1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Ling K, Bu J, Huang W, Kang W, Yuan Q, Zeng B, Liao C, Zheng Q, Zhang G, Zheng X, Chen Z, Jiang X, Li R, Zhai T, Jiang H. Robust Cu 2+-Modified Black Phosphorus Nanoplatform for Enhanced Drug Delivery and Synergistic Multimodal Tumor Therapy via Metal Ion-Assisted π-π Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19382-19400. [PMID: 40105864 DOI: 10.1021/acsami.4c22168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of 2D nanomaterials for drug delivery via π-π interactions has been extensively investigated. However, these interactions often lack robustness in the presence of blood proteins due to the competitive binding of blood proteins, which results from strong π-π-stacking interactions with aromatic protein residues. This can lead to premature drug release and diminished therapeutic efficacy. To address this challenge, we developed a robust 2D delivery/therapeutic biomimetic nanoplatform that enhances the adsorption affinity and targeted delivery efficiency of the chemotherapeutic drug doxorubicin (DOX) by utilizing Cu2+-modified black phosphorus nanosheets (BP@Cu2+) through metal ion-assisted π-π interactions. The synergistic interactions between the π-electrons of BP and DOX, mediated by Cu2+ coordination, form a stable sandwiched π-cation-π stacking complex (BP@Cu2+/DOX). This metal-ion-bridged architecture significantly enhances the DOX loading capacity and minimizes premature release in serum. In the acidic tumor microenvironment, this interaction is disrupted, enabling controlled release of both DOX and Cu2+ ions. Furthermore, the encapsulation of the complex within tumor cell membranes significantly enhances the efficiency of tumor targeting, resulting in a biomimetic nanoplatform (BP@Cu2+/DOX-CMs). Combined with near-infrared laser irradiation, this nanoplatform achieves synergistic multimodal therapy by integrating phototherapy, chemotherapy, chemodynamic therapy, and cuproptosis to enhance antitumor efficacy. The study highlights the potential of metal ion-assisted π-π stacking interactions in the development of advanced 2D nanoplatforms, thereby paving the way for innovative biomedical applications utilizing conventional 2D nanomaterials.
Collapse
Affiliation(s)
- Kai Ling
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jianlan Bu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Weijie Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenyue Kang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qingpeng Yuan
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bingchun Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Chuanghong Liao
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qiunuan Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Guangrong Zhang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xuanjun Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zeyang Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaohong Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Rui Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongyan Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
He C, Peng W, Li S, Xu C, Chen X, Qin Y. ECHS1 as a Lipid Metabolism Biomarker for Pediatric Focal Segmental Glomerulosclerosis. PLoS One 2025; 20:e0319049. [PMID: 40063869 PMCID: PMC11893130 DOI: 10.1371/journal.pone.0319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/26/2025] [Indexed: 05/13/2025] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome and often leads to end-stage renal disease. However, the underlying pathophysiological mechanisms that contribute to disease progression require further investigation to establish appropriate therapeutic targets and biomarkers. This study aimed to clarify the molecular mechanisms underlying FSGS by focusing on differentially expressed genes (DEGs) and lipid metabolism-related genes (LMRGs). We utilized the GSE69814, GSE129973, and GSE121233 datasets, which comprise glomerular transcriptomes from patients with FSGS, minimal change disease (MCD), and unaffected kidney tissues. We identified 2,459 DEGs from the GSE69814 dataset and 982 DEGs from the GSE129973 dataset. These DEGs intersected 1,450 LMRGs, resulting in 56 differentially expressed LMRGs (DELMRGs). Enrichment analysis revealed that these DELMRGs were primarily involved in fatty acid metabolic processes; localized in microbodies, peroxisomes, and mitochondrial matrices; and exhibited oxidoreductase activity. Protein-protein interaction networks were constructed using Cytoscape, and five hub DELMRGs (enoyl-CoA hydratase, short chain 1 [ECHS1], EHHADH, IDH1, SUCLG1, and ALDH3A2) were identified using multiple algorithms. We assessed the diagnostic performance using receiver operating characteristic curves and expression levels from the GSE121233 dataset, and found that ECHS1 and ALDH3A2 showed strong diagnostic potential. Immunohistochemical verification of clinical specimens from children confirmed significant expression of ECHS1 in FSGS compared with that in normal and MCD tissues. This study highlights ECHS1 as a potential biomarker for pediatric FSGS, suggesting a potential role in early diagnosis or personalized treatment, offering insights into its pathogenesis and paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chao He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
- The First Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China
| | - Wei Peng
- Department of Pediatrics, People’s Hospital of Ningxiang City
| | - Sheng Li
- The First Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China
| | - Can Xu
- The First Affiliated Hospital, Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China
| | - Xiuping Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
4
|
Zhong Q, Li D, Yang XP. Progress in antitumor mechanisms and applications of phenformin (Review). Oncol Rep 2024; 52:151. [PMID: 39301645 PMCID: PMC11421015 DOI: 10.3892/or.2024.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
5
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Swamynathan MM, Kuang S, Watrud KE, Doherty MR, Gineste C, Mathew G, Gong GQ, Cox H, Cheng E, Reiss D, Kendall J, Ghosh D, Reczek CR, Zhao X, Herzka T, Špokaitė S, Dessus AN, Kim ST, Klingbeil O, Liu J, Nowak DG, Alsudani H, Wee TL, Park Y, Minicozzi F, Rivera K, Almeida AS, Chang K, Chakrabarty RP, Wilkinson JE, Gimotty PA, Diermeier SD, Egeblad M, Vakoc CR, Locasale JW, Chandel NS, Janowitz T, Hicks JB, Wigler M, Pappin DJ, Williams RL, Cifani P, Tuveson DA, Laporte J, Trotman LC. Dietary pro-oxidant therapy by a vitamin K precursor targets PI 3-kinase VPS34 function. Science 2024; 386:eadk9167. [PMID: 39446948 PMCID: PMC11975464 DOI: 10.1126/science.adk9167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
Men taking antioxidant vitamin E supplements have increased prostate cancer (PC) risk. However, whether pro-oxidants protect from PC remained unclear. In this work, we show that a pro-oxidant vitamin K precursor [menadione sodium bisulfite (MSB)] suppresses PC progression in mice, killing cells through an oxidative cell death: MSB antagonizes the essential class III phosphatidylinositol (PI) 3-kinase VPS34-the regulator of endosome identity and sorting-through oxidation of key cysteines, pointing to a redox checkpoint in sorting. Testing MSB in a myotubular myopathy model that is driven by loss of MTM1-the phosphatase antagonist of VPS34-we show that dietary MSB improved muscle histology and function and extended life span. These findings enhance our understanding of pro-oxidant selectivity and show how definition of the pathways they impinge on can give rise to unexpected therapeutic opportunities.
Collapse
Affiliation(s)
- Manojit Mosur Swamynathan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shan Kuang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Mary R. Doherty
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Charlotte Gineste
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Grace Q. Gong
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Eileen Cheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Diya Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Colleen R. Reczek
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Xiang Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Tali Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Seung Tea Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Juan Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Dawid G. Nowak
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, NY 10065, USA
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, NY 10065, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Ana S. Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Ram P. Chakrabarty
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phyllis A. Gimotty
- Perelman School of Medicine, Division of Biostatistics, University of Pennsylvania, PA 19104, USA
| | - Sarah D. Diermeier
- University of Otago, Department of Biochemistry, Dunedin 9016, New Zealand
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205 USA
| | | | - Jason W. Locasale
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Navdeep S. Chandel
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - James B. Hicks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Darryl J. Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| |
Collapse
|
7
|
Liu G, Jiang Q, Qin L, Zeng Z, Zhang P, Feng B, Liu X, Qing Z, Qing T. The influence of digestive tract protein on cytotoxicity of polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174023. [PMID: 38885711 DOI: 10.1016/j.scitotenv.2024.174023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.
Collapse
Affiliation(s)
- Gonghao Liu
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China; Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Qianwen Jiang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lingfeng Qin
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zihang Zeng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
8
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Qie S, Xiong H, Liu Y, Yan C, Wang Y, Tian L, Wang C, Sang N. Stanniocalcin 2 governs cancer cell adaptation to nutrient insufficiency through alleviation of oxidative stress. Cell Death Dis 2024; 15:567. [PMID: 39107307 PMCID: PMC11303387 DOI: 10.1038/s41419-024-06961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Solid tumours often endure nutrient insufficiency during progression. How tumour cells adapt to temporal and spatial nutrient insufficiency remains unclear. We previously identified STC2 as one of the most upregulated genes in cells exposed to nutrient insufficiency by transcriptome screening, indicating the potential of STC2 in cellular adaptation to nutrient insufficiency. However, the molecular mechanisms underlying STC2 induction by nutrient insufficiency and subsequent adaptation remain elusive. Here, we report that STC2 protein is dramatically increased and secreted into the culture media by Gln-/Glc- deprivation. STC2 promoter contains cis-elements that are activated by ATF4 and p65/RelA, two transcription factors activated by a variety of cellular stress. Biologically, STC2 induction and secretion promote cell survival but attenuate cell proliferation during nutrient insufficiency, thus switching the priority of cancer cells from proliferation to survival. Loss of STC2 impairs tumour growth by inducing both apoptosis and necrosis in mouse xenografts. Mechanistically, under nutrient insufficient conditions, cells have increased levels of reactive oxygen species (ROS), and lack of STC2 further elevates ROS levels that lead to increased apoptosis. RNA-Seq analyses reveal STC2 induction suppresses the expression of monoamine oxidase B (MAOB), a mitochondrial membrane enzyme that produces ROS. Moreover, a negative correlation between STC2 and MAOB levels is also identified in human tumour samples. Importantly, the administration of recombinant STC2 to the culture media effectively suppresses MAOB expression as well as apoptosis, suggesting STC2 functions in an autocrine/paracrine manner. Taken together, our findings indicate that nutrient insufficiency induces STC2 expression, which in turn governs the adaptation of cancer cells to nutrient insufficiency through the maintenance of redox homoeostasis, highlighting the potential of STC2 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Haijuan Xiong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yaqi Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenhui Yan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lifeng Tian
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chenguang Wang
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nianli Sang
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Kasperova BJ, Mraz M, Svoboda P, Hlavacek D, Kratochvilova H, Modos I, Vrzackova N, Ivak P, Janovska P, Kobets T, Mahrik J, Riecan M, Steiner Mrazova L, Stranecky V, Netuka I, Cajka T, Kuda O, Melenovsky V, Stemberkova Hubackova S, Haluzik M. Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure. Cardiovasc Diabetol 2024; 23:223. [PMID: 38943140 PMCID: PMC11214218 DOI: 10.1186/s12933-024-02298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Collapse
Affiliation(s)
- Barbora Judita Kasperova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Milos Mraz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Daniel Hlavacek
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Helena Kratochvilova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Nikola Vrzackova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tatyana Kobets
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Mahrik
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
- Department of Cardiac Anesthesia, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Martin Riecan
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lenka Steiner Mrazova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Ivan Netuka
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Tomas Cajka
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Sona Stemberkova Hubackova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic.
| |
Collapse
|
11
|
Qie S, Xiong H, Liu Y, Yan C, Wang Y, Tian L, Wang C, Sang N. Stanniocalcin 2 governs cancer cell adaptation to nutrient insufficiency through alleviation of oxidative stress. RESEARCH SQUARE 2024:rs.3.rs-3904465. [PMID: 38464261 PMCID: PMC10925426 DOI: 10.21203/rs.3.rs-3904465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Solid tumours often endure nutrient insufficiency during progression. How tumour cells adapt to temporal and spatial nutrient insufficiency remains unclear. We previously identified STC2 as one of the most upregulated genes in cells exposed to nutrient insufficiency by transcriptome screening, indicating the potential of STC2 in cellular adaptation to nutrient insufficiency. However, the molecular mechanisms underlying STC2 induction by nutrient insufficiency and subsequent adaptation remain elusive. Here, we report that STC2 protein is dramatically increased and secreted into the culture media by Gln-/Glc-deprivation. STC2 promoter contains cis-elements that are activated by ATF4 and p65/RelA, two transcription factors activated by a variety of cellular stress. Biologically, STC2 induction and secretion promote cell survival but attenuate cell proliferation during nutrient insufficiency, thus switching the priority of cancer cells from proliferation to survival. Loss of STC2 impairs tumour growth by inducing both apoptosis and necrosis in mouse xenografts. Mechanistically, under nutrient insufficient conditions, cells have increased levels of reactive oxygen species (ROS), and lack of STC2 further elevates ROS levels that lead to increased apoptosis. RNA-Seq analyses reveal STC2 induction suppresses the expression of monoamine oxidase B (MAOB), a mitochondrial membrane enzyme that produces ROS. Moreover, a negative correlation between STC2 and MAOB levels is also identified in human tumour samples. Importantly, the administration of recombinant STC2 to the culture media effectively suppresses MAOB expression as well as apoptosis, suggesting STC2 functions in an autocrine/paracrine manner. Taken together, our findings indicate that nutrient insufficiency induces STC2 expression, which in turn governs the adaptation of cancer cells to nutrient insufficiency through the maintenance of redox homeostasis, highlighting the potential of STC2 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuo Qie
- Tianjin Medical University Cancer Institute and Hospital
| | - Haijuan Xiong
- Tianjin Medical University Cancer Institute and Hospital
| | - Yaqi Liu
- Tianjin Medical University Cancer Institute and Hospital
| | - Chenhui Yan
- Tianjin Medical University Cancer Institute and Hospital
| | | | - Lifeng Tian
- Kimmel Cancer Center, Thomas Jefferson University
| | | | | |
Collapse
|
12
|
Wu XN, Li JY, He Q, Li BQ, He YH, Pan X, Wang MY, Sang R, Ding JC, Gao X, Wu Z, Liu W. Targeting the PHF8/YY1 axis suppresses cancer cell growth through modulation of ROS. Proc Natl Acad Sci U S A 2024; 121:e2219352120. [PMID: 38165927 PMCID: PMC10786316 DOI: 10.1073/pnas.2219352120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jia-yuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Qi He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Bo-qun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yao-hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xu Pan
- Xiamen University-Amogene Joint Research and Development Center for Genetic Diagnostics, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Ming-yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Rui Sang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jian-cheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| |
Collapse
|
13
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
14
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Redox-crippled MitoQ potently inhibits breast cancer and glioma cell proliferation: A negative control for verifying the antioxidant mechanism of MitoQ in cancer and other oxidative pathologies. Free Radic Biol Med 2023; 205:175-187. [PMID: 37321281 PMCID: PMC11129726 DOI: 10.1016/j.freeradbiomed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 μM versus 0.38 μM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 μM and 0.17 μM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
16
|
Cazzoli R, Romeo F, Pallavicini I, Peri S, Romanenghi M, Pérez-Valencia JA, Hagag E, Ferrucci F, Elgendy M, Vittorio O, Pece S, Foiani M, Westermarck J, Minucci S. Endogenous PP2A inhibitor CIP2A degradation by chaperone-mediated autophagy contributes to the antitumor effect of mitochondrial complex I inhibition. Cell Rep 2023; 42:112616. [PMID: 37289585 DOI: 10.1016/j.celrep.2023.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Combined inhibition of oxidative phosphorylation (OXPHOS) and glycolysis has been shown to activate a PP2A-dependent signaling pathway, leading to tumor cell death. Here, we analyze highly selective mitochondrial complex I or III inhibitors in vitro and in vivo to elucidate the molecular mechanisms leading to cell death following OXPHOS inhibition. We show that IACS-010759 treatment (complex I inhibitor) induces a reactive oxygen species (ROS)-dependent dissociation of CIP2A from PP2A, leading to its destabilization and degradation through chaperone-mediated autophagy. Mitochondrial complex III inhibition has analogous effects. We establish that activation of the PP2A holoenzyme containing B56δ regulatory subunit selectively mediates tumor cell death, while the arrest in proliferation that is observed upon IACS-010759 treatment does not depend on the PP2A-B56δ complex. These studies provide a molecular characterization of the events subsequent to the alteration of critical bioenergetic pathways and help to refine clinical studies aimed to exploit metabolic vulnerabilities of tumor cells.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Francesco Romeo
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Sebastiano Peri
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Juan Alberto Pérez-Valencia
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filippo Ferrucci
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mohamed Elgendy
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW, Australia; School of Biomedical Sciences, UNSW Sydney, Randwick, NSW, Australia
| | - Salvatore Pece
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saverio Minucci
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
17
|
Liu H, Zhai L, Liu Y, Lu D, Vander Ark A, Yang T, Krawczyk CM. The histone demethylase KDM5C controls female bone mass by promoting energy metabolism in osteoclasts. SCIENCE ADVANCES 2023; 9:eadg0731. [PMID: 37018401 PMCID: PMC10075994 DOI: 10.1126/sciadv.adg0731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 05/28/2023]
Abstract
Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass. Loss of KDM5C in hematopoietic stem cells or bone marrow monocytes increases bone mass in female but not male mice. Mechanistically, loss of KDM5C impairs the bioenergetic metabolism, resulting in impaired osteoclastogenesis. Treatment with the KDM5 inhibitor reduces osteoclastogenesis and energy metabolism of both female mice and human monocytes. Our report details a sex-dependent mechanism for bone homeostasis, connecting epigenetic regulation to osteoclast metabolism and positions KDM5C as a potential target for future treatment of osteoporosis in women.
Collapse
Affiliation(s)
- Huadie Liu
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ye Liu
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Di Lu
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
18
|
Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol 2023; 11:1048177. [PMID: 37009472 PMCID: PMC10060896 DOI: 10.3389/fcell.2023.1048177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
19
|
Ren G, Lu M, Zhao Z, Qin F, Li K, Chen W, Lin Y. Cobalt Single-Atom Nanozyme Co-Administration with Ascorbic Acid Enables Redox Imbalance for Tumor Catalytic Ablation. ACS Biomater Sci Eng 2023; 9:1066-1076. [PMID: 36617740 DOI: 10.1021/acsbiomaterials.2c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The elevated antioxidant defense system in cancer cells can lead to resistance to treatments involving ROS. Breaking the redox balance of the cell system through a "open up the source and regulate the flow" strategy can inhibit the growth of cancer cells and thus design a cancer treatment strategy. Here, cobalt single atom-supported N-doped carbon nanozymes (Co SA-N/C) were synthesized via a simple sacrificial template method, which can mimic the properties of ascorbate oxidase and glutathione oxidase effectively. The synthesized Co SA-N/C can induce the generation of active oxygen by accelerating the oxidation of ascorbic acid (AA) and destroy the endogenous active oxygen scavenging system by consuming the main antioxidant, glutathione (GSH). In-depth in vitro and in vivo investigations indicate that compared with solo therapy, Co SA-N/C together with AA can significantly enhance the anti-tumor efficiency by simultaneously elevating oxidative stress and consuming the overexpressed glutathione (GSH) through the redox reaction catalyzed by Co SA-N/C. This work provides a promising route for developing nanozyme-guided and ascorbate-based antitumor agents.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mingju Lu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fengjuan Qin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
20
|
Lingui X, Weifeng L, Yufei W, Yibin Z. High SPATA18 Expression and its Diagnostic and Prognostic Value in Clear Cell Renal Cell Carcinoma. Med Sci Monit 2023; 29:e938474. [PMID: 36751118 PMCID: PMC9924025 DOI: 10.12659/msm.938474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SPATA18 (spermatogenesis-associated 18, also called Mieap) encodes a protein that can induce lysosome-like organelles within mitochondria, which plays an important role in tumor growth. We measured the expression of SPATA18 in ccRCC, and assessed its diagnostic and prognostic clinical value in patients with clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS We analyzed SPATA18 expression using data from the TCGA-KIRC cohort, GEO database, and UALCAN database. Immunohistochemistry was carried out to verify the expression in the ccRCC patients. The diagnostic value of SPATA18expression was evaluated by a receiver operating characteristic (ROC) curve. The correlation between clinical characteristics and SPATA18 expression was calculated by chi-square test. The prognostic value of SPATA18 expression was assessed by Kaplan-Meier analysis and Cox analysis. We conducted gene set enrichment analysis (GSEA) using TCGA database. RESULTS SPATA18 gene exhibited a higher expression in ccRCC tissues than in normal tissues. SPATA18 showed a substantial diagnostic value in ccRCC. SPATA18 expression was correlated with histological grade, clinical stage, T classification, and distant metastasis of ccRCC. Furthermore, high SPATA18 expression was associated with favorable overall survival. Multivariate analysis showed that SPATA18 was an independent risk factor for ccRCC. Gene set enrichment analysis (GSEA) showed that B cell receptors, WNT targets, extracellular matrix, oxidative phosphorylation, calcium metabolism, iron uptake and transport, potassium channels, and insulin receptor were differently enriched in the phenotype that was negatively correlated with SPATA18. CONCLUSIONS Our study indicated that high SPATA18 expression in ccRCC was associated with a good prognosis, and it could be a positive prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Xie Lingui
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Liu Weifeng
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Wang Yufei
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhou Yibin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
21
|
Luo Y, Tian G, Fang X, Bai S, Yuan G, Pan Y. Ferroptosis and Its Potential Role in Glioma: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:2123. [PMID: 36358495 PMCID: PMC9686959 DOI: 10.3390/antiox11112123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common intracranial malignant tumor, and the current main standard treatment option is a combination of tumor surgical resection, chemotherapy and radiotherapy. Due to the terribly poor five-year survival rate of patients with gliomas and the high recurrence rate of gliomas, some new and efficient therapeutic strategies are expected. Recently, ferroptosis, as a new form of cell death, has played a significant role in the treatment of gliomas. Specifically, studies have revealed key processes of ferroptosis, including iron overload in cells, occurrence of lipid peroxidation, inactivation of cysteine/glutathione antiporter system Xc- (xCT) and glutathione peroxidase 4 (GPX4). In the present review, we summarized the molecular mechanisms of ferroptosis and introduced the application and challenges of ferroptosis in the development and treatment of gliomas. Moreover, we highlighted the therapeutic opportunities of manipulating ferroptosis to improve glioma treatments, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiang Fang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Shengwei Bai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
22
|
Fialova JL, Hönigova K, Raudenska M, Miksatkova L, Zobalova R, Navratil J, Šmigová J, Moturu TR, Vicar T, Balvan J, Vesela K, Abramenko N, Kejik Z, Kaplanek R, Gumulec J, Rosel D, Martasek P, Brábek J, Jakubek M, Neuzil J, Masarik M. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed Pharmacother 2022; 154:113582. [DOI: 10.1016/j.biopha.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
|
23
|
Pachnis P, Wu Z, Faubert B, Tasdogan A, Gu W, Shelton S, Solmonson A, Rao AD, Kaushik AK, Rogers TJ, Ubellacker JM, LaVigne CA, Yang C, Ko B, Ramesh V, Sudderth J, Zacharias LG, Martin-Sandoval MS, Do D, Mathews TP, Zhao Z, Mishra P, Morrison SJ, DeBerardinis RJ. In vivo isotope tracing reveals a requirement for the electron transport chain in glucose and glutamine metabolism by tumors. SCIENCE ADVANCES 2022; 8:eabn9550. [PMID: 36044570 PMCID: PMC9432826 DOI: 10.1126/sciadv.abn9550] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/15/2022] [Indexed: 05/05/2023]
Abstract
In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.
Collapse
Affiliation(s)
- Panayotis Pachnis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Wu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aparna D. Rao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akash K. Kaushik
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas J. Rogers
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessalyn M. Ubellacker
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collette A. LaVigne
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chendong Yang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G. Zacharias
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty S. Martin-Sandoval
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
24
|
Baran N, Lodi A, Dhungana Y, Herbrich S, Collins M, Sweeney S, Pandey R, Skwarska A, Patel S, Tremblay M, Kuruvilla VM, Cavazos A, Kaplan M, Warmoes MO, Veiga DT, Furudate K, Rojas-Sutterin S, Haman A, Gareau Y, Marinier A, Ma H, Harutyunyan K, Daher M, Garcia LM, Al-Atrash G, Piya S, Ruvolo V, Yang W, Shanmugavelandy SS, Feng N, Gay J, Du D, Yang JJ, Hoff FW, Kaminski M, Tomczak K, Eric Davis R, Herranz D, Ferrando A, Jabbour EJ, Emilia Di Francesco M, Teachey DT, Horton TM, Kornblau S, Rezvani K, Sauvageau G, Gagea M, Andreeff M, Takahashi K, Marszalek JR, Lorenzi PL, Yu J, Tiziani S, Hoang T, Konopleva M. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat Commun 2022; 13:2801. [PMID: 35589701 PMCID: PMC9120040 DOI: 10.1038/s41467-022-30396-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.
Collapse
Affiliation(s)
- Natalia Baran
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alessia Lodi
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Yogesh Dhungana
- grid.240871.80000 0001 0224 711XSt. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Shelley Herbrich
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meghan Collins
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Shannon Sweeney
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Renu Pandey
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Anna Skwarska
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shraddha Patel
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mathieu Tremblay
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Vinitha Mary Kuruvilla
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Antonio Cavazos
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mecit Kaplan
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marc O. Warmoes
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Diogo Troggian Veiga
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Ken Furudate
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.257016.70000 0001 0673 6172Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori Japan
| | - Shanti Rojas-Sutterin
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Andre Haman
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Yves Gareau
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Anne Marinier
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Helen Ma
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Karine Harutyunyan
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - May Daher
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Luciana Melo Garcia
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gheath Al-Atrash
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sujan Piya
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivian Ruvolo
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wentao Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sriram Saravanan Shanmugavelandy
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ningping Feng
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Jason Gay
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Di Du
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jun J. Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Fieke W. Hoff
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marcin Kaminski
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Katarzyna Tomczak
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - R. Eric Davis
- grid.240145.60000 0001 2291 4776Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Daniel Herranz
- grid.430387.b0000 0004 1936 8796Rutgers Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, NJ USA
| | - Adolfo Ferrando
- grid.21729.3f0000000419368729Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY USA
| | - Elias J. Jabbour
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - M. Emilia Di Francesco
- grid.240145.60000 0001 2291 4776Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David T. Teachey
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Terzah M. Horton
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Steven Kornblau
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Katayoun Rezvani
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Guy Sauvageau
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Mihai Gagea
- grid.240145.60000 0001 2291 4776Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael Andreeff
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Koichi Takahashi
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Joseph R. Marszalek
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Philip L. Lorenzi
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jiyang Yu
- grid.240871.80000 0001 0224 711XDepartment of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Stefano Tiziani
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Trang Hoang
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC Canada
| | - Marina Konopleva
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
25
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
26
|
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 2022; 23:692-704. [PMID: 35484407 PMCID: PMC9098388 DOI: 10.1038/s41590-022-01185-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.
Collapse
Affiliation(s)
- Leah K Billingham
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karthik Vasan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arianne E Rodriguez
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
28
|
Feng D, Shi X, Zhang F, Xiong Q, Wei Q, Yang L. Mitochondria Dysfunction-Mediated Molecular Subtypes and Gene Prognostic Index for Prostate Cancer Patients Undergoing Radical Prostatectomy or Radiotherapy. Front Oncol 2022; 12:858479. [PMID: 35463369 PMCID: PMC9019359 DOI: 10.3389/fonc.2022.858479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background Given the age relevance of prostate cancer (PCa) and the role of mitochondrial dysfunction (MIDS) in aging, we orchestrated molecular subtypes and identified key genes for PCa from the perspective of MIDS. Methods Cluster analysis, COX regression analysis, function analysis, and tumor immune environment were conducted. We performed all analyses using software R 3.6.3 and its suitable packages. Results CXCL14, SFRP4, and CD38 were eventually identified to classify the PCa patients in The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) dataset into two distinct clusters. Patients in the cluster 2 had shorter BCR-free survival than those in the cluster 1 in terms of both TCGA database and GEO dataset. We divided the patients from the TCGA database and the GEO dataset into high- and low-risk groups according to the median of MIDS-related genetic prognostic index. For patients in the TCGA database, the biochemical recurrence (BCR) risk in high-risk group was 2.34 times higher than that in low-risk group. Similarly, for patients in the GEO dataset, the risk of BCR and metastasis in high-risk group was 2.35 and 3.04 times higher than that in low-risk group, respectively. Cluster 2 was closely associated with advanced T stage and higher Gleason score for patients undergoing radical prostatectomy or radiotherapy. For patients undergoing radical prostatectomy, the number of CD8+ T cells was significantly lower in cluster 2 than in cluster 1, while cluster 2 had significantly higher stromal score than cluster 1. For patients undergoing radical radiotherapy, cluster 2 had significantly higher level of CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate score, but showed lower level of tumor purity than cluster 1. Conclusions We proposed distinctly prognosis-related molecular subtypes at genetic level and related formula for PCa patients undergoing radical prostatectomy or radiotherapy, mainly to provide a roadmap for precision medicine.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Zhang Y, You S, Wang D, Zhao D, Zhang J, An Q, Li M, Wang C. Fermented Dendrobium officinale polysaccharides protect UVA-induced photoaging of human skin fibroblasts. Food Sci Nutr 2022; 10:1275-1288. [PMID: 35432966 PMCID: PMC9007291 DOI: 10.1002/fsn3.2763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatograph‐liquid chromatography (GPC‐LC), and scanning electron microscopy (SEM) were used to analyze the molecular characteristics of fermented Dendrobium officinale polysaccharides (FDOP) by Lactobacillus delbrueckii bulgaricus. The characteristic structural peak of FDOP was more prominent, showing a smaller molecular structure, and its porous structure showed better water solubility. The protective effect of FDOP on the damage of human skin fibroblasts (HSF) caused by ultraviolet (UV) radiation was investigated by evaluating its antioxidative and antiaging indices. The results showed that the antioxidant capacity of HSF was improved, and the breakdown of collagen, elastin, and hyaluronic acid was reduced, thus providing effective protection to the skin tissue. The antioxidative property of FDOP was explored using Nf‐E2‐related factor 2‐small interfering RNA‐3 (Nrf2‐siRNA‐3) (Nrf2‐si3) and qRT‐PCR (quantitative reverse transcription polymerase chain reaction), and the antiaging property of FDOP was explored using Western Blot and qRT‐PCR. The results show that FDOP can up‐regulate signal transduction of the Nrf2/Keap1 (Kelch‐like ECH‐associated protein 1) and transforming growth factor‐β (TGF‐β)/Smads pathways to reduce antioxidative damage and antiaging effects. Therefore, this study provides a theoretical basis for FDOP as a novel functional agent that can be used in the cosmetic industry.
Collapse
Affiliation(s)
- Yongtao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Shiquan You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Dongdong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Dan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Jiachan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd. Kunming China
| | - Meng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Changtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| |
Collapse
|
30
|
McElroy GS, Chakrabarty RP, D'Alessandro KB, Hu YS, Vasan K, Tan J, Stoolman JS, Weinberg SE, Steinert EM, Reyfman PA, Singer BD, Ladiges WC, Gao L, Lopéz-Barneo J, Ridge K, Budinger GRS, Chandel NS. Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Sci Rep 2022; 12:5196. [PMID: 35338200 PMCID: PMC8956724 DOI: 10.1038/s41598-022-09074-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Abstract
Aging in mammals leads to reduction in genes encoding the 45-subunit mitochondrial electron transport chain complex I. It has been hypothesized that normal aging and age-related diseases such as Parkinson’s disease are in part due to modest decrease in expression of mitochondrial complex I subunits. By contrast, diminishing expression of mitochondrial complex I genes in lower organisms increases lifespan. Furthermore, metformin, a putative complex I inhibitor, increases healthspan in mice and humans. In the present study, we investigated whether loss of one allele of Ndufs2, the catalytic subunit of mitochondrial complex I, impacts healthspan and lifespan in mice. Our results indicate that Ndufs2 hemizygous mice (Ndufs2+/−) show no overt impairment in aging-related motor function, learning, tissue histology, organismal metabolism, or sensitivity to metformin in a C57BL6/J background. Despite a significant reduction of Ndufs2 mRNA, the mice do not demonstrate a significant decrease in complex I function. However, there are detectable transcriptomic changes in individual cell types and tissues due to loss of one allele of Ndufs2. Our data indicate that a 50% decline in mRNA of the core mitochondrial complex I subunit Ndufs2 is neither beneficial nor detrimental to healthspan.
Collapse
Affiliation(s)
- Gregory S McElroy
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shih Hu
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karthik Vasan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jerica Tan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua S Stoolman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth M Steinert
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul A Reyfman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Lopéz-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Karen Ridge
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Liu L, Cui H, Huang Y, Zhou Y, Hu J, Wan Y. Enzyme-Mediated Reactions of Phenolic Pollutants and Endogenous Metabolites as an Overlooked Metabolic Disruption Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3634-3644. [PMID: 35238542 DOI: 10.1021/acs.est.1c08141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is generally recognized that phenol-containing molecules mainly undergo phase II metabolic reactions, whereas glucuronide and sulfate are conjugated to form water-soluble products. Here, we report direct reactions of phenolic pollutants (triclosan, alkylphenol, bisphenol A [BPA], and its analogues) and some endogenous metabolites (vitamin E [VE] and estradiol) to generate new lipophilic ether products (e.g., BPA-O-VEs and alkylphenol-O-estradiol). A nontargeted screening strategy was used to identify the products in human liver microsome incubations, and the most abundant products (BPA-O-VEs) were confirmed via in vivo exposure in mice. BPA-O-VEs were frequently detected in sera from the general population at levels comparable to those of glucuronide/sulfate-conjugated BPA. Recombinant human cytochrome P450s were applied to find that CYP3A4 catalyzed the formation of these newly discovered ether metabolites by linking the VE hydroxyl group to the BPA phenolic ring, leading to the significantly reduced antioxidative activities of BPA-O-VEs compared to VEs. The effects of the reaction on the homeostasis of reacted biomolecules were finally assessed by in vitro assay and in vivo mice exposures. The generation of BPA-O-VEs decreased the VE concentrations and increased the reactive oxygen species generation after exposure to BPA at environmentally relevant concentrations. The identified reactions provided an overlooked metabolic disruption pathway for phenolic pollutants.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Gautam M, Gunay A, Chandel NS, Ozdinler PH. Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD + balance as a therapeutic strategy. Sci Rep 2022; 12:4287. [PMID: 35277554 PMCID: PMC8917163 DOI: 10.1038/s41598-022-08068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial defects result in dysregulation of metabolomics and energy homeostasis that are detected in upper motor neurons (UMNs) with TDP-43 pathology, a pathology that is predominantly present in both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). While same mitochondrial problems are present in the UMNs of ALS patients with TDP-43 pathology and UMNs of TDP-43 mouse models, and since pathologies are shared at a cellular level, regardless of species, we first analyzed the metabolite profile of both healthy and diseased motor cortex to investigate whether metabolomic changes occur with respect to TDP-43 pathology. High-performance liquid chromatography, high-resolution mass spectrometry and tandem mass spectrometry (HPLC-MS/MS) for metabolite profiling began to suggest that reduced levels of NAD+ is one of the underlying causes of metabolomic problems. Since nicotinamide mononucleotide (NMN) was reported to restore NAD+ levels, we next investigated whether NMN treatment would improve the health of diseased corticospinal motor neurons (CSMN, a.k.a. UMN in mice). prpTDP-43A315T-UeGFP mice, the CSMN reporter line with TDP-43 pathology, allowed cell-type specific responses of CSMN to NMN treatment to be assessed in vitro. Our results show that metabolomic defects occur early in ALS motor cortex and establishing NAD+ balance could offer therapeutic benefit to UMNs with TDP-43 pathology.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Aksu Gunay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA. .,Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60611, USA. .,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
33
|
Chang L, Liu X, Chen J, Liu H, Wang G, Wang G, Liao X, Shen X. Attenuation of Activated eIF2α Signaling by ISRIB Treatment After Spinal Cord Injury Improves Locomotor Function. J Mol Neurosci 2021; 72:585-597. [PMID: 34647267 PMCID: PMC8921087 DOI: 10.1007/s12031-021-01920-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Following spinal cord injury (SCI), multiple signaling cascades are activated instantaneously in the injured segments of the spinal cord to create a complex and pathogenic microenvironment, making it difficult to treat SCI. Nevertheless, the significance of the integrated stress response (ISR) to the series of physiological and pathological changes that occur after SCI remains unclear. Through western blotting (WB), we determined that the autophosphorylation of stress receptors (GCN2, PERK, PKR, and HRI) was enhanced after SCI, leading to increased phosphorylation of eIF2α at Ser51. Strikingly, we found that eIF2α was highly phosphorylated at 1 day post injury (dpi) and that this hypophosphorylation was maintained thereafter in the spinal cord, especially in neurons, which suggests that intervening with eIF2α phosphorylation may be a treatment strategy for SCI. Therefore, we employed the small molecule ISRIB, which inhibits eIF2α phosphorylation when the ISR is activated at moderate or low levels but not when the ISR is highly activated. Daily intraperitoneal injection of ISRIB significantly inhibited ISR signaling after SCI, reduced the cytosolic localization of RNA-binding proteins, and decreased neuronal apoptosis. Histological and functional experiments further demonstrated that treatment with ISRIB after SCI effectively curbed morphological deterioration and promoted the recovery of locomotor function. In summary, the ISR plays an important role in SCI, and ISRIB is a promising drug for the treatment of SCI.
Collapse
Affiliation(s)
- Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Jing Chen
- Department of Endocrinology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hongzhe Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guoping Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guohua Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiaoyun Liao
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China.
| |
Collapse
|
34
|
Gong J, Zhang W, Ding L, Zhang M, Zheng S, Ma R, Tang J, Yi W, Xu H, Zhang Y. 4,4'-Dimethoxychalcone regulates redox homeostasis by targeting riboflavin metabolism in Parkinson's disease therapy. Free Radic Biol Med 2021; 174:40-56. [PMID: 34332078 DOI: 10.1016/j.freeradbiomed.2021.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress damage plays a pivotal role in Parkinson's disease (PD) pathogenesis. Previously, we developed a blood brain barrier-penetrating peptide-based "Trojan Horse" strategy to deliver 4,4'-dimethoxychalcone (DMC) for PD therapy and revealed neuroprotective properties of DMC in a PD model; however, the underlying mechanisms remained unclear. Here, we report that DMC attenuated motor impairment, degeneration of DA neurons and α-synuclein aggregation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and exogenous human α-synuclein-induced PD mouse models. Mechanistically, DMC increased the expression of two critical intermediates in riboflavin metabolism: riboflavin kinase (RFK) and its metabolic product, flavin mononucleotide (FMN). We provide the first direct evidence that FMN ameliorated oxidative stress damage and dopaminergic neuron degeneration both in vitro and in vivo and that riboflavin metabolism was required for DMC-mediated neuroprotection. DMC-induced restoration of redox homeostasis was mediated via the activation of protein kinase Cθ (PKCθ) signaling. Together, our findings reveal that DMC may serve as a novel antioxidant in PD intervention and also define a novel mechanism that underlies its therapeutic activity.
Collapse
Affiliation(s)
- Junwei Gong
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengran Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Shaohui Zheng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Runfang Ma
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Junyuan Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huaxi Xu
- Center for Brain Sciences of the First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Yunlong Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
35
|
Abstract
Tumour initiation and progression requires the metabolic reprogramming of cancer cells. Cancer cells autonomously alter their flux through various metabolic pathways in order to meet the increased bioenergetic and biosynthetic demand as well as mitigate oxidative stress required for cancer cell proliferation and survival. Cancer driver mutations coupled with environmental nutrient availability control flux through these metabolic pathways. Metabolites, when aberrantly accumulated, can also promote tumorigenesis. The development and application of new technologies over the last few decades has not only revealed the heterogeneity and plasticity of tumours but also allowed us to uncover new metabolic pathways involved in supporting tumour growth. The tumour microenvironment (TME), which can be depleted of certain nutrients, forces cancer cells to adapt by inducing nutrient scavenging mechanisms to sustain cancer cell proliferation. There is growing appreciation that the metabolism of cell types other than cancer cells within the TME, including endothelial cells, fibroblasts and immune cells, can modulate tumour progression. Because metastases are a major cause of death of patients with cancer, efforts are underway to understand how metabolism is harnessed by metastatic cells. Additionally, there is a new interest in exploiting cancer genetic analysis for patient stratification and/or dietary interventions in combination with therapies that target metabolism. In this Perspective, we highlight these main themes that are currently under investigation in the context of in vivo tumour metabolism, specifically emphasizing questions that remain unanswered.
Collapse
Affiliation(s)
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|