygen species, which are formed as a consequence of defects in the electron transport complexes in the failing heart. Various metabolic interventions which promote the generation of ATP have been reported to be beneficial for the therapy of heart failure. Accordingly, it is suggested that depression in mitochondrial OXPHOS activity plays an important role in the development of heart failure.
Collapse
Affiliation(s)
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
22
|
Basta J, Robbins L, Stout L, Brennan M, Shapiro J, Chen M, Denner D, Baldan A, Messias N, Madhavan S, Parikh SV, Rauchman M. Deletion of NuRD component Mta2 in nephron progenitor cells causes developmentally programmed FSGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562984. [PMID: 38948707 PMCID: PMC11213133 DOI: 10.1101/2023.10.18.562984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.
Collapse
|
23
|
Hao S, Huang H, Ma RY, Zeng X, Duan CY. Multifaceted functions of Drp1 in hypoxia/ischemia-induced mitochondrial quality imbalance: from regulatory mechanism to targeted therapeutic strategy. Mil Med Res 2023; 10:46. [PMID: 37833768 PMCID: PMC10571487 DOI: 10.1186/s40779-023-00482-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002 China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Rui-Yan Ma
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400010 China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
24
|
Cai Q, Shen Q, Zhu W, Zhang S, Ke J, Lu Z. Paraquat-induced ferroptosis suppression via NRF2 expression regulation. Toxicol In Vitro 2023; 92:105655. [PMID: 37507096 DOI: 10.1016/j.tiv.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Paraquat (PQ) is an environmentally friendly and efficient herbicide, but PQ misuse or intentional self-use can cause death through multiple organ damage and can cause acute lung injury. Existing clinical treatments alleviate symptoms but do not significantly improve the mortality rate. Ferroptosis is a type of necrosis that presents in a manner very similar to the cell damage induced by high doses of PQ, but the role of ferroptosis in paraquat-induced lung injury remains unclear. In this study, we aimed to explore the role of ferroptosis in PQ-induced A549 cell injury and identify the potential mechanisms and critical sites of protection against PQ-induced A549 injury by ferroptosis inhibitors. We found that the ferroptosis inhibitors Ferr-1 and Lip-1 inhibit ferroptosis by attenuating oxidative stress through the upregulation of NRF2 gene expression. The protective role of the ferroptosis inhibitor Dfo was most evident in paraquat-induced cell injury. Dfo inhibited ferroptosis by iron chelation and promoted NRF2 protein level reduction. NRF2 attenuated PQ-induced ferroptosis in A549 cells, mainly through the upregulation of SLC40A1 to encourage the movement of iron to the extracellular side to alleviate iron overload, and the upregulation of SLC7A11 to promote the expression of GPX4 to inhibit lipid peroxidation.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Qunhe Shen
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Weimin Zhu
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Sheng Zhang
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Jingjing Ke
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical, the key specialty of traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan period (Emergency Department), Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
25
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
26
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Redox-crippled MitoQ potently inhibits breast cancer and glioma cell proliferation: A negative control for verifying the antioxidant mechanism of MitoQ in cancer and other oxidative pathologies. Free Radic Biol Med 2023; 205:175-187. [PMID: 37321281 PMCID: PMC11129726 DOI: 10.1016/j.freeradbiomed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 μM versus 0.38 μM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 μM and 0.17 μM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
27
|
Lock MC, Botting KJ, Allison BJ, Niu Y, Ford SG, Murphy MP, Orgeig S, Giussani DA, Morrison JL. MitoQ as an antenatal antioxidant treatment improves markers of lung maturation in healthy and hypoxic pregnancy. J Physiol 2023; 601:3647-3665. [PMID: 37467062 PMCID: PMC10952154 DOI: 10.1113/jp284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Chronic fetal hypoxaemia is a common pregnancy complication that increases the risk of infants experiencing respiratory complications at birth. In turn, chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in animal models of hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. However, whether antenatal antioxidant therapy confers any benefit on lung development in complicated pregnancies has not yet been investigated. Here, we tested the hypothesis that maternal antenatal treatment with MitoQ will protect the developing lung in hypoxic pregnancy in sheep, a species with similar fetal lung developmental milestones as humans. Maternal treatment with MitoQ during late gestation promoted fetal pulmonary surfactant maturation and an increase in the expression of lung mitochondrial complexes III and V independent of oxygenation. Maternal treatment with MitoQ in hypoxic pregnancy also increased the expression of genes regulating liquid reabsorption in the fetal lung. These data support the hypothesis tested and suggest that MitoQ as an antenatal targeted antioxidant treatment may improve lung maturation in the late gestation fetus. KEY POINTS: Chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. MitoQ is a targeted antioxidant that uses the cell and the mitochondrial membrane potential to accumulate within the mitochondria. Treatment of healthy or hypoxic pregnancy with MitoQ, increases the expression of key molecules involved in surfactant maturation, lung liquid reabsorption and in mitochondrial proteins driving ATP synthesis in the fetal sheep lung. There were no detrimental effects of MitoQ treatment alone on the molecular components measured in the present study, suggesting that maternal antioxidant treatment has no effect on other components of normal maturation of the surfactant system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Beth J. Allison
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sage G. Ford
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | | | - Sandra Orgeig
- UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Dino A. Giussani
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
28
|
He X, Liang SM, Wang HQ, Tao L, Sun FF, Wang Y, Zhang C, Huang YC, Xu DX, Chen X. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. Toxicol Appl Pharmacol 2023; 465:116452. [PMID: 36894071 DOI: 10.1016/j.taap.2023.116452] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Mitochondrial oxidative stress has been a crucial mediator in acetaminophen (APAP)-induced hepatotoxicity. MitoQ, an analog of coenzyme Q10, is targeted towards mitochondria and acts as a potent antioxidant. This study aimed to explore the effect of MitoQ on APAP-induced liver injury and its possible mechanisms. To investigate this, CD-1 mice and AML-12 cells were treated with APAP. Hepatic MDA and 4-HNE, two markers of lipid peroxidation (LPO), were elevated as early as 2 h after APAP. Oxidized lipids were rapidly upregulated in APAP-exposed AML-12 cells. Hepatocyte death and mitochondrial ultrastructure alterations were observed in APAP-induced acute liver injury. The in vitro experiments showed that mitochondrial membrane potentials and OXPHOS subunits were downregulated in APAP-exposed hepatocytes. MtROS and oxidized lipids were elevated in APAP-exposed hepatocytes. We discovered that APAP-induced hepatocyte death and liver injury were ameliorated by attenuation of protein nitration and LPO in MitoQ-pretreated mice. Mechanistically, knockdown of GPX4, a key enzyme for LPO defense systems, exacerbated APAP-induced oxidized lipids, but did not influence the protective effect of MitoQ on APAP-induced LPO and hepatocyte death. Whereas knockdown of FSP1, another key enzyme for LPO defense systems, had little effect on APAP-induced lipid oxidation but partially weakened the protection of MitoQ on APAP-induced LPO and hepatocyte death. These results suggest that MitoQ may alleviate APAP-evoked hepatotoxicity by eliminating protein nitration and suppressing hepatic LPO. MitoQ prevents APAP-induced liver injury partially dependent of FSP1 and independent of GPX4.
Collapse
Affiliation(s)
- Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li Tao
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Fei-Fei Sun
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
29
|
Hu XQ, Song R, Dasgupta C, Blood AB, Zhang L. TET2 confers a mechanistic link of microRNA-210 and mtROS in hypoxia-suppressed spontaneous transient outward currents in uterine arteries of pregnant sheep. J Physiol 2023; 601:1501-1514. [PMID: 36856073 PMCID: PMC10106393 DOI: 10.1113/jp284336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
30
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
31
|
Lingui X, Weifeng L, Yufei W, Yibin Z. High SPATA18 Expression and its Diagnostic and Prognostic Value in Clear Cell Renal Cell Carcinoma. Med Sci Monit 2023; 29:e938474. [PMID: 36751118 PMCID: PMC9924025 DOI: 10.12659/msm.938474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SPATA18 (spermatogenesis-associated 18, also called Mieap) encodes a protein that can induce lysosome-like organelles within mitochondria, which plays an important role in tumor growth. We measured the expression of SPATA18 in ccRCC, and assessed its diagnostic and prognostic clinical value in patients with clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS We analyzed SPATA18 expression using data from the TCGA-KIRC cohort, GEO database, and UALCAN database. Immunohistochemistry was carried out to verify the expression in the ccRCC patients. The diagnostic value of SPATA18expression was evaluated by a receiver operating characteristic (ROC) curve. The correlation between clinical characteristics and SPATA18 expression was calculated by chi-square test. The prognostic value of SPATA18 expression was assessed by Kaplan-Meier analysis and Cox analysis. We conducted gene set enrichment analysis (GSEA) using TCGA database. RESULTS SPATA18 gene exhibited a higher expression in ccRCC tissues than in normal tissues. SPATA18 showed a substantial diagnostic value in ccRCC. SPATA18 expression was correlated with histological grade, clinical stage, T classification, and distant metastasis of ccRCC. Furthermore, high SPATA18 expression was associated with favorable overall survival. Multivariate analysis showed that SPATA18 was an independent risk factor for ccRCC. Gene set enrichment analysis (GSEA) showed that B cell receptors, WNT targets, extracellular matrix, oxidative phosphorylation, calcium metabolism, iron uptake and transport, potassium channels, and insulin receptor were differently enriched in the phenotype that was negatively correlated with SPATA18. CONCLUSIONS Our study indicated that high SPATA18 expression in ccRCC was associated with a good prognosis, and it could be a positive prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Xie Lingui
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Liu Weifeng
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Wang Yufei
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhou Yibin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
32
|
Gao XC, Zhang NX, Shen JM, Lv JW, Zhang KY, Sun Y, Li H, Wang YL, Cheng DD, Zhao MY, Zhang H, Li CN, Sun JM. Screening of the Active Compounds against Neural Oxidative Damage from Ginseng Phloem Using UPLC-Q-Exactive-MS/MS Coupled with the Content-Effect Weighted Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249061. [PMID: 36558193 PMCID: PMC9781605 DOI: 10.3390/molecules27249061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.
Collapse
Affiliation(s)
- Xiao-Chen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Nan-Xi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing-Wei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kai-Yue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yao Sun
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Hang Li
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Yue-Long Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Duan-Duan Cheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meng-Ya Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (H.Z.); (C.-N.L.); (J.-M.S.); Tel.: +86-431-86763809 (J.-M.S.)
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (H.Z.); (C.-N.L.); (J.-M.S.); Tel.: +86-431-86763809 (J.-M.S.)
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (H.Z.); (C.-N.L.); (J.-M.S.); Tel.: +86-431-86763809 (J.-M.S.)
| |
Collapse
|
33
|
Qi X, Zhu Z, Wang Y, Wen Z, Jiang Z, Zhang L, Pang Y, Lu J. Research progress on the relationship between mitochondrial function and heart failure: A bibliometric study from 2002 to 2021. Front Mol Biosci 2022; 9:1036364. [PMID: 36330217 PMCID: PMC9622797 DOI: 10.3389/fmolb.2022.1036364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2022] Open
Abstract
Heart failure is one of the major public health problems in the world. In recent years, more and more attention has been paid to the relationship between heart failure and mitochondrial function. In the past 2 decades, a growing number of research papers in this field have been published. This study conducted a bibliometric analysis of the published literature on the relationship between MF and HF in the past 20 years by utilizing Microsoft Excel 2019, Biblio metric analysis platform, WoSCC database, VosViewer and Citespace. The results show that the papers have increased year by year and China and the United States are the leading countries in this field, as well as the countries with the most cooperation and exchanges. University of california system is the research institution with the greatest impacts on research results, and Yip H.K. is the author with more papers. The American Journal of Physiology-heart and Circulatory Physiology is probably the most popular magazine. At present, most of the published articles on mitochondria and HF are cited from internationally influential journals. The research focus includes oxidative stress, metabolic dysfunction, mitochondrial Ca2+ homeostasis imbalance, mitochondrial quality control and mitochondrial dysfunction mediated by inflammation in the pathogenesis of HF. Targeted regulating of mitochondria will be the keynote of future research on prevention and treatment of HF.
Collapse
Affiliation(s)
- Xiang Qi
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhide Zhu
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuhan Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhihao Wen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
| | - Zhixiong Jiang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liren Zhang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Pang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| | - Jianqi Lu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| |
Collapse
|
34
|
Smith KLM, Swiderska A, Lock MC, Graham L, Iswari W, Choudhary T, Thomas D, Kowash HM, Desforges M, Cottrell EC, Trafford AW, Giussani DA, Galli GLJ. Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner. J Pineal Res 2022; 73:e12821. [PMID: 35941749 PMCID: PMC9540814 DOI: 10.1111/jpi.12821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown. Furthermore, while maternal antioxidant treatments are emerging as a promising new strategy to protect the hypoxic fetus, whether these treatments convey similar protection to cardiac mitochondria in the male or female fetus has not been investigated. Therefore, using an established rat model, we measured the sex-dependent effects of gestational hypoxia and maternal melatonin treatment on fetal cardiac mitochondrial respiration, reactive oxygen species (ROS) production, and lipid peroxidation. Pregnant Wistar rats were subjected to normoxia or hypoxia (13% oxygen) during gestational days (GDs) 6-20 (term ~22 days) with or without melatonin treatment (5 µg/ml in maternal drinking water). On GD 20, mitochondrial aerobic respiration and H2 O2 production were measured in fetal heart tissue, together with lipid peroxidation and citrate synthase (CS) activity. Gestational hypoxia reduced maternal body weight gain (p < .01) and increased placental weight (p < .05) but had no effect on fetal weight or litter size. Cardiac mitochondria from male but not female fetuses of hypoxic pregnancy had reduced respiratory capacity at Complex II (CII) (p < .05), and an increase in H2 O2 production/O2 consumption (p < .05) without any changes in lipid peroxidation. CS activity was also unchanged in both sexes. Despite maternal melatonin treatment increasing maternal and fetal plasma melatonin concentration (p < .001), melatonin treatment had no effect on any of the mitochondrial parameters investigated. To conclude, we show that gestational hypoxia leads to ROS generation from the mitochondrial electron transport chain and affects fetal cardiac mitochondrial respiration in a sex-dependent manner. We also show that maternal melatonin treatment had no effect on these relationships, which has implications for the development of future therapies for hypoxic pregnancies.
Collapse
Affiliation(s)
- Kerri L. M. Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Agnieszka Swiderska
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mitchell C. Lock
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lucia Graham
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Wulan Iswari
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Tashi Choudhary
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Donna Thomas
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Hager M. Kowash
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michelle Desforges
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Elizabeth C. Cottrell
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Dino A. Giussani
- Department of Physiology Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Gina L. J. Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
35
|
Zhao S, Hong Y, Liang YY, Li XL, Shen JC, Sun CC, Chu LL, Hu J, Wang H, Xu DX, Zhang SC, Xu DD, Xu T, Zhao LL. Compartmentalized regulation of NAD + by Di (2-ethyl-hexyl) phthalate induces DNA damage in placental trophoblast. Redox Biol 2022; 55:102414. [PMID: 35926314 PMCID: PMC9356100 DOI: 10.1016/j.redox.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) is a wildly used plasticizer. Maternal exposure to DEHP during pregnancy blocks the placental cell cycle at the G2/M phase by reducing the efficiency of the DNA repair pathways and affects the health of offsprings. However, the mechanism by which DEHP inhibits the repair of DNA damage remains unclear. In this study, we demonstrated that DEHP inhibits DNA damage repair by reducing the activity of the DNA repair factor recruitment molecule PARP1. NAD+ and ATP are two substrates necessary for PARP1 activity. DEHP abated NAD+ in the nucleus by reducing the level of NAD+ synthase NMNAT1 and elevated NAD+ in the mitochondrial by promoting synthesis. Furthermore, DEHP destroyed the mitochondrial respiratory chain, affected the structure and quantity of mitochondria, and decreased ATP production. Therefore, DEHP inhibits PARP1 activity by reducing the amount of NAD+ and ATP, which hinders the DNA damage repair pathways. The supplement of NAD+ precursor NAM can partially rescue the DNA and mitochondria damage. It provides a new idea for the prevention of health problems of offsprings caused by DEHP injury to the placenta.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Lu Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Jiang-Chuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Cong-Cong Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health / Center for Water and Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ling-Luo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jie Hu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Shi-Chen Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, Anhui, 230601, China
| | - Dou-Dou Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tao Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China.
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
36
|
Hu XQ, Song R, Dasgupta C, Romero M, Juarez R, Hanson J, Blood AB, Wilson SM, Zhang L. MicroRNA-210-mediated mitochondrial reactive oxygen species confer hypoxia-induced suppression of spontaneous transient outward currents in ovine uterine arteries. Br J Pharmacol 2022; 179:4640-4654. [PMID: 35776536 PMCID: PMC9474621 DOI: 10.1111/bph.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA‐210 (miR‐210) in gestational hypoxia‐induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR‐210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia‐induced suppression of STOCs in uterine arteries. Experimental Approach Resistance‐sized uterine arteries were isolated from near‐term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2) for 48 h. Key Results Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR‐210 mimic to normoxic arteries and blocked by antagomir miR‐210‐LNA in hypoxic arteries. Hypoxia or miR‐210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria‐targeted antioxidant MitoQ. Hypoxia and miR‐210 down‐regulated iron–sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large‐conductance Ca2+‐activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. Conclusion and Implications This study demonstrates a novel mechanistic role for the miR‐210‐ISCU‐mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Monica Romero
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rucha Juarez
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jenna Hanson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
37
|
Sutovska H, Babarikova K, Zeman M, Molcan L. Prenatal Hypoxia Affects Foetal Cardiovascular Regulatory Mechanisms in a Sex- and Circadian-Dependent Manner: A Review. Int J Mol Sci 2022; 23:2885. [PMID: 35270026 PMCID: PMC8910900 DOI: 10.3390/ijms23052885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal hypoxia during the prenatal period can interfere with the developmental trajectory and lead to developing hypertension in adulthood. Prenatal hypoxia is often associated with intrauterine growth restriction that interferes with metabolism and can lead to multilevel changes. Therefore, we analysed the effects of prenatal hypoxia predominantly not associated with intrauterine growth restriction using publications up to September 2021. We focused on: (1) The response of cardiovascular regulatory mechanisms, such as the chemoreflex, adenosine, nitric oxide, and angiotensin II on prenatal hypoxia. (2) The role of the placenta in causing and attenuating the effects of hypoxia. (3) Environmental conditions and the mother's health contribution to the development of prenatal hypoxia. (4) The sex-dependent effects of prenatal hypoxia on cardiovascular regulatory mechanisms and the connection between hypoxia-inducible factors and circadian variability. We identified that the possible relationship between the effects of prenatal hypoxia on the cardiovascular regulatory mechanism may vary depending on circadian variability and phase of the days. In summary, even short-term prenatal hypoxia significantly affects cardiovascular regulatory mechanisms and programs hypertension in adulthood, while prenatal programming effects are not only dependent on the critical period, and sensitivity can change within circadian oscillations.
Collapse
Affiliation(s)
| | | | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia; (H.S.); (K.B.); (L.M.)
| | | |
Collapse
|
38
|
McGillick EV, Orgeig S, Allison BJ, Brain KL, Niu Y, Itani N, Skeffington KL, Kane AD, Herrera EA, Morrison JL, Giussani DA. Molecular regulation of lung maturation in near-term fetal sheep by maternal daily vitamin C treatment in late gestation. Pediatr Res 2022; 91:828-838. [PMID: 33859366 PMCID: PMC9064793 DOI: 10.1038/s41390-021-01489-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown. METHODS We investigated the effect of maternal daily vitamin C treatment (200 mg/kg, intravenously) for a month in late gestation (105-138 days gestation, term ~145 days) on molecular regulation of fetal lung maturation in sheep. Expression of genes and proteins regulating lung development was quantified in fetal lung tissue. The number of surfactant-producing cells was determined by immunohistochemistry. RESULTS Maternal vitamin C treatment increased fetal lung gene expression of the antioxidant enzyme SOD-1, hypoxia signaling genes (HIF-2α, HIF-3α, ADM, and EGLN-3), genes regulating sodium movement (SCNN1-A, SCNN1-B, ATP1-A1, and ATP1-B1), surfactant maturation (SFTP-B and ABCA3), and airway remodeling (ELN). There was no effect of maternal vitamin C treatment on the expression of protein markers evaluated or on the number of surfactant protein-producing cells in fetal lung tissue. CONCLUSIONS Maternal vitamin C treatment in the last third of pregnancy in sheep acts at the molecular level to increase the expression of genes that are important for fetal lung maturation in a healthy pregnancy. IMPACT Maternal daily vitamin C treatment for a month in late gestation in sheep increases the expression of gene-regulating pathways that are essential for normal fetal lung development. Following late gestation vitamin C exposure in a healthy pregnancy, an increase in lung gene but not protein expression may act as a mechanism to aid in the preparation for exposure to the air-breathing environment after birth. In the future, the availability/development of compounds with greater antioxidant properties than vitamin C or more specific targets at the site of oxidative stress in vivo may translate clinically to improve respiratory outcomes in complicated pregnancies at birth.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, SA, Australia
- Molecular and Evolutionary Physiology of the Lung Laboratory, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Andrew D Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, University of South Australia, Adelaide, SA, Australia
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridgeshire, UK.
- Cambridge BHF Centre of Research Excellence, University of Cambridge, Cambridgeshire, UK.
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridgeshire, UK.
| |
Collapse
|
39
|
Jing M, Han G, Li Y, Zong W, Liu R. Cellular and molecular responses of earthworm coelomocytes and antioxidant enzymes to naphthalene and a major metabolite (1-naphthol). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Hansell JA, Richter HG, Camm EJ, Herrera EA, Blanco CE, Villamor E, Patey OV, Lock MC, Trafford AW, Galli GLJ, Giussani DA. Maternal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res 2022; 72:e12766. [PMID: 34634151 DOI: 10.1111/jpi.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2 ) pregnancy ± melatonin (M) treatment (5 μg·ml-1 .day-1 ) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15-20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia-induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair-fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in-vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair-fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch-up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia-induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair-fed pregnancies. Whilst maternal treatment of normoxic or pair-fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Jeremy A Hansell
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hans G Richter
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Carlos E Blanco
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Eduardo Villamor
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Olga V Patey
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mitchell C Lock
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge BHF Centre for Research Excellence, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
41
|
Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacol Res 2021; 175:106038. [PMID: 34929300 DOI: 10.1016/j.phrs.2021.106038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide in the last decade, accompanied by immense health and economic burdens. Heart failure (HF), as the terminal stage of many cardiovascular diseases, is a common, intractable, and costly medical condition. Despite significant improvements in pharmacologic and device therapies over the years, life expectancy for this disease remains poor. Current therapies have not reversed the trends in morbidity and mortality as expected. Thus, there is an urgent need for novel potential therapeutic agents. Although the pathophysiology of the failing heart is extraordinarily complex, targeting mitochondrial dysfunction can be an effective approach for potential treatment. Increasing evidence has shown that mitochondrial abnormalities, including altered metabolic substrate utilization, impaired mitochondrial oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) formation, and aberrant mitochondrial dynamics, are closely related to HF. Here, we reviewed the findings on the role of mitochondrial dysfunction in HF, along with novel mitochondrial therapeutics and their pharmacological effects.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
42
|
Lakshman R, Spiroski AM, McIver LB, Murphy MP, Giussani DA. Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension 2021; 78:1818-1828. [PMID: 34757774 PMCID: PMC8577293 DOI: 10.1161/hypertensionaha.121.17926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rama Lakshman
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Lauren B McIver
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Michael P Murphy
- MRC Mitochondria Biology Unit (M.P.M.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge Strategic Research Initiative in Reproduction, United Kingdom (D.A.G.)
| |
Collapse
|
43
|
Song H, Polster BM, Thompson LP. Chronic hypoxia alters cardiac mitochondrial complex protein expression and activity in fetal guinea pigs in a sex-selective manner. Am J Physiol Regul Integr Comp Physiol 2021; 321:R912-R924. [PMID: 34730023 PMCID: PMC8714812 DOI: 10.1152/ajpregu.00004.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O2), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all P < 0.05). Late-onset HPX decreased (P < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Loren P Thompson
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
44
|
Abstract
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development, and Neuroscience; The Barcroft Centre; Cambridge Cardiovascular British Heart Foundation Centre for Research Excellence; and Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, UK
| |
Collapse
|
45
|
Mitoquinone Protects Podocytes from Angiotensin II-Induced Mitochondrial Dysfunction and Injury via the Keap1-Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1394486. [PMID: 34426758 PMCID: PMC8380182 DOI: 10.1155/2021/1394486] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Podocyte mitochondrial dysfunction plays a critical role in the pathogenesis of chronic kidney disease (CKD). Previous studies demonstrated that excessive mitochondrial fission could lead to the overproduction of reactive oxygen species (ROS) and promote podocyte apoptosis. Therefore, the maintenance of stable mitochondrial function is a newly identified way to protect podocytes and prevent the progression of CKD. As a mitochondria-targeted antioxidant, mitoquinone (MitoQ) has been proven to be a promising agent for the prevention of mitochondrial injury in cardiovascular disease and Parkinson's disease. The present study examined the effects of MitoQ on angiotensin II- (Ang II-) induced podocyte injury both in vivo and in vitro. Podocyte mitochondria in Ang II-infused mice exhibited morphological and functional alterations. The observed mitochondrial fragmentation and ROS production were alleviated with MitoQ treatment. In vitro, alterations in mitochondrial morphology and function in Ang II-stimulated podocytes, including mitochondrial membrane potential reduction, ROS overproduction, and adenosine triphosphate (ATP) deficiency, were significantly reversed by MitoQ. Moreover, MitoQ rescued the expression and translocation of Nrf2 (nuclear factor E2-related factor 2) and decreased the expression of Keap1 (Kelch-like ECH-associated protein 1) in Ang II-stimulated podocytes. Nrf2 knockdown partially blocked the protective effects of MitoQ on Ang II-induced mitochondrial fission and oxidative stress in podocytes. These results demonstrate that MitoQ exerts a protective effect in Ang II-induced mitochondrial injury in podocytes via the Keap1-Nrf2 signaling pathway.
Collapse
|
46
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
47
|
Li S, Chen Y, Zhang Y, Qiu F, Zeng F, Shi L. Prenatal exercise reprograms the development of hypertension progress and improves vascular health in SHR offspring. Vascul Pharmacol 2021; 139:106885. [PMID: 34116258 DOI: 10.1016/j.vph.2021.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Upregulation of L-type voltage-gated Ca2+ (CaV1.2) channel in the arterial myocytes is a hallmark feature of hypertension. However, whether maternal exercise during pregnancy has a sustained beneficial effect on the offspring of spontaneously hypertensive rats (SHRs) through epigenetic regulation of CaV1.2 channel is largely unknown. METHODS Pregnant SHRs and Wistar-Kyoto rats were subjected to swimming and the vascular molecular and functional properties of male offspring were evaluated at embryonic (E) 20.5 day, 3 months (3 M), and 6 months (6 M). RESULTS Exercise during pregnancy significantly decreased the resting blood pressure at 3 M but not 6 M in the offspring of SHR. Prenatal exercise significantly reduced the cardiovascular reactivity, the contribution of CaV1.2 channel to the vascular tone, and the whole-cell current density of CaV1.2 channel in both 3 M and 6 M offspring of SHR. Moreover, maternal exercise triggered hypermethylation of the promoter region of the CaV1.2 α1C gene (CACNA1C), with a concomitant decrease in its protein and mRNA expressions in SHR offspring at E20.5, 3 M, and 6 M. Tissue culture experiments further confirmed that 5-Aza-2'-deoxycytidine increased the structure and functional expression of CaV1.2 channel by inhibiting the DNA methylation of CACNA1C. However, the improvement of prenatal exercise on the blood pressure, function, and expression of CaV1.2 channel was attenuated in the offspring of SHRs at 6 M compared to the 3 M readout. CONCLUSIONS These data suggest that prenatal exercise improves the vascular function by the hypermethylation of CACNA1C in the arterial myocytes and delays the development of hypertension in the offspring of SHRs. However, these effects fade out with age.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
48
|
Camm EJ, Cross CM, Kane AD, Tarry-Adkins JL, Ozanne SE, Giussani DA. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J 2021; 35:e21477. [PMID: 33891326 DOI: 10.1096/fj.202002557rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
49
|
Spiroski AM, Niu Y, Nicholas LM, Austin-Williams S, Camm EJ, Sutherland MR, Ashmore TJ, Skeffington KL, Logan A, Ozanne SE, Murphy MP, Giussani DA. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J 2021; 35:e21446. [PMID: 33788974 PMCID: PMC7612077 DOI: 10.1096/fj.202002705r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Mitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O2 ) pregnancy ± MitoQ (500 μM day-1 ) in the maternal drinking water. At 4 months of age, one cohort of male offspring was chronically instrumented with vascular catheters and flow probes to test in vivo cardiovascular function. In a second cohort, the heart was isolated and mounted onto a Langendorff preparation. To establish mechanisms linking gestational hypoxia with cardiovascular dysfunction and protection by MitoQ, we quantified the expression of antioxidant system, β-adrenergic signaling, and calcium handling genes in the fetus and adult, in frozen tissues from a third cohort. Maternal MitoQ in hypoxic pregnancy protected offspring against increased α1 -adrenergic reactivity of the cardiovascular system, enhanced reactive hyperemia in peripheral vascular beds, and sympathetic dominance, hypercontractility and diastolic dysfunction in the heart. Inhibition of Nfe2l2-mediated oxidative stress in the fetal heart and preservation of calcium regulatory responses in the hearts of fetal and adult offspring link molecular mechanisms to the protective actions of MitoQ treatment of hypoxic pregnancy. Therefore, these data show the efficacy of MitoQ in buffering mitochondrial stress through NADPH-induced oxidative damage and the prevention of programmed cardiovascular disease in adult offspring of hypoxic pregnancy.
Collapse
Affiliation(s)
- Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Lisa M Nicholas
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Shani Austin-Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Megan R Sutherland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
50
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|