1
|
Guo Z, Dong RW, Wu Y, Dong S, Alahari SK. Cyclin-dependent kinase 4 and 6 inhibitors in breast cancer treatment. Oncogene 2025; 44:1135-1152. [PMID: 40200094 DOI: 10.1038/s41388-025-03378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the second largest cancer in the world, and it has highest mortality rate in women worldwide. The aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway plays an important role in uncontrolled breast cancer cell proliferation. Therefore, targeting CDK4/6 to improve overall survival rates has been a strong interest in breast cancer therapeutics. Till date, four CDK4/6 inhibitors have been developed and approved for hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer therapies with great success. However, acquired resistance to CDK4/6 inhibitors has emerged and limits their effectiveness in breast cancer. In this review, we systematically discussed the mechanisms of resistance to CDK4/6 inhibitors including the cell cycle-specific and cell cycle-nonspecific mechanisms. Also, we analyzed combination strategies with other signaling inhibitors in clinical and preclinical settings that further expand the clinical application of CDK4/6 inhibitors in future breast cancer therapies.
Collapse
Affiliation(s)
- Zhengfei Guo
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Richard W Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yusheng Wu
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Shengli Dong
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
He K, Sun X, Chen C, Luc S, Robichaud JH, Zhang Y, Huang Y, Ji B, Ku PI, Subramanian R, Ling K, Hu J. Non-canonical CDK6 activity promotes cilia disassembly by suppressing axoneme polyglutamylation. J Cell Biol 2025; 224:e202405170. [PMID: 39636239 PMCID: PMC11619382 DOI: 10.1083/jcb.202405170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tubulin polyglutamylation is a posttranslational modification that occurs primarily along the axoneme of cilia. Defective axoneme polyglutamylation impairs cilia function and has been correlated with ciliopathies, including Joubert Syndrome (JBTS). However, the precise mechanisms regulating proper axoneme polyglutamylation remain vague. Here, we show that cyclin-dependent kinase 6 (CDK6), but not its paralog CDK4, localizes to the cilia base and suppresses axoneme polyglutamylation by phosphorylating RAB11 family interacting protein 5 (FIP5) at site S641, a critical regulator of cilia import of glutamylases. S641 phosphorylation disrupts the ciliary recruitment of FIP5 and its association with RAB11, thereby reducing the ciliary import of glutamylases. Encouragingly, the FDA-approved CDK4/6 inhibitor Abemaciclib can effectively restore cilia function in JBTS cells with defective glutamylation. In summary, our study elucidates the regulatory mechanisms governing axoneme polyglutamylation and suggests that developing CDK6-specific inhibitors could be a promising therapeutic strategy to enhance cilia function in ciliopathy patients.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - San Luc
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Biyun Ji
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Xue Y, Zhai J. Strategy of combining CDK4/6 inhibitors with other therapies and mechanisms of resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:189-207. [PMID: 39114502 PMCID: PMC11301413 DOI: 10.62347/hgni4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2024]
Abstract
Cell cycle-dependent protein kinase 4/6 (CDK4/6) is a crucial kinase that regulates the cell cycle, essential for cell division and proliferation. Hence, combining CDK4/6 inhibitors with other anti-tumor drugs is a pivotal clinical strategy. This strategy can efficiently inhibit the growth and division of tumor cells, reduce the side effects, and improve the quality of life of patients by reducing the dosage of combined anticancer drugs. Furthermore, the combination therapy strategy of CDK4/6 inhibitors could ameliorate the drug resistance of combined drugs and overcome the CDK4/6 resistance caused by CDK4/6 inhibitors. Various tumor treatment strategies combined with CDK4/6 inhibitors have entered the clinical trial stage, demonstrating their substantial clinical potential. This study reviews the research progress of CDK4/6 inhibitors from 2018 to 2022, the related resistance mechanism of CDK4/6 inhibitors, and the strategy of combination medication.
Collapse
Affiliation(s)
- Yingfei Xue
- Tianjin University, School of Pharmaceutical Science and Technology (SPST)Tianjin 300072, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| |
Collapse
|
4
|
Agborbesong E, Zhou JX, Zhang H, Li LX, Harris PC, Calvet JP, Li X. SMYD3 Controls Ciliogenesis by Regulating Distinct Centrosomal Proteins and Intraflagellar Transport Trafficking. Int J Mol Sci 2024; 25:6040. [PMID: 38892227 PMCID: PMC11172885 DOI: 10.3390/ijms25116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C. Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Alvarez MRS, Moreno PG, Grijaldo-Alvarez SJB, Yadlapati A, Zhou Q, Narciso MP, Completo GC, Nacario RC, Rabajante JF, Heralde FM, Lebrilla CB. The effects of immortalization on the N-glycome and proteome of CDK4-transformed lung cancer cells. Glycobiology 2024; 34:cwae030. [PMID: 38579012 PMCID: PMC11041852 DOI: 10.1093/glycob/cwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.
Collapse
Affiliation(s)
- Michael Russelle S Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Patrick Gabriel Moreno
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
| | - Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Michelle P Narciso
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Francisco M Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, 1000, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Group, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
6
|
Tran MT, Ho CNQ, Hoang SN, Doan CC, Nguyen MT, Van HD, Ly CN, Le CPM, Hoang HNQ, Nguyen HTM, Truong HT, To QM, Nguyen TTT, Le LT. Morphological Changes of 3T3 Cells under Simulated Microgravity. Cells 2024; 13:344. [PMID: 38391957 PMCID: PMC10887114 DOI: 10.3390/cells13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Cells are sensitive to changes in gravity, especially the cytoskeletal structures that determine cell morphology. The aim of this study was to assess the effects of simulated microgravity (SMG) on 3T3 cell morphology, as demonstrated by a characterization of the morphology of cells and nuclei, alterations of microfilaments and microtubules, and changes in cycle progression. METHODS 3T3 cells underwent induced SMG for 72 h with Gravite®, while the control group was under 1G. Fluorescent staining was applied to estimate the morphology of cells and nuclei and the cytoskeleton distribution of 3T3 cells. Cell cycle progression was assessed by using the cell cycle app of the Cytell microscope, and Western blot was conducted to determine the expression of the major structural proteins and main cell cycle regulators. RESULTS The results show that SMG led to decreased nuclear intensity, nuclear area, and nuclear shape and increased cell diameter in 3T3 cells. The 3T3 cells in the SMG group appeared to have a flat form and diminished microvillus formation, while cells in the control group displayed an apical shape and abundant microvilli. The 3T3 cells under SMG exhibited microtubule distribution surrounding the nucleus, compared to the perinuclear accumulation in control cells. Irregular forms of the contractile ring and polar spindle were observed in 3T3 cells under SMG. The changes in cytoskeleton structure were caused by alterations in the expression of major cytoskeletal proteins, including β-actin and α-tubulin 3. Moreover, SMG induced 3T3 cells into the arrest phase by reducing main cell cycle related genes, which also affected the formation of cytoskeleton structures such as microfilaments and microtubules. CONCLUSIONS These results reveal that SMG generated morphological changes in 3T3 cells by remodeling the cytoskeleton structure and downregulating major structural proteins and cell cycle regulators.
Collapse
Affiliation(s)
- Minh Thi Tran
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam;
| | - Chi Nguyen Quynh Ho
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Son Nghia Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Chung Chinh Doan
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Minh Thai Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Duc Van
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cang Ngoc Ly
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cuong Phan Minh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Nghia Quang Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Han Thai Minh Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Innovation Center, University of New Hampshire, Manchester, NH 03101, USA
| | - Han Thi Truong
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Quan Minh To
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 70000, Vietnam;
| | - Tram Thi Thuy Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Faculty of General Biomedical, University of Physical Education and Sport, Ho Chi Minh City 70000, Vietnam
| | - Long Thanh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| |
Collapse
|
7
|
Ceglowski J, Hoffman HK, Neumann AJ, Hoff KJ, McCurdy BL, Moore JK, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. EMBO Rep 2024; 25:198-227. [PMID: 38177908 PMCID: PMC10883266 DOI: 10.1038/s44319-023-00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- Julia Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Huxley K Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Andrew J Neumann
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Katie J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA.
| |
Collapse
|
8
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
9
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
10
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
11
|
Ceglowski J, Hoffman H, Hoff K, McCurdy B, Moore J, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550533. [PMID: 37546873 PMCID: PMC10402096 DOI: 10.1101/2023.07.25.550533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as, axonemal microtubule growth and stabilization in polarized epithelia are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- J. Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - H.K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - K.J. Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - B.L. McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - J.K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - R. Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| |
Collapse
|
12
|
Tang M, Chen G, Tu B, Hu Z, Huang Y, DuFort CC, Wan X, Mao Z, Liu Y, Zhu WG, Lu W. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. SCIENCE ADVANCES 2023; 9:eade6624. [PMID: 37315132 DOI: 10.1126/sciadv.ade6624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8+ T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Christopher C DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Kim K, Ryu TY, Jung E, Han TS, Lee J, Kim SK, Roh YN, Lee MS, Jung CR, Lim JH, Hamamoto R, Lee HW, Hur K, Son MY, Kim DS, Cho HS. Epigenetic regulation of SMAD3 by histone methyltransferase SMYD2 promotes lung cancer metastasis. Exp Mol Med 2023:10.1038/s12276-023-00987-1. [PMID: 37121971 DOI: 10.1038/s12276-023-00987-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.
Collapse
Affiliation(s)
- Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eunsun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yu Na Roh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, Japan
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
15
|
Li XW, Ran JH, Zhou H, He JZ, Qiu ZW, Wang SY, Wu MN, Zhu S, An YP, Ma A, Li M, Quan YZ, Li NN, Ren CQ, Yang BX. 1-Indanone retards cyst development in ADPKD mouse model by stabilizing tubulin and down-regulating anterograde transport of cilia. Acta Pharmacol Sin 2023; 44:406-420. [PMID: 35906293 PMCID: PMC9889777 DOI: 10.1038/s41401-022-00937-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/β-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Wei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Zhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chao-Qun Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
16
|
Li LX, Zhang X, Zhang H, Agborbesong E, Zhou JX, Calvet JP, Li X. Single-Cell and CellChat Resolution Identifies Collecting Duct Cell Subsets and Their Communications with Adjacent Cells in PKD Kidneys. Cells 2022; 12:45. [PMID: 36611841 PMCID: PMC9818381 DOI: 10.3390/cells12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
ADPKD is a genetic disorder with a molecular complexity that remains poorly understood. In this study, we sampled renal cells to construct a comprehensive and spatiotemporally resolved gene expression atlas in whole Pkd1 mutant polycystic mouse kidneys at single-cell resolution. We characterized cell diversity and identified novel collecting duct (CD) cell subtypes in cystic kidneys. We further found that CD cells appear to take different cell fate trajectories, and the first and the most important step might take place around day 14 in Pkd1 homozygous kidneys. After that day, increased numbers of CD cells showed highly proliferative and fibrotic characteristics, as detected in later-stage Pkd1 homozygous kidneys, both of which should contribute to cyst growth and renal fibrosis. With a newly developed modeling algorithm, called CellChat Explorer, we identify cell-to-cell communication networks mediated by the ligand receptor, such as MIF-CD44/CD74, in cystic kidneys, and confirm them via the expression patterns of ligands and receptors in four major cell types, which addresses the key question as to whether and how Pkd1 mutant renal epithelial cells affect their neighboring cells. The allele-specific gene expression profiles show that the secretion of cytokines by Pkd1 mutant epithelial cells may affect the gene expression profiles in recipient cells via epigenetic mechanisms, and vice versa. This study can be used to drive precision therapeutic targeting of ADPKD.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci 2022; 12:83. [PMID: 35659740 PMCID: PMC9164400 DOI: 10.1186/s13578-022-00821-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors directly regulate gene expression by recognizing and binding to specific DNA sequences, involving the dynamic alterations of chromatin structure and the formation of a complex with different kinds of cofactors, like DNA/histone modifying-enzymes, chromatin remodeling factors, and cell cycle factors. Despite the significance of transcription factors, it remains unclear to determine how these cofactors are regulated to cooperate with transcription factors, especially DNA/histone modifying-enzymes. It has been known that DNA/histone modifying-enzymes are regulated by post-translational modifications. And the most common and important modification is phosphorylation. Even though various DNA/histone modifying-enzymes have been classified and partly explained how phosphorylated sites of these enzymes function characteristically in recent studies. It still needs to find out the relationship between phosphorylation of these enzymes and the diseases-associated transcriptional regulation. Here this review describes how phosphorylation affects the transcription activity of these enzymes and other functions, including protein stability, subcellular localization, binding to chromatin, and interaction with other proteins.
Collapse
|
18
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
19
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Xu J, Xue C, Wang X, Zhang L, Mei C, Mao Z. Chromatin Methylation Abnormalities in Autosomal Dominant Polycystic Kidney Disease. Front Med (Lausanne) 2022; 9:921631. [PMID: 35865176 PMCID: PMC9294145 DOI: 10.3389/fmed.2022.921631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease worldwide and is one of the major causes of end-stage renal disease. PKD1 and PKD2 are two genes that mainly contribute to the development and progression of ADPKD. The precise mechanism is not fully understood. In recent years, epigenetic modification has drawn increasing attention. Chromatin methylation is a very important category of PKD epigenetic changes and mostly involves DNA, histone, and RNA methylation. Genome hypomethylation and regional gene hypermethylation coexist in ADPKD. We found that the genomic DNA of ADPKD kidney tissues showed extensive demethylation by whole-genome bisulphite sequencing, while some regional DNA methylation from body fluids, such as blood and urine, can be used as diagnostic or prognostic biomarkers to predict PKD progression. Histone modifications construct the histone code mediated by histone methyltransferases and contribute to aberrant methylation changes in PKD. Considering the complexity of methylation abnormalities occurring in different regions and genes on the PKD epigenome, more specific therapy aiming to restore to the normal genome should lead to the development of epigenetic treatment.
Collapse
Affiliation(s)
- Jing Xu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Xue
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Lei Zhang
| | - Changlin Mei
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Changlin Mei
| | - Zhiguo Mao
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Zhiguo Mao
| |
Collapse
|
21
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
22
|
Dong Z, Xu J, Pan J. Identification of Regulators for Ciliary Disassembly by a Chemical Screen. ACS Chem Biol 2021; 16:2665-2672. [PMID: 34761911 DOI: 10.1021/acschembio.1c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cilia are organelles for cellular signaling and motility. They are assembled in G0/G1 and disassembled prior to mitosis. Compared to what is known about ciliary assembly, less is understood about ciliary disassembly. To uncover new mechanisms of ciliary disassembly, we performed an unbiased chemical screen. Chlamydomonas reinhardtii cells were experimentally induced for ciliary disassembly by treatment with sodium pyrophosphate. An FDA approved drug library (HY-L022P-1, MedChemExpress) was used for the screening. Primary screening with further experiments has identified microtubule stabilizer taxanes, CDK4/6 inhibitor abemaciclib and Raf inhibitor dabrafenib being effective in inhibiting ciliary disassembly induced experimentally but also under physiological conditions. In addition, their effects on ciliary disassembly in mammalian cells has also been confirmed. Thus, our studies have not only revealed new mechanisms in ciliary disassembly but also provided new tools for studying ciliary disassembly. These discovered drugs may be used for therapeutic interventions of disorders involving ciliary degeneration such as retinopathies.
Collapse
Affiliation(s)
- Zhijun Dong
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia Xu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266000, China
| |
Collapse
|
23
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
24
|
Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications. Mol Biol Rep 2021; 48:7499-7508. [PMID: 34510321 DOI: 10.1007/s11033-021-06701-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
The revelance of the epigenetic regulation of cancer led to the design and testing of many drugs targeting epigenetic modifiers. The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) domain-containing protein 2 (SMYD2) and 3 (SMYD3) are methyltransferases which act on histone and non-histone proteins to promote tumorigenesis in many cancer types. In addition to their oncogenic roles, SMYD2 and SMYD3 are involved in many other physiopathological conditions. In this review we will focus on the advances made in the last five years in the field of pharmacology regarding drugs targeting SMYD2 (such as LLY-507 or AZ505) and SMYD3 (such as BCI-121 or EPZ031686) and their potential cellular and molecular mechanisms of action and application in anti-tumoural therapy and/or against other diseases.
Collapse
|
25
|
Koenning M, Wang X, Karki M, Jangid RK, Kearns S, Tripathi DN, Cianfrocco M, Verhey KJ, Jung SY, Coarfa C, Ward CS, Kalish BT, Grimm SL, Rathmell WK, Mostany R, Dere R, Rasband MN, Walker CL, Park IY. Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Brain 2021; 144:2527-2540. [PMID: 34014281 PMCID: PMC8418347 DOI: 10.1093/brain/awab200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.
Collapse
Affiliation(s)
- Matthias Koenning
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xianlong Wang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul Kumar Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Kearns
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Durga Nand Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Scott Ward
- Molecular Physiology and Biophysics, Mouse Metabolic and Phenotyping Core, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Ding H, Li LX, Harris PC, Yang J, Li X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat Commun 2021; 12:4548. [PMID: 34315885 PMCID: PMC8316472 DOI: 10.1038/s41467-021-24799-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germline mutations of PKD1 or PKD2 on one allele and a somatic mutation inactivating the remaining normal allele. However, if and how null ADPKD gene renal epithelial cells affect the biology and function of neighboring cells, including heterozygous renal epithelial cells, fibroblasts and macrophages during cyst initiation and expansion remains unknown. Here we address this question with a "cystic extracellular vesicles/exosomes theory". We show that cystic cell derived extracellular vesicles and urinary exosomes derived from ADPKD patients promote cyst growth in Pkd1 mutant kidneys and in 3D cultures. This is achieved by: 1) downregulation of Pkd1 gene expression and upregulation of specific miRNAs, resulting in the activation of PKD associated signaling pathways in recipient renal epithelial cells and tissues; 2) the activation of fibroblasts; and 3) the induction of cytokine expression and the recruitment of macrophages to increase renal inflammation in cystic kidneys. Inhibition of exosome biogenesis/release with GW4869 significantly delays cyst growth in aggressive and milder ADPKD mouse models, suggesting that targeting exosome secretion has therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Wang Y, Jin G, Guo Y, Cao Y, Niu S, Fan X, Zhang J. SMYD2 suppresses p53 activity to promote glucose metabolism in cervical cancer. Exp Cell Res 2021; 404:112649. [PMID: 34015314 DOI: 10.1016/j.yexcr.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Reprogrammed energy metabolism, especially the Warburg effect, is emerged as a hallmark of cancer. The protein lysine methyltransferase SMYD2 functions as an oncogene and is implicated in various malignant phenotypes of human cancers. However, the role of SMYD2 in tumor metabolism is still largely unknown. Here, we report that SMYD2 is highly expressed in human cervical cancer and its aberrant expression is linked to a poor prognosis. Bioinformatic analysis revealed a novel link between SMYD2 expression and aerobic glycolysis. Through loss-of-function experiments, we demonstrated that SMYD2 knockdown or inhibition induced a metabolic shift from aerobic glycolysis to oxidative phosphorylation, as evidenced by glucose uptake, lactate production, extracellular acidification, and the oxygen consumption rate. In contrast, SMYD2 overexpression promoted glycolytic metabolism in cervical cancer cells. Moreover, SMYD2 was required for tumor growth in cervical cancer and this oncogenic activity was largely glycolysis-dependent. Mechanistically, SMYD2 altered the methylation status of p53 and inhibited its transcriptional activity. Genetic silencing of p53 largely abrogated the effects of SMYD2 in promoting aerobic glycolysis. Taken together, our findings reveal a novel function of SMYD2 in regulating the Warburg effect in cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Ge Jin
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yunfeng Guo
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yuan Cao
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Shuhuai Niu
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Xiaomei Fan
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| | - Jun Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
28
|
Li LX, Li X. Epigenetically Mediated Ciliogenesis and Cell Cycle Regulation, and Their Translational Potential. Cells 2021; 10:cells10071662. [PMID: 34359832 PMCID: PMC8307023 DOI: 10.3390/cells10071662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia biogenesis has been closely associated with cell cycle progression. Cilia assemble when cells exit the cell cycle and enter a quiescent stage at the post-mitosis phase, and disassemble before cells re-enter a new cell cycle. Studies have focused on how the cell cycle coordinates with the cilia assembly/disassembly process, and whether and how cilia biogenesis affects the cell cycle. Appropriate regulation of the functions and/or expressions of ciliary and cell-cycle-associated proteins is pivotal to maintaining bodily homeostasis. Epigenetic mechanisms, including DNA methylation and histone/chromatin modifications, are involved in the regulation of cell cycle progression and cilia biogenesis. In this review, first, we discuss how epigenetic mechanisms regulate cell cycle progression and cilia biogenesis through the regulation of DNA methylation and chromatin structures, to either promote or repress the transcription of genes associated with those processes and the modification of cytoskeleton network, including microtubule and actin. Next, we discuss the crosstalk between the cell cycle and ciliogenesis, and the involvement of epigenetic regulators in this process. In addition, we discuss cilia-dependent signaling pathways in cell cycle regulation. Understanding the mechanisms of how epigenetic regulators contribute to abnormal cell cycle regulation and ciliogenesis defects would lead to developing therapeutic strategies for the treatment of a wide variety of diseases, such as cancers, polycystic kidney disease (PKD), and other ciliopathy-associated disorders.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
29
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
30
|
Mechanistic insights into KDM4A driven genomic instability. Biochem Soc Trans 2021; 49:93-105. [PMID: 33492339 PMCID: PMC7925003 DOI: 10.1042/bst20191219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.
Collapse
|