1
|
Peng Y, Bawane KK, Liu X, Zheng X, Ge M, Xiao X, Kim EM, Halstenberg PW, Dai S, Wishart JF, Chen-Wiegart YCK. Unraveling Impurity-Dependent Morphological and Chemical Evolution of Ni-20Cr Alloy in Eutectic LiCl-KCl Molten Salt. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28764-28776. [PMID: 40300088 DOI: 10.1021/acsami.4c23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Understanding the interfacial evolution of alloys in molten salt with different amounts of water (H2O) and oxygen (O2) impurities is significant for applications in many fields, including concentrated solar power, molten salt reactors, and applications in pyrochemical reprocessing and electrorefining. Additionally, the impurity-driven corrosion mechanisms that lead to various morphological and chemical evolution characteristics at the interfaces of structural alloys and molten salts are not fully understood. In the present work, the three-dimensional (3D) morphological evolution of Ni-20Cr microwires in LiCl-KCl was studied at 500 °C under different moisture and oxygen conditions using in situ synchrotron transmission X-ray microscopy (TXM) and scanning transmission electron microscopy (STEM) techniques. No significant morphological changes were observed in Ni-20Cr microwires under vacuum conditions. However, the wires exhibited distinct morphological evolutions when exposed to molten salt containing H2O alone, as well as when both H2O and O2 were present. Furthermore, Cr2O3 precipitates were observed in the molten salt during corrosion with only H2O present, while Cr6+ species were identified in the salt when O2 was added. These findings are crucial for understanding the corrosion mechanisms of molten salt with different amounts of H2O and O2 contamination, providing insights for developing corrosion mitigation methods and improving the stability of containment alloys in molten salt applications.
Collapse
Affiliation(s)
- Yuxiang Peng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Kaustubh K Bawane
- Advanced Characterization Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaoyin Zheng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Mingyuan Ge
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11793, United States
| | - Xianghui Xiao
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11793, United States
| | - Ellie M Kim
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Phillip W Halstenberg
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yu-Chen Karen Chen-Wiegart
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11793, United States
| |
Collapse
|
2
|
Sun Y, Hughes GM, Bu J, Liu J, Grovenor CRM, Grant PS. Visualizing the Li distribution in an all-solid-state battery composite electrode using combined plasma focused-ion beam microscopy and secondary-ion mass spectroscopy. Micron 2025; 190:103746. [PMID: 39626406 DOI: 10.1016/j.micron.2024.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/19/2024] [Accepted: 11/12/2024] [Indexed: 02/10/2025]
Abstract
Using a Li metal anode, the all-solid-state battery (ASSB) promises a step change in specific energy over Li-ion batteries and the potential for increased battery safety. ASSBs rely critically on the efficient movement of Li charge carriers through a Li-conducting solid electrolyte (SE) separator and throughout a composite cathode (CC) comprising active particles, particulate SE, polymeric binder, and carbon. Unfortunately, there is no readily accessible laboratory method to visualise Li distributions at both particle and electrode scales to help understand and optimise Li electrode dynamics in ASSBs. We report a method to map all electrode elements in a 3D volume, including Li, within a typical ASSB composite cathode. The method combines a xenon plasma focused-ion beam (PFIB) for 3D milling, energy dispersive X-ray spectroscopy (EDS) to map non-Li elements, and secondary ion mass spectrometry (SIMS) to map Li. We manipulate 3D EDS and SIMS datasets into a common format and then recombine them in 3D to differentiate the different materials at high resolution. This new approach can be applied to understand and optimise the role of microstructure in controlling ASSB performance.
Collapse
Affiliation(s)
- Yige Sun
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom; The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 ORA, United Kingdom.
| | - Gareth M Hughes
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Junfu Bu
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom; The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 ORA, United Kingdom
| | - Junliang Liu
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chris R M Grovenor
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Patrick S Grant
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom; The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 ORA, United Kingdom
| |
Collapse
|
3
|
Lin H, Luo C, Cheng F, Xie K. Engineering Active Interfaces on the Surface of Porous Single-Crystalline TiO 2 Monoliths for Enhanced Catalytic Activity and Stability. RESEARCH (WASHINGTON, D.C.) 2025; 8:0579. [PMID: 39810854 PMCID: PMC11729270 DOI: 10.34133/research.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
The engineering design and construction of active interfaces represents a promising approach amidst numerous initiatives aimed at augmenting catalytic activity. Herein, we present a novel approach to incorporate interconnected pores within bulk single crystals for the synthesis of macroscopic porous single-crystalline rutile titanium oxide (R-TiO2). The porous single crystal (PSC) R-TiO2 couples a nanocrystalline framework as the solid phase with pores as the fluid phase within its structure, providing unique advantages in localized structure construction and in the field of catalysis. We successfully construct well-defined Ni cluster/TiO2 active interfaces by directly confining Ni clusters on the continuous lattice surface of PSC R-TiO2. We confirm that the lattice oxygen connected to the Ni clusters exhibits exceptional activation capability at temperatures close to room temperature compared to the pure phase PSC R-TiO2 monoliths. The PSC Ni/TiO2 catalyst demonstrates complete CO oxidation and stable catalytic performance during continuous operation in air at ~80 °C for 200 h.
Collapse
Affiliation(s)
- Huang Lin
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Cong Luo
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Fangyuan Cheng
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Kui Xie
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- School of Mechanical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Lin Y, Geng B, Zheng R, Chen W, Zhao J, Liu H, Qi Z, Yu Z, Xu K, Liu X, Yang L, Shan L, Song L. Optimizing surface active sites via burying single atom into subsurface lattice for boosted methanol electrooxidation. Nat Commun 2025; 16:286. [PMID: 39747210 PMCID: PMC11696567 DOI: 10.1038/s41467-024-55615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The precise fabrication and regulation of the stable catalysts with desired performance still challengeable for single atom catalysts. Here, the Ru single atoms with different coordination environment in Ni3FeN lattice are synthesized and studied as a typical case over alkaline methanol electrooxidation. The Ni3FeN with buried Ru atoms in subsurface lattice (Ni3FeN-Ruburied) exhibits high selectivity and Faradaic efficiency of methanol to formate conversion. Meanwhile, operando spectroscopies reveal that the Ni3FeN-Ruburied exhibits an optimized adsorption of reactants along with an inhibited surface structural reconstruction. Additional theoretical simulations demonstrate that the Ni3FeN-Ruburied displays a regulated local electronic states of surface metal atoms with an optimized adsorption of reactants and reduced energy barrier of potential determining step. This work not only reports a high-efficient catalyst for methanol to formate conversion in alkaline condition, but also offers the insight into the rational design of single atom catalysts with more accessible surficial active sites.
Collapse
Affiliation(s)
- Yunxiang Lin
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China
- Center of Free Electron Laser & High Magnetic Field, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Bo Geng
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China
- Center of Free Electron Laser & High Magnetic Field, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Ruyun Zheng
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China
| | - Wei Chen
- Center of Free Electron Laser & High Magnetic Field, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Jiahui Zhao
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zhipeng Yu
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Xue Liu
- Center of Free Electron Laser & High Magnetic Field, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| | - Lei Shan
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei, 230601, China.
- Center of Free Electron Laser & High Magnetic Field, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
- Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
5
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
6
|
Schauer DG, Bredehoeft J, Yunusa U, Pattammattel A, Wörner HJ, Sprague-Klein EA. Targeted synthesis of gold nanorods and characterization of their tailored surface properties using optical and X-ray spectroscopy. Phys Chem Chem Phys 2024; 26:25581-25589. [PMID: 39331013 DOI: 10.1039/d4cp01993h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, nanophotonics have had a transformative impact on harnessing energy, directing chemical reactions, and enabling novel molecular dynamics for thermodynamically intensive applications. Plasmonic nanoparticles have emerged as a tool for confining light on nanometer-length scales where regions of intense electromagnetic fields can be precisely tuned for controlled surface chemistry. We demonstrate a precision pH-driven synthesis of gold nanorods with optical resonance properties widely tunable across the near-infrared spectrum. Through controlled electrostatic interactions, we can perform selective adsorbate molecule attachment and monitor the surface transitions through spectroscopic techniques that include ground-state absorption spectrophotometry, two-dimensional X-ray absorption near-edge spectroscopy, Fourier-transform infrared spectroscopy, and surface-enhanced Raman spectroscopy. We elucidate the electronic, structural, and chemical factors that contribute to plasmon-molecule dynamics at the nanoscale with broad implications for the fields of energy, photonics, and bio-inspired materials.
Collapse
Affiliation(s)
- David G Schauer
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Jona Bredehoeft
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
| | - Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hans Jakob Wörner
- ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland
| | | |
Collapse
|
7
|
Yamada K, Akaishi N, Yatabe K, Takayama Y. Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm. J Appl Crystallogr 2024; 57:1323-1335. [PMID: 39387085 PMCID: PMC11460392 DOI: 10.1107/s1600576724006897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/13/2024] [Indexed: 10/12/2024] Open
Abstract
Ptychography is a powerful computational imaging technique with microscopic imaging capability and adaptability to various specimens. To obtain an imaging result, it requires a phase-retrieval algorithm whose performance directly determines the imaging quality. Recently, deep neural network (DNN)-based phase retrieval has been proposed to improve the imaging quality from the ordinary model-based iterative algorithms. However, the DNN-based methods have some limitations because of the sensitivity to changes in experimental conditions and the difficulty of collecting enough measured specimen images for training the DNN. To overcome these limitations, a ptychographic phase-retrieval algorithm that combines model-based and DNN-based approaches is proposed. This method exploits a DNN-based denoiser to assist an iterative algorithm like ePIE in finding better reconstruction images. This combination of DNN and iterative algorithms allows the measurement model to be explicitly incorporated into the DNN-based approach, improving its robustness to changes in experimental conditions. Furthermore, to circumvent the difficulty of collecting the training data, it is proposed that the DNN-based denoiser be trained without using actual measured specimen images but using a formula-driven supervised approach that systemically generates synthetic images. In experiments using simulation based on a hard X-ray ptychographic measurement system, the imaging capability of the proposed method was evaluated by comparing it with ePIE and rPIE. These results demonstrated that the proposed method was able to reconstruct higher-spatial-resolution images with half the number of iterations required by ePIE and rPIE, even for data with low illumination intensity. Also, the proposed method was shown to be robust to its hyperparameters. In addition, the proposed method was applied to ptychographic datasets of a Simens star chart and ink toner particles measured at SPring-8 BL24XU, which confirmed that it can successfully reconstruct images from measurement scans with a lower overlap ratio of the illumination regions than is required by ePIE and rPIE.
Collapse
Affiliation(s)
- Koki Yamada
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Natsuki Akaishi
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Kohei Yatabe
- Department of Electrical Engineering and Computer ScienceTokyo University of Agriculture and Technology2-24-16 Naka-cho, KoganeiTokyoJapan
| | - Yuki Takayama
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 468-1 Aoba-ku, Sendai, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba-ku, Sendai, Japan
- Research Center for Green X-Tech, Green Goals Initiative, Tohoku University, 6-6 Aoba-ku, Sendai, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, Japan
| |
Collapse
|
8
|
Gubieda AG, Gandarias L, Pósfai M, Pattammattel A, Fdez-Gubieda ML, Abad-Díaz-de-Cerio A, García-Prieto A. Temporal and spatial resolution of magnetosome degradation at the subcellular level in a 3D lung carcinoma model. J Nanobiotechnology 2024; 22:529. [PMID: 39218876 PMCID: PMC11367995 DOI: 10.1186/s12951-024-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic nanoparticles offer many exciting possibilities in biomedicine, from cell imaging to cancer treatment. One of the currently researched nanoparticles are magnetosomes, magnetite nanoparticles of high chemical purity synthesized by magnetotactic bacteria. Despite their therapeutic potential, very little is known about their degradation in human cells, and even less so of their degradation within tumours. In an effort to explore the potential of magnetosomes for cancer treatment, we have explored their degradation process in a 3D human lung carcinoma model at the subcellular level and with nanometre scale resolution. We have used state of the art hard X-ray probes (nano-XANES and nano-XRF), which allow for identification of distinct iron phases in each region of the cell. Our results reveal the progression of magnetite oxidation to maghemite within magnetosomes, and the biosynthesis of magnetite and ferrihydrite by ferritin.
Collapse
Affiliation(s)
- Alicia G Gubieda
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Lucía Gandarias
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, Saint-Paul-les-Durance, 13108, France
| | - Mihály Pósfai
- Research Center of Biomolecular and Chemical Engineering, University of Pannonia Veszprém, Veszprém, Hungary
- HUN-REN-PE Environmental Mineralogy Research Group, Veszprém, Hungary
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Luisa Fdez-Gubieda
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Ana Abad-Díaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Ana García-Prieto
- Department of Applied Physics, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
| |
Collapse
|
9
|
Su B, Qian G, Gao R, Tao F, Zhang L, Du G, Deng B, Pianetta P, Liu Y. Image registration for in situ X-ray nano-imaging of a composite battery cathode with deformation. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:328-335. [PMID: 38300132 PMCID: PMC10914177 DOI: 10.1107/s1600577524000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
The structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.g. XANES imaging. To address this challenge, this work develops a deep-learning-based method for automatic particle identification and tracking. This approach was not only able to facilitate image registration with good robustness but also allowed quantification of the degree of sample deformation. The effectiveness of the method was first demonstrated using synthetic datasets with known ground truth. The method was then applied to an experimental dataset collected on an operating lithium battery cell, revealing a high degree of intra- and interparticle chemical complexity in operating batteries.
Collapse
Affiliation(s)
- Bo Su
- Shanghai Institute of Applied Physics, China Academy of Sciences, No. 2019 Jialuo Road, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100084, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Guannan Qian
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ruoyang Gao
- Shanghai Institute of Applied Physics, China Academy of Sciences, No. 2019 Jialuo Road, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100084, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
| | - Fen Tao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
| | - Ling Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
| | - Guohao Du
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
| | - Biao Deng
- Shanghai Institute of Applied Physics, China Academy of Sciences, No. 2019 Jialuo Road, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100084, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, People’s Republic of China
| | - Piero Pianetta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton, Stop C2200, Austin, TX 78712-1591, USA
| |
Collapse
|
10
|
Li J, Chen S, Ratner D, Blu T, Pianetta P, Liu Y. Nanoscale chemical imaging with structured X-ray illumination. Proc Natl Acad Sci U S A 2023; 120:e2314542120. [PMID: 38015849 PMCID: PMC10710092 DOI: 10.1073/pnas.2314542120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendously successful and broadly applied, it encounters challenges in achieving enhanced detection sensitivity, satisfactory spatial resolution, and high experimental throughput simultaneously. In this work, based on structured illumination, we develop a single-pixel X-ray imaging approach coupled with a generative image reconstruction model for mapping the compositional heterogeneity with nanoscale resolvability. This method integrates a full-field transmission X-ray microscope with an X-ray fluorescence detector and eliminates the need for nanoscale X-ray focusing and raster scanning. We experimentally demonstrate the effectiveness of our approach by imaging a battery sample composed of mixed cathode materials and successfully retrieving the compositional variations of the imaged cathode particles. Bridging the gap between structural and chemical characterizations using X-rays, this technique opens up vast opportunities in the fields of biology, environmental, and materials science, especially for radiation-sensitive samples.
Collapse
Affiliation(s)
- Jizhou Li
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Daniel Ratner
- Machine Learning Initiative, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Thierry Blu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Piero Pianetta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78705
| |
Collapse
|
11
|
Ji H, Wang J, Ma J, Cheng HM, Zhou G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem Soc Rev 2023; 52:8194-8244. [PMID: 37886791 DOI: 10.1039/d3cs00254c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Advancement in energy storage technologies is closely related to social development. However, a significant conflict has arisen between the explosive growth in battery demand and resource availability. Facing the upcoming large-scale disposal problem of spent lithium-ion batteries (LIBs), their recycling technology development has become key. Emerging direct recycling has attracted widespread attention in recent years because it aims to 'repair' the battery materials, rather than break them down and extract valuable products from their components. To achieve this goal, a profound understanding of the failure mechanisms of spent LIB electrode materials is essential. This review summarizes the failure mechanisms of LIB cathode and anode materials and the direct recycling strategies developed. We systematically explore the correlation between the failure mechanism and the required repair process to achieve efficient and even upcycling of spent LIB electrode materials. Furthermore, we systematically introduce advanced in situ characterization techniques that can be utilized for investigating direct recycling processes. We then compare different direct recycling strategies, focussing on their respective advantages and disadvantages and their applicability to different materials. It is our belief that this review will offer valuable guidelines for the design and selection of LIB direct recycling methods in future endeavors. Finally, the opportunities and challenges for the future of battery direct recycling technology are discussed, paving the way for its further development.
Collapse
Affiliation(s)
- Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ma
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering & Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Abe M, Ishiguro N, Uematsu H, Takazawa S, Kaneko F, Takahashi Y. X-ray ptychographic and fluorescence microscopy using virtual single-pixel imaging based deconvolution with accurate probe images. OPTICS EXPRESS 2023; 31:26027-26039. [PMID: 37710473 DOI: 10.1364/oe.495733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 09/16/2023]
Abstract
Simultaneous measurement of X-ray ptychography and fluorescence microscopy allows high-resolution and high-sensitivity observations of the microstructure and trace-element distribution of a sample. In this paper, we propose a method for improving scanning fluorescence X-ray microscopy (SFXM) images, in which the SFXM image is deconvolved via virtual single-pixel imaging using different probe images for each scanning point obtained by X-ray ptychographic reconstruction. Numerical simulations confirmed that this method can increase the spatial resolution while suppressing artifacts caused by probe imprecision, e.g., probe position errors and wavefront changes. The method also worked well in synchrotron radiation experiments to increase the spatial resolution and was applied to the observation of S element maps of ZnS particles.
Collapse
|
13
|
Rivera NA, Ling FT, Jin Z, Pattammattel A, Yan H, Chu YS, Peters CA, Hsu-Kim H. Nanoscale heterogeneity of arsenic and selenium species in coal fly ash particles: analysis using enhanced spectroscopic imaging and speciation techniques. ENVIRONMENTAL SCIENCE. NANO 2023; 10:1768-1777. [PMID: 37457049 PMCID: PMC10339362 DOI: 10.1039/d2en01056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/19/2023] [Indexed: 07/18/2023]
Abstract
Coal combustion byproducts are known to be enriched in arsenic (As) and selenium (Se). This enrichment is a concern during the handling, disposal, and reuse of the ash as both elements can be harmful to wildlife and humans if mobilized into water and soils. The leaching potential and bioaccessibility of As and Se in coal fly ash depends on the chemical forms of these elements and their association with the large variety of particles that comprise coal fly ash. The overall goal of this research was to determine nanoscale and microscale solid phase mineral associations and oxidation states of As and Se in fly ash. We utilized nanoscale 2D imaging (30-50 nm spot size) with the Hard X-ray Nanoprobe (HXN) in combination with microprobe X-ray capabilities (∼5 μm resolution) to determine the As and Se elemental associations. Speciation of As and Se was also measured at the nano- to microscale with X-ray absorption spectroscopy. The enhanced resolution of HXN showed As and Se as either diffusely located around or comingled with Ca- and Fe-rich particles. The results also showed nanoparticles of Se attached to the surface of fly ash grains. Overall, a comparison of As and Se species across scales highlights the heterogeneity and complexity of chemical associations for these trace elements of concern in coal fly ash.
Collapse
Affiliation(s)
- Nelson A Rivera
- Department of Civil and Environmental Engineering, Duke University Box 90287 Durham North Carolina 27708 USA
| | - Florence T Ling
- Department of Civil and Environmental Engineering, Princeton University Princeton New Jersey 08544 USA
- Environmental Science Program, Department of Chemistry and Biochemistry, La Salle University Philadelphia PA 19141 USA
| | - Zehao Jin
- Department of Civil and Environmental Engineering, Duke University Box 90287 Durham North Carolina 27708 USA
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Catherine A Peters
- Department of Civil and Environmental Engineering, Princeton University Princeton New Jersey 08544 USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University Box 90287 Durham North Carolina 27708 USA
| |
Collapse
|
14
|
Ge M, Yan H, Huang X, Chu YS. Self-absorption correction on 2D X-ray fluorescence maps. Sci Rep 2023; 13:7271. [PMID: 37142634 PMCID: PMC10160062 DOI: 10.1038/s41598-023-33383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
X-ray fluorescence mapping (XRF) is a highly efficient and non-invasive technique for quantifying material composition with micro and nanoscale spatial resolutions. Quantitative XRF analysis, however, confronts challenges from the long-lasting problem called self-absorption. Moreover, correcting two-dimensional XRF mapping datasets is particularly difficult because it is an ill-posed inverse problem. Here we report a semi-empirical method that can effectively correct 2D XRF mapping data. The correction error is generally less than 10% from a comprehensive evaluation of the accuracy in various configurations. The proposed method was applied to quantify the composition distribution around the grain boundaries in an electrochemically corroded stainless steel sample. Highly localized Cr enrichment was found around the crack sites, which was invisible before the absorption correction.
Collapse
Affiliation(s)
- Mingyuan Ge
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
15
|
Zhang M, Wang L, Wang S, Ma T, Jia F, Zhan C. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles. SMALL METHODS 2023:e2300125. [PMID: 37086120 DOI: 10.1002/smtd.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Electric vehicles (EVs) are one of the most promising decarbonization solutions to develop a carbon-negative economy. The increasing global storage of EVs brings out a large number of power batteries requiring recycling. Lithium iron phosphate (LFP) is one of the first commercialized cathodes used in early EVs, and now gravimetric energy density improvement makes LFP with low cost and robustness popular again in the market. Developments in LFP recycling techniques are in demand to manage a large portion of the EV batteries retired both today and around ten years later. In this review, first the operation and degradation mechanisms of LFP are revisited aiming to identify entry points for LFP recycling. Then, the current LFP recycling methods, from the pretreatment of the retired batteries to the regeneration and recovery of the LFP cathode are summarized. The emerging direct recovery technology is highlighted, through which both raw material and the production cost of LFP can be recovered. In addition, the current issues limiting the development of the LIBs recycling industry are presented and some ideas for future research are proposed. This review provides the theoretical basis and insightful perspectives on developing new recycling strategies by outlining the whole-life process of LFP.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lifan Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyi Ma
- China Automotive Technology and Research Center Co., Ltd., Tianjin, 300300, China
| | - Feifei Jia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Chun Zhan
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Budnik G, Scott JA, Jiao C, Maazouz M, Gledhill G, Fu L, Tan HH, Toth M. Nanoscale 3D Tomography by In-Flight Fluorescence Spectroscopy of Atoms Sputtered by a Focused Ion Beam. NANO LETTERS 2022; 22:8287-8293. [PMID: 36215134 DOI: 10.1021/acs.nanolett.2c03101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale fabrication and characterization techniques critically underpin a vast range of fields, including nanoelectronics and nanobiotechnology. Focused ion beam (FIB) techniques are appealing due to their high spatial resolution and widespread use for processing of nanostructured materials. Here, we introduce FIB-induced fluorescence spectroscopy (FIB-FS) as a nanoscale technique for spectroscopic detection of atoms sputtered by an ion beam. We use semiconductor heterostructures to demonstrate nanoscale lateral and depth resolution and show that it is limited by ion-induced intermixing of nanostructured materials. Sensitivity is demonstrated qualitatively by depth profiling of 3.5, 5, and 8 nm quantum wells and quantitatively by detection of trace-level impurities present at parts-per-million levels. The utility of the FIB-FS technique is demonstrated by characterization of quantum wells and Li-ion batteries. Our work introduces FIB-FS as a high-resolution, high-sensitivity, 3D analysis and tomography technique that combines the versatility of FIB nanofabrication techniques with the power of diffraction-unlimited fluorescence spectroscopy.
Collapse
Affiliation(s)
- Garrett Budnik
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Thermo Fisher Scientific, Hillsboro, Oregon 97124, United States
| | - John A Scott
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Chengge Jiao
- Thermo Fisher Scientific, Eindhoven 5651 GG, The Netherlands
| | - Mostafa Maazouz
- Thermo Fisher Scientific, Hillsboro, Oregon 97124, United States
| | - Galen Gledhill
- Thermo Fisher Scientific, Hillsboro, Oregon 97124, United States
| | - Lan Fu
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Hark Hoe Tan
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
17
|
Pattammattel A, Tappero R, Gavrilov D, Zhang H, Aronstein P, Forman HJ, O'Day PA, Yan H, Chu YS. Multimodal X-ray nano-spectromicroscopy analysis of chemically heterogeneous systems. Metallomics 2022; 14:6754152. [PMID: 36208212 PMCID: PMC9584160 DOI: 10.1093/mtomcs/mfac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022]
Abstract
Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disciplines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration depth and sensitivity. The multidimensional (4D+) structure of spectromicroscopy data poses visualization and data-reduction challenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical user interface and data analysis platform named XMIDAS (X-ray multimodal image data analysis software) to visualize spectromicroscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis methods with well-established machine learning classification algorithms (e.g. nonnegative matrix factorization) for data reduction. The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known chemical composition. Nanoprobe-based X-ray fluorescence (nano-XRF) and X-ray absorption near edge structure (nano-XANES) spectromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex biological and environmental samples using X-ray spectromicroscopy techniques.
Collapse
Affiliation(s)
- Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dmitri Gavrilov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul Aronstein
- Environmental Systems Graduate Program, University of California, Merced, CA 95343, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy A O'Day
- Environmental Systems Graduate Program, University of California, Merced, CA 95343, USA.,Life and Environmental Sciences Department and the Sierra Nevada Research Institute, University of California, Merced, CA 95343, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
18
|
Abel JJ, Wiesner F, Nathanael J, Reinhard J, Wünsche M, Schmidl G, Gawlik A, Hübner U, Plentz J, Rödel C, Paulus GG, Fuchs S. Absolute EUV reflectivity measurements using a broadband high-harmonic source and an in situ single exposure reference scheme. OPTICS EXPRESS 2022; 30:35671-35683. [PMID: 36258513 DOI: 10.1364/oe.463216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
We present a tabletop setup for extreme ultraviolet (EUV) reflection spectroscopy in the spectral range from 40 to 100 eV by using high-harmonic radiation. The simultaneous measurements of reference and sample spectra with high energy resolution provide precise and robust absolute reflectivity measurements, even when operating with spectrally fluctuating EUV sources. The stability and sensitivity of EUV reflectivity measurements are crucial factors for many applications in attosecond science, EUV spectroscopy, and nano-scale tomography. We show that the accuracy and stability of our in situ referencing scheme are almost one order of magnitude better in comparison to subsequent reference measurements. We demonstrate the performance of the setup by reflective near-edge x-ray absorption fine structure measurements of the aluminum L2/3 absorption edge in α-Al2O3 and compare the results to synchrotron measurements.
Collapse
|
19
|
Rojsatien S, Mannodi-Kanakkithodi A, Walker T, Nietzold T, Colegrove E, Lai B, Cai Z, Holt M, Chan MK, Bertoni MI. Quantitative analysis of Cu XANES spectra using linear combination fitting of binary mixtures simulated by FEFF9. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Ham D, Lee SY, Choi S, Oh HJ, Noh DY, Kang HC. Multimodal X-ray probe station at 9C beamline of Pohang Light Source-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1114-1121. [PMID: 35787579 PMCID: PMC9255584 DOI: 10.1107/s1600577522006397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, the conceptual design and performance of a multimodal X-ray probe station recently installed at the 9C coherent X-ray scattering beamline of the Pohang Light Source-II are presented. The purpose of this apparatus is to measure coherent X-ray diffraction, X-ray fluorescence and electrical properties simultaneously. A miniature vacuum probe station equipped with a four-point probe was mounted on a six-axis motion hexapod. This can be used to study the structural and chemical evolution of thin films or nanostructures, as well as device performance including electronic transport properties. This probe station also provides the capability of varying sample environments such as gas atmosphere using a mass-flow-control system and sample temperatures up to 600°C using a pyrolytic boron nitride heater. The in situ annealing of ZnO thin films and the performance of ZnO nanostructure-based X-ray photodetectors are discussed. These results demonstrate that a multimodal X-ray probe station can be used for performing in situ and operando experiments to investigate structural phase transitions involving electrical resistivity switching.
Collapse
Affiliation(s)
- Daseul Ham
- Department of Material Science and Engineering, Chosun University, Gwangju 61452, Korea
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sukjune Choi
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ho Jun Oh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyon Chol Kang
- Department of Material Science and Engineering, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
21
|
Sala S, Zhang Y, De La Rosa N, Dreier T, Kahnt M, Langer M, Dahlin LB, Bech M, Villanueva-Perez P, Kalbfleisch S. Dose-efficient multimodal microscopy of human tissue at a hard X-ray nanoprobe beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:807-815. [PMID: 35511013 PMCID: PMC9070709 DOI: 10.1107/s1600577522001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.
Collapse
Affiliation(s)
- Simone Sala
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Yuhe Zhang
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Nathaly De La Rosa
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Till Dreier
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
- Excillum AB, 16440 Kista, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Max Langer
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Villeurbanne, France
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Pablo Villanueva-Perez
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
22
|
Kim Y, Lim J. Exploring spectroscopic X-ray nano-imaging with Zernike phase contrast enhancement. Sci Rep 2022; 12:2894. [PMID: 35190577 PMCID: PMC8861036 DOI: 10.1038/s41598-022-06827-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spectroscopic full-field transmission X-ray microscopy (TXM-XANES), which offers electrochemical imaging with a spatial resolution of tens of nanometers, is an extensively used unique technique in battery research. However, absorption-based bright-field imaging has poor detection sensitivity for nanoscale applications. Here, to improve the sensitivity, we explored spectroscopic X-ray nano imaging with Zernike phase contrast (ZPC-XANES). A pinhole-type Zernike phase plate, which was optimized for high-contrast images with minimal artifacts, was used in this study. When the absorption is weak, the Zernike phase contrast improves the signal-to-noise ratio and the contrast of images at all energies, which induces the enhancement of the absorption edge step. We estimated that the absorption of the samples should be higher than 2.2% for reliable spectroscopic nano-imaging based on XANES spectroscopy analysis of a custom-made copper wedge sample. We also determined that there is a slight absorption peak shift and sharpening in a small absorption sample due to the inflection point of the refractive index at the absorption edge. Nevertheless, in the case of sub-micron sized cathode materials, we believe that better contrast and higher resolution spectroscopic images can be obtained using ZPC-XANES.
Collapse
Affiliation(s)
- Yeseul Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Jigokro 127, Pohang, Kyungbuk, 37637, Republic of Korea
| | - Jun Lim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Jigokro 127, Pohang, Kyungbuk, 37637, Republic of Korea.
| |
Collapse
|
23
|
Chevrier DM, Cerdá-Doñate E, Park Y, Cacho-Nerin F, Gomez‐Gonzalez M, Uebe R, Faivre D. Synchrotron‐Based Nano‐X‐Ray Absorption Near‐Edge Structure Revealing Intracellular Heterogeneity of Iron Species in Magnetotactic Bacteria. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Daniel M. Chevrier
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Elisa Cerdá-Doñate
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Yeseul Park
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
| | | | | | - René Uebe
- Department of Microbiology University of Bayreuth 95440 Bayreuth Germany
| | - Damien Faivre
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
24
|
Johnson AS, Conesa JV, Vidas L, Perez-Salinas D, Günther CM, Pfau B, Hallman KA, Haglund RF, Eisebitt S, Wall S. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. SCIENCE ADVANCES 2021; 7:eabf1386. [PMID: 34380611 PMCID: PMC8357230 DOI: 10.1126/sciadv.abf1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.
Collapse
Affiliation(s)
- Allan S Johnson
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jordi Valls Conesa
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciana Vidas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Perez-Salinas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christian M Günther
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Kent A Hallman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Richard F Haglund
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Stefan Eisebitt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut, 12489 Berlin, Germany
| | - Simon Wall
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Xu W, Xu W, Bouet N, Zhou J, Yan H, Huang X, Lu M, Zalalutdinov M, Chu YS, Nazaretski E. Micromachined Silicon Platform for Precise Assembly of 2D Multilayer Laue Lenses for High-Resolution X-ray Microscopy. MICROMACHINES 2020; 11:E939. [PMID: 33076523 PMCID: PMC7602850 DOI: 10.3390/mi11100939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
We report on a developed micromachined silicon platform for the precise assembly of 2D multilayer Laue lenses (MLLs) for high-resolution X-ray microscopy. The platform is 10 × 10 mm2 and is fabricated on ~500 µm thick silicon wafers through multiple steps of photolithography and deep reactive-ion etching. The platform accommodates two linear MLLs in a pre-defined configuration with precise angular and lateral position control. In this work, we discuss the design and microfabrication of the platform, and characterization regarding MLLs assembly, position control, repeatability, and stability. The results demonstrate that a micromachined platform can be used for the assembly of a variety of MLLs with different dimensions and optical parameters. The angular misalignment of 2D MLLs is well controlled in the range of the designed accuracy, down to a few millidegrees. The separation distance between MLLs is adjustable from hundreds to more than one thousand micrometers. The use of the developed platform greatly simplifies the alignment procedure of the MLL optics and reduces the complexity of the X-ray microscope. It is a significant step forward for the development of monolithic 2D MLL nanofocusing optics for high-resolution X-ray microscopy.
Collapse
Affiliation(s)
- Wei Xu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Weihe Xu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Nathalie Bouet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Juan Zhou
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA;
| | | | - Yong S. Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| | - Evgeny Nazaretski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (W.X.); (W.X.); (N.B.); (J.Z.); (H.Y.); (X.H.); (Y.S.C.)
| |
Collapse
|