1
|
Huang A, Wu Z, Ansari G, Von Der Emde L, Pfau M, Schmitz-Valckenberg S, Fleckenstein M, Keenan TDL, Sadda SR, Guymer RH, Cheung CMG, Chakravarthy U. Geographic atrophy: Understanding the relationship between structure and function. Asia Pac J Ophthalmol (Phila) 2025:100207. [PMID: 40398512 DOI: 10.1016/j.apjo.2025.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
PURPOSE This review explores the complex relationship between anatomical alterations and functional consequences in geographic atrophy (GA), the advanced non-neovascular form of age-related macular degeneration. We examine the natural history, progression patterns, structural biomarkers, functional assessments, and structure-function correlations in GA. METHODS Experts contributed specialized knowledge on GA pathophysiology, imaging biomarkers, and functional assessment methods. We synthesized an understanding of the relationship between structural changes (including fundus autofluorescence patterns, optical coherence tomography markers, and novel biomarkers) and functional outcomes (visual acuity, microperimetry, reading performance, and patient-reported outcomes), drawing from authors' research expertise and relevant literature. RESULTS While GA is defined by visible areas of outer retinal atrophy, the structure-function relationship is complex and often discordant. Visual acuity incompletely reflects the functional impact of GA, as it may remain preserved until foveal involvement occurs. Microperimetric assessments reveal functional deficits extending beyond visible atrophic borders, with varying degrees of correlation between structural and functional metrics. Different fundus autofluorescence patterns demonstrate distinct functional implications and progression rates. Recent innovations in imaging and visual function testing offer enhanced characterization of disease progression. CONCLUSIONS The complex relationship between structural and functional measures in GA reflects underlying pathophysiological mechanisms and has important implications for clinical trial endpoints and patient management. Multimodal assessment incorporating both structural and functional parameters is essential for the comprehensive evaluation and management of GA, particularly as novel therapeutic approaches emerge.
Collapse
Affiliation(s)
- Antoine Huang
- Singapore National Eye Centre, Singapore; Sorbonne Université, Paris, France
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Georg Ansari
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Leon Von Der Emde
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Ophthalmology, University of Bonn, Bonn, Germany; Roche Pharmaceutical Research and Early Development, Translational Medicine Ophthalmology, Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Tiarnán D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore; Singapore Eye Research Institute, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Usha Chakravarthy
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
2
|
Li H, Tan B, Pandiyan VP, Barathi VA, Sabesan R, Schmetterer L, Ling T. Phase-restoring subpixel image registration: enhancing motion detection performance in Fourier-domain optical coherence tomography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2025; 58:145102. [PMID: 39989502 PMCID: PMC11843479 DOI: 10.1088/1361-6463/adb3b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Phase-sensitive Fourier-domain optical coherence tomography (FD-OCT) enables in-vivo, label-free imaging of cellular movements with detection sensitivity down to the nanometer scale, and it is widely employed in emerging functional imaging modalities, such as optoretinography (ORG), Doppler OCT, and optical coherence elastography. However, when imaging tissue dynamics in vivo, inter-frame displacement introduces decorrelation noise that compromises motion detection performance, particularly in terms of sensitivity and accuracy. Here, we demonstrate that the displacement-related decorrelation noise in FD-OCT can be accurately corrected by restoring the initial sampling points using our proposed Phase-Restoring Subpixel Image Registration (PRESIR) method. Derived from a general FD-OCT model, the PRESIR method enables translational shifting of complex-valued OCT images over arbitrary displacements with subpixel precision, while accurately restoring phase components. Unlike conventional approaches that shift OCT images either in the spatial domain at the pixel level or in the spatial frequency domain for subpixel correction, our method reconstructs OCT images by correcting axial displacement in the spectral domain (k domain) and lateral displacement in the spatial frequency domain. We validated the PRESIR method through simulations, phantom experiments, and in-vivo ORG in both rodents and human subjects. Our approach significantly reduced decorrelation noise during the imaging of moving samples, achieving phase sensitivity close to the fundamental limit determined by the signal-to-noise ratio.
Collapse
Affiliation(s)
- Huakun Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, United States of America
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, United States of America
| | - Leopold Schmetterer
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Aier Eye Hospital Group, Changsha, People’s Republic of China
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Rothschild Foundation Hospital, Paris, France
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Zhuo Y, Bhuckory M, Li H, Hattori J, Pham-Howard D, Veysset D, Ling T, Palanker D. Retinal thermal deformations measured with phase-sensitive optical coherence tomography in vivo. LIGHT, SCIENCE & APPLICATIONS 2025; 14:151. [PMID: 40175338 PMCID: PMC11965573 DOI: 10.1038/s41377-025-01798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 04/04/2025]
Abstract
Controlling the tissue temperature rise during retinal laser therapy is essential for predictable outcomes, especially at non-damaging settings. We demonstrate a method for determining the temperature rise in the retina using phase-sensitive optical coherence tomography (pOCT) in vivo. Measurements based on the thermally induced optical path length changes (ΔOPL) in the retina during a 10-ms laser pulse allow detection of the temperature rise with a precision less than 1 °C, which is sufficient for calibration of the laser power for patient-specific non-damaging therapy. We observed a significant difference in confinement of the retinal deformations between the normal and the degenerate retina: in wild-type rats, thermal deformations are localized between the retinal pigment epithelium (RPE) and the photoreceptors' inner segments (IS), as opposed to a deep penetration of the deformations into the inner retinal layers in the degenerate retina. This implies the presence of a structural component within healthy photoreceptors that dampens the tissue expansion induced by the laser heating of the RPE and pigmented choroid. We hypothesize that the thin and soft cilium connecting the inner and outer segments (IS, OS) of photoreceptors may absorb the deformations of the OS and thereby preclude the tissue expansion further inward. Striking difference in the confinement of the retinal deformations induced by a laser pulse in healthy and degenerate retina may be used as a biomechanical diagnostic tool for the characterization of photoreceptors degeneration.
Collapse
Affiliation(s)
- Yueming Zhuo
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA.
| | - Mohajeet Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA
| | - Huakun Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Junya Hattori
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Davis Pham-Howard
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA
| | - David Veysset
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Li H, Weiss CE, Pandiyan VP, Nanni D, Liu T, Kung PW, Tan B, Barathi VA, Schmetterer L, Sabesan R, Ling T. Optoretinography reveals rapid rod photoreceptor movement upon photoisomerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644466. [PMID: 40196674 PMCID: PMC11974685 DOI: 10.1101/2025.03.22.644466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Rod photoreceptors are essential for vision under dim light conditions. The onset of rod-mediated vision is marked by the isomerization of rhodopsin. Here we demonstrate that human and rodent rods undergo a minute and rapid contraction of their outer segments immediately upon photoisomerization. The contraction is explained as an electro-mechanical manifestation of the rod early receptor potential generated in the disk membranes, which is challenging to access in electrophysiology. The bleach-strength dependence of the contraction was accounted by a voltage-dependent membrane tension model, developed earlier to explain a similar behavior in cones. The in vivo optical imaging of light-evoked electrical activity in rodent rods was facilitated by an ultrahigh-resolution point-scan optical coherence tomography (OCT) system coupled with unsupervised learning, while in humans, an adaptive optics line-scan OCT facilitated high-speed recordings in individual rods. The non-invasive in vivo optical imaging of rhodopsin activation will have a significant impact on diagnostics and treatment of retinal disease, especially given the vulnerability of rods in inherited and age-related macular degeneration.
Collapse
Affiliation(s)
- Huakun Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Connor E Weiss
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | | | - Davide Nanni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Teng Liu
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Pei Wen Kung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Leopold Schmetterer
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
- AIER hospital group, Changsha, China
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Rothschild Foundation Hospital, Paris, France
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Liu T, Wendel B, Huey J, Pandiyan VP, Mustafi D, Chao JR, Sabesan R. Longitudinal changes in optoretinography provide an early and sensitive biomarker of outer retinal disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.12.25323718. [PMID: 40162271 PMCID: PMC11952608 DOI: 10.1101/2025.03.12.25323718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Objective To examine whether optoretinography (ORG) can provide greater sensitivity for assessing the time-course of disease progression in Retinitis Pigmentosa compared to standard clinical imaging in a longitudinal study. Design Cohort, longitudinal study. Participants Five non-syndromic RP patients and eight control subjects participated in the study. Methods Clinical examination, imaging sessions and data analysis were all conducted at the University of Washington. Five eyes of 5 patients diagnosed with RP, comparing standard clinical imaging to ORG, were collected over a 21-month span between August 2022 and May 2024. Main outcome and measures ORG response to visual stimuli, ellipsoid zone (EZ) width and outer segment length (OS length) were evaluated for longitudinal changes as markers of disease progression. Results The reduction in cone function with ORG over time exceeds that observed in standard clinical markers of photoreceptor structure - EZ width and OS length. EZ width and OSL decreased by 4.5% ± 5.9% and 6.5% ± 1.4%, respectively, approximately 9.9 and 6.9 times less than the reduction noted in ORG, respectively. The most notable degradation was noted at the borders of the transition zone, where ORG showed progressive and sub-clinical losses in photoreceptor function whereas standard OCT showed healthy, unaffected outer retinal structure. Conclusions Optoretinography detects sub-clinical disease and reliably identifies longitudinal markers of progression with greater sensitivity compared to standard clinical imaging. The ability to detect functional changes in the outer retina prior to standard clinical measures underscores its potential as a sensitive, accelerated and clinically-relevant outcome measure to guide patient selection and their therapeutic response in future clinical trials.
Collapse
Affiliation(s)
- Teng Liu
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
| | - Benjamin Wendel
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
| | - Jennifer Huey
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
| | | | - Debarshi Mustafi
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
- Seattle Children’s Hospital, Seattle, WA, 98105
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
| |
Collapse
|
6
|
Valente D, Vienola KV, Zawadzki RJ, Jonnal RS. Insight into human photoreceptor function: modeling optoretinographic responses to diverse stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.639986. [PMID: 40060425 PMCID: PMC11888417 DOI: 10.1101/2025.02.28.639986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Optoretinography is an emerging method for detecting and measuring functional responses from neurons in the living human retina. Its potential applications are significant and broad, spanning clinical assessment of retinal disease, investigation of fundamental scientific questions, and rapid evaluation of experimental therapeutics for blinding retinal diseases. Progress in all these domains hinges on the development of robust methods for quantifying observed responses in relation to visible stimuli. In this work, we describe a novel optoretinographic imaging platform-full-field swept-source optical coherence tomography with adaptive optics, measure cone responses in two healthy volunteers to a variety of stimulus patterns, and propose a simple model for predicting and quantifying responses to those stimuli.
Collapse
Affiliation(s)
- Denise Valente
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- Fisica de Materiais, Escola Politecnica de Pernambuco, Universidade de Pernambuco, 50720-001 Recife PE, Brazil
| | - Kari V. Vienola
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Robert J. Zawadzki
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- EyePod small animal ocular imaging laboratory, Department of Cell Biology and Human Anatomy, University of California, 9816 Davis CA, USA
| | - Ravi S. Jonnal
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
| |
Collapse
|
7
|
Greene MJ, Pandiyan VP, Sabesan R, Tuten WS. Local variations in L/M ratio influence the detection and color naming of small spots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639104. [PMID: 40060642 PMCID: PMC11888223 DOI: 10.1101/2025.02.19.639104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The distribution of long-wavelength sensitive (L) and middle-wavelength sensitive (M) cones in the retina determines how different frequencies of incident light are sampled across space, and has been hypothesized to influence spatial and color vision. We asked whether the detection and color naming of small, short-duration increment stimuli depend on the relative numbers of L and M cones illuminated. Stimuli were corrected for optical aberrations by an adaptive optics system, and targeted to locations in the parafovea where cone spectral types were known. We found that sensitivity to 680 nm light, normalized by sensitivity to 543 nm light, grew with the proportion of L cones at the stimulated locus, though intra- and intersubject variability was considerable. A similar trend was derived from a simple model of the achromatic (L+M) pathway, as well as from photoreceptor-level ideal observers, suggesting that small spot detection mainly relies on a non-opponent mechanism. Most stimuli were called achromatic, with red and green responses becoming more common as stimulus intensity and local L/M ratio symmetry increased. Our detection data confirm earlier reports that small spot psychophysics can reveal information about local cone topography, and our color naming findings suggest that chromatic sensitivity may improve when the L/M ratio approaches unity.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Tomczewski S, Curatolo A, Foik A, Węgrzyn P, Bałamut B, Wielgo M, Kulesza W, Galińska A, Kordecka K, Gulati S, Fernandes H, Palczewski K, Wojtkowski M. Photopic flicker optoretinography captures the light-driven length modulation of photoreceptors during phototransduction. Proc Natl Acad Sci U S A 2025; 122:e2421722122. [PMID: 39946535 PMCID: PMC11848411 DOI: 10.1073/pnas.2421722122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, we used an inhibitor of phosphodiesterase 6 (PDE6) to examine the impact of changes in the conformation of the PDE6 protein on the light-induced process responsible for altering the length of the outer segments of photoreceptor cells in both human and rodent eyes. We employed a imaging method called spatiotemporal optical coherence tomography, which ensures high contrast and phase stability within the strongly scattering photoreceptor- Retinal Pigment Epithelium complex. Using this approach, we recorded nanometer-scale changes in human cones and rods in response to photopic flicker stimulation and observed length changes in rodent rods under scotopic conditions following a single pulse of light, in the absence or presence of sildenafil, which inhibits the catalytic activity of PDE6. Our findings are consistent with the interpretation that during phototransduction conformational changes in PDE6 structure, which occur on an angstrom scale, are amplified to the nanometer scale due to the unique structure of the photoreceptor outer segments and sequential stimulation. This finding opens up possibilities for the informed use of photopic flicker optoretinography measurements as a diagnostic tool, as the observed nanometer-scale changes in rod and cone dimensions as a function of light stimulus can now be directly linked to molecular events involved in the phototransduction pathway.
Collapse
Affiliation(s)
- Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Department of Physics, Politecnico di Milano, Milan20133, Italy
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Faculty of Physics, University of Warsaw, Warsaw02-093, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | | | - Humberto Fernandes
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| |
Collapse
|
9
|
Juusola M, Takalo J, Kemppainen J, Haghighi KR, Scales B, McManus J, Bridges A, MaBouDi H, Chittka L. Theory of morphodynamic information processing: Linking sensing to behaviour. Vision Res 2025; 227:108537. [PMID: 39755072 DOI: 10.1016/j.visres.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously. The theory of neural morphodynamics proposes that rapid biomechanical movements and microstructural changes at the level of neurons and synapses enhance the speed and efficiency of sensory information processing, intrinsic thoughts, and actions by regulating neural information in a phasic manner. We propose that morphodynamic information processing evolved to drive predictive coding, synchronising cognitive processes across neural networks to match the behavioural demands at hand effectively.
Collapse
Affiliation(s)
- Mikko Juusola
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jouni Takalo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Joni Kemppainen
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ben Scales
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James McManus
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alice Bridges
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - HaDi MaBouDi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lars Chittka
- Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
10
|
Ahmed S, Son T, Ma G, Yao X. Polarization optical coherence tomography optoretinography: verifying light-induced photoreceptor outer segment shrinkage and subretinal space expansion. NEUROPHOTONICS 2025; 12:015005. [PMID: 39872019 PMCID: PMC11770343 DOI: 10.1117/1.nph.12.1.015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Significance Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed. These discrepancies may stem from the difficulty in reliably identifying OS boundaries, particularly the inner segment/outer segment (IS/OS) junction and OS tip, as well as potential confusion with subretinal space dynamics. Gaining a better understanding of these light-induced OS changes is essential for accurate interpretation of ORG measurements and for optimizing IOS imaging systems to enhance sensitivity. Aim We aim to develop a method for the reliable identification of OS boundaries and to verify light-induced photoreceptor OS shrinkage and subretinal space expansion. Approach We employed a polarization-resolved full-field swept-source optical coherence tomography system capable of sequentially capturing parallel-polarization and cross-polarization OCT signals. The parallel-polarization mode is optimized to detect ballistically reflected photons from well-defined retinal boundaries, such as the IS/OS junction and the photoreceptor tips, whereas cross-polarization primarily captures multiply scattered photons. This differentiation enables parallel-polarization OCT to minimize the interference from scattered photons, enhancing the precision of OCT band quantification. Results Parallel-polarization OCT revealed photoreceptor OS shrinkage and subretinal space expansion in light conditions compared with dark conditions. Moreover, the overall outer retinal length appeared to swell under light. These observations were consistently confirmed in four healthy adult human subjects. Conclusions Parallel-polarization OCT provides a reliable method for identifying the IS/OS junction and OS tip, confirming light-induced photoreceptor OS shrinkage and subretinal space expansion.
Collapse
Affiliation(s)
- Shaiban Ahmed
- University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Taeyoon Son
- University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Guangying Ma
- University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Xincheng Yao
- University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
- University of Illinois Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States
| |
Collapse
|
11
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Ma J, Rui Z, Zou Y, Qin Z, Zhao Z, Zhang Y, Mao Z, Bai H, Zhang J. Neurosurgical and BCI approaches to visual rehabilitation in occipital lobe tumor patients. Heliyon 2024; 10:e39072. [PMID: 39687114 PMCID: PMC11647799 DOI: 10.1016/j.heliyon.2024.e39072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the effects of occipital lobe tumors on visual processing and the role of brain-computer interface (BCI) technologies in post-surgical visual rehabilitation. Through a combination of pre-surgical functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI), intra-operative direct cortical stimulation (DCS) and Electrocorticography (ECoG), and post-surgical BCI interventions, we provide insight into the complex dynamics between occipital lobe tumors and visual function. Our results highlight a discrepancy between clinical assessments of visual field damage and the patient's reported visual experiences, suggesting a residual functional capacity within the damaged occipital regions. Additionally, the absence of expected visual phenomena during surgery and the promising outcomes from BCI-driven rehabilitation underscore the complexity of visual processing and the potential of technology-enhanced rehabilitation strategies. This work emphasizes the need for an interdisciplinary approach in developing effective treatments for visual impairments related to brain tumors, illustrating the significant implications for neurosurgical practices and the advancement of rehabilitation sciences.
Collapse
Affiliation(s)
- Jie Ma
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zong Rui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yuhui Zou
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Zhizhen Qin
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| |
Collapse
|
13
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
14
|
Kremers J, Huchzermeyer C. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies. Vis Neurosci 2024; 41:E004. [PMID: 39523890 PMCID: PMC11579838 DOI: 10.1017/s0952523824000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
Currently, electroretinograms (ERGs) are mainly recorded while using flashes as stimuli. In this review, we will argue that strong flashes are not ideal for studying visual information processing. ERG responses to periodic stimuli may be more strongly associated with the activity of post-receptoral neurons (belonging to different retino-geniculate pathways) and, therefore, be more relevant for visual perception. We will also argue that the use of periodic stimuli may be an attractive addition to clinically available retinal electrophysiological methods.
Collapse
Affiliation(s)
- Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Cord Huchzermeyer
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Huey J, Gupta P, Wendel B, Liu T, Bharadwaj P, Schwartz H, Kelly JP, Chang I, Chao JR, Sabesan R, Nagiel A, Mustafi D. Genetic Reasons for Phenotypic Diversity in Neuronal Ceroid Lipofuscinoses and High-Resolution Imaging as a Marker of Retinal Disease. OPHTHALMOLOGY SCIENCE 2024; 4:100560. [PMID: 40206986 PMCID: PMC11980625 DOI: 10.1016/j.xops.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 04/11/2025]
Abstract
Purpose To describe the clinical characteristics, natural history, genetic landscape, and phenotypic spectrum of neuronal ceroid lipofuscinosis (NCL)-associated retinal disease. Design Multicenter retrospective cohort study complemented by a cross-sectional examination. Subjects Twelve pediatric subjects with biallelic variants in 5 NCL-causing genes (CLN3 lysosomal/endosomal transmembrane protein [CLN3], CLN6 transmembrane ER protein [CLN6], Major facilitator superfamily domain containing 8 [MFSD8], Palmitoyl-protein thioesterase 1 ([PPT1], and tripeptidyl peptidase 1 [TPP1]). Methods Review of clinical notes, retinal imaging, electroretinography (ERG), and molecular genetic testing. Two subjects underwent a cross-sectional examination comprising adaptive optics scanning laser ophthalmoscopy imaging of the retina and optoretinography (ORG). Main Outcome Measures Clinical/demographic data, multimodal retinal imaging data, electrophysiology parameters, and molecular genetic testing. Results Our cohort included a diverse set of subjects with CLN3-juvenile NCL (n = 3), TPP1-late infantile NCL (n = 5), PPT1-late infantile or juvenile NCL (n = 2), CLN6-infantile NCL (n = 1), and CLN7/MFSD8-late infantile NCL (n = 1). Five novel pathogenic or likely pathogenic variants were identified. Age at presentation ranged from 2 to 16 years old (mean 7.9 years). Subjects presented with varying phenotypes ranging from severe neurocognitive features (n = 8; 67%), including seizures and developmental delays and regressions, to nonsyndromic retinal dystrophies (n = 2; 17%). Visual acuities at presentation ranged from light perception to 20/20. In those with recordable ERGs, the traces were electronegative and suggestive of early cone dysfunction. Fundus imaging and OCTs demonstrated outer retinal loss that varied with underlying genotype. High-resolution adaptive optics imaging and functional measures with ORG in 2 subjects with atypical TPP1-associated disease revealed significantly different phenotypes of cellular structure and function that could be followed longitudinally. Conclusions Our cohort data demonstrates that the underlying genetic variants drive the phenotypic diversity in different forms of NCL. Genetic testing can provide molecular diagnosis and ensure appropriate disease management and support for children and their families. With intravitreal enzyme replacement therapy on the horizon as a potential treatment option for NCL-associated retinal degeneration, precise structural and functional measures will be required to more accurately monitor disease progression. We show that adaptive optics imaging and ORG can be used as highly sensitive methods to track early retinal changes, which can be used to establish eligibility for future therapies and provide metrics for determining the efficacy of interventions on a cellular scale. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jennifer Huey
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Pankhuri Gupta
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Benjamin Wendel
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Teng Liu
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Palash Bharadwaj
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Hillary Schwartz
- Department of Surgery, The Vision Center, Children's Hospital Los Angeles, Los Angeles, California
| | - John P. Kelly
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington
| | - Irene Chang
- Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Jennifer R. Chao
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Ramkumar Sabesan
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
| | - Aaron Nagiel
- Department of Surgery, The Vision Center, Children's Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Debarshi Mustafi
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, Washington
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| |
Collapse
|
16
|
Wongchaisuwat N, Amato A, Yang P, Everett L, Pennesi ME, Huang D, Chen S. Optical Coherence Tomography Split-Spectrum Amplitude-Decorrelation Optoretinography Detects Early Central Cone Photoreceptor Dysfunction in Retinal Dystrophies. Transl Vis Sci Technol 2024; 13:5. [PMID: 39361318 PMCID: PMC11451826 DOI: 10.1167/tvst.13.10.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose To investigate if split-spectrum amplitude-decorrelation optoretinography (SSADOR) can detect and measure macular cone dysfunction in inherited retinal dystrophies (IRDs). Methods This study was a case series of participants presenting with various IRD pathologies. Participants were recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute from February to August 2023. Multimodal and SSADOR imaging was obtained in all cases. Results We recruited nine participants, including four with macular dystrophy, one with fundus flavimaculatus, one with cone dystrophy, and three with retinitis pigmentosa. SSADOR decorrelation maps identified areas of cone functional impairment consistent with disease phenotypes. A correlation between the SSADOR signal and retinal sensitivity measured by microperimetry within the central 20° diameter area was observed. Additionally, SSADOR was able to demonstrate a decreased signal in mild cases when microperimetry measurements were still normal but subtle changes were also apparent on structural OCT. Conclusions SSADOR is sensitive at detecting functional changes in macular cones, even prior to abnormalities in perimetry testing. We highlight the potential benefits of this innovative technology for the early detection of cone dysfunction and their potential contributions to earlier diagnosis and more accurate monitoring of progression. Translational Relevance SSADOR is an innovative technology that detects early macular cone function changes, allowing for early diagnosis and precise monitoring of cone dysfunction progression. By serving as a potential clinical trial endpoint, SSADOR facilitates the translation of scientific findings into practical applications, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nida Wongchaisuwat
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessia Amato
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lesley Everett
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David Huang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Siyu Chen
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Gong Z, Shi Y, Liu J, Sabesan R, Wang RK. Light-adapted flicker-optoretinography based on raster-scan optical coherence tomography towards clinical translation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6036-6051. [PMID: 39421778 PMCID: PMC11482172 DOI: 10.1364/boe.538481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Optoretinography (ORG) is a promising non-invasive and objective technique for assessing retinal function by measuring its response to light stimulation. Optical coherence tomography (OCT) has emerged as a promising tool for implementing ORG due to its three-dimensional imaging capabilities, high sensitivity to nanometer-scale changes induced by light stimulation, and clinical availability. Although ORG has proven feasible in laboratory settings, research-grade OCT systems lack satisfactory usability and cost-effectiveness to be clinically viable. Standard clinical raster-scan OCT systems, with their limited imaging speed, fall short of the requirements for measuring rapid ORG responses. To bridge this gap, we introduce a flicker-ORG modality based on a raster-scan OCT system that resembles standard clinical OCT. This system overcomes speed limitations through an innovative two-stage scanning protocol coupled with a 600 kHz swept source, enabling repeated volume imaging and precise retinal activity measurements over a finite area. Additionally, the light-adapted ORG strategy eliminates the need for dark adaptation, allowing examinations under photopic conditions and thus improving patient compliance. We tested this new ORG method by measuring flicker-induced photoreceptor responses in five healthy subjects. The results demonstrated high repeatability and revealed dependencies of the ORG response on flicker frequency and retinal eccentricity. These findings, combined with the system's utility, cost-effectiveness, and ease of integration into existing technologies, underscore its substantial potential for clinical application.
Collapse
Affiliation(s)
- Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
18
|
Chen K, Abbasi N, Wong A, Bizheva K. In vivo, contactless, cellular resolution imaging of the human cornea with Powell lens based line field OCT. Sci Rep 2024; 14:22553. [PMID: 39343797 PMCID: PMC11439927 DOI: 10.1038/s41598-024-73402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Potentially blinding corneal diseases alter the morphology of the human cornea. At the early stages of disease development, these changes occur at the cellular level. The ability to visualize and quantify such changes can lead to early diagnostics of corneal pathologies, which is pivotal for the long-term preservation of vision. Here we present a Powell Lens-based Line-Field Optical Coherence Tomography system that combines high spatial resolution (2.4 μm × 2.2 μm × 1.7 μm (x × y × z)) in biological tissue, sufficient to resolve individual cells, high sensitivity (90.5 dB), sufficient to image the semi-transparent human cornea, and fast image acquisition rate (~ 2,400 fps), sufficient to suppress most involuntary eye motion artifacts and allow for contactless, in-vivo imaging of the cellular structure of the human cornea. Volumetric images acquired in-vivo from corneas of healthy subjects show epithelial, endothelial and keratocytes cells, as well as sub-basal and stromal nerves. The system's high axial resolution also allows for volumetric morphometry of the corneal endothelium, Descemet's membrane and the pre-Descemet's (Dua) layer.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| | - Nima Abbasi
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada
| | - Alexander Wong
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada.
- Systems Design Engineering Department, University of Waterloo, Waterloo, Canada.
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
19
|
Kreis J, Carroll J. Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea. Annu Rev Vis Sci 2024; 10:239-262. [PMID: 38635871 DOI: 10.1146/annurev-vision-102122-100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.
Collapse
Affiliation(s)
- Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
20
|
Ni S, Khan S, Jiménez-Villar A, Pennesi ME, Huang D, Jian Y, Chen S. Optical Assessment of Photoreceptor Function Over the Macula. Transl Vis Sci Technol 2024; 13:41. [PMID: 39186303 PMCID: PMC11361383 DOI: 10.1167/tvst.13.8.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose The purpose of this study was to develop next-generation functional photoreceptor imaging using ultrahigh-speed swept-source optical coherence tomography (UHS-SS-OCT) and split-spectrum amplitude-decorrelation optoretinography (SSADOR) algorithm. The advancement enables rapid surveying of large retinal areas, promising non-contact, objective, and quantifiable measurements of macular visual function. Methods We designed and built a UHS-SS-OCT prototype instrument using a wavelength tunable laser with 1 MHz A-scan rate. The functional scanning protocol records 5 repeated volumes in 3 seconds. A flash pattern selectively exposes the imaged retina area. SSADOR quantifies photoreceptor light response by extracting optical coherence tomography (OCT) signal changes within the photoreceptor outer segment before and after the flash. Results The study prospectively enrolled 16 eyes from 8 subjects, demonstrating the ability to measure photoreceptor light response over a record field of view (3 × 3 mm2) with high topographical resolution (approximately 100 µm). The measured SSADOR signal corresponds to the flashed pattern, whose amplitude also correlates with flash strength, showing consistency and reproducibility across subjects. Conclusions The integration of high-performance UHS-SS-OCT and SSADOR enables characterizing photoreceptor function over a clinically meaningful field of view, while maintaining a workflow that can be integrated into routine clinical tests and trials. The new approach allows detecting changes in photoreceptor light response with high sensitivity and can detect small focal impairments. Translational Relevance This innovative advance can enable us to detect early photoreceptor abnormalities, as well as help to stage and monitor degenerative retinal diseases, potentially providing a surrogate visual function marker for retinal diseases and accelerating therapeutic development through a safe and efficient outcome endpoint.
Collapse
Affiliation(s)
- Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Siyu Chen
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Wendel BJ, Pandiyan VP, Liu T, Jiang X, Lassoued A, Slezak E, Schleufer S, Bharadwaj P, Tuten WS, Mustafi D, Chao JR, Sabesan R. Multimodal High-Resolution Imaging in Retinitis Pigmentosa: A Comparison Between Optoretinography, Cone Density, and Visual Sensitivity. Invest Ophthalmol Vis Sci 2024; 65:45. [PMID: 39207297 PMCID: PMC11364184 DOI: 10.1167/iovs.65.10.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Retinitis pigmentosa (RP), the most common inherited retinal disease, is characterized by progressive photoreceptor degeneration. It remains unknown to what extent surviving photoreceptors transduce light and support vision in RP. To address this, we correlated structure and functional measures using adaptive optics scanning laser ophthalmoscopy (AOSLO), adaptive optics microperimetry, and adaptive optics optical coherence tomography (AO-OCT)-based optoretinograms (ORGs). Methods Four patients with RP were imaged with AOSLO across the visual field covering the transition zone (TZ) of normal to diseased retina. Cone density was estimated in discrete regions spanning the TZ. Visual sensitivity was assessed by measuring increment thresholds for a 3-arcmin stimulus targeted via active eye tracking in AOSLO. ORGs were measured at the same locations using AO-OCT to assess the cones' functional response to a 528 ± 20-nm stimulus. Individual cone outer segment (COS) lengths were measured from AO-OCT in each subject. Results Cone density was significantly reduced in patients with RP. Density reduction correlated with TZ location in 3 patients with RP, while a fourth had patches of reduced density throughout the retina. ORG amplitude was reduced in regions of normal and reduced cone density in all patients with RP. ORG response and COS length were positively correlated in controls but not in patients with RP. Despite deficits in cone density and ORG, visual sensitivity remained comparable to controls in three of four patients with RP. Conclusions ORG-based measures of retinal dysfunction may precede deficits in cone structure and visual sensitivity. ORG is a sensitive measure of RP disease status and has significant potential to provide insight into disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Benjamin J. Wendel
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Teng Liu
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Ayoub Lassoued
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Emily Slezak
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Sierra Schleufer
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Palash Bharadwaj
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - William S. Tuten
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Debarshi Mustafi
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
- Seattle Children's Hospital, Seattle, Washington, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
22
|
Zhang F, Kovalick K, Raghavendra A, Soltanian-Zadeh S, Farsiu S, Hammer DX, Liu Z. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4675-4688. [PMID: 39346995 PMCID: PMC11427184 DOI: 10.1364/boe.533249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.
Collapse
Affiliation(s)
- Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Achyut Raghavendra
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
23
|
Bartuzel MM, Consejo A, Stremplewski P, Sylwestrzak M, Szkulmowski M, Gorczynska I. In vivo identification of the retinal layer containing photopigments in OCT images through correlation with two-photon psychophysics. Sci Rep 2024; 14:15459. [PMID: 38965299 PMCID: PMC11224378 DOI: 10.1038/s41598-024-65234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Two-photon vision enables near-infrared light perception in humans. We investigate the possibility to utilize this phenomenon as an indicator of the location of the outer segments of photoreceptor cells in the OCT images. Since two-photon vision is independent on OCT imaging, it could provide external to OCT reference relative to which positions of retinal layers visible in OCT imaging could be measured. We show coincidence between OCT imaging of outer retinal layers and two-photon light perception. The experiment utilizes an intrinsic nonlinear process in the retina, two-photon absorption of light by visual photopigments, which triggers perception of near-infrared light. By shifting the focus of the imaging/stimulus beam, we link the peak efficiency of two-photon vision with the visibility of outer segments of photoreceptor cells, which can be seen as in vivo identification of a retinal layer containing visual photopigments in OCT images. Determination of the in-focus retinal layer is achieved by analysis of en face OCT image contrast. We discuss experimental methods and experimental factors that may influence two-photon light perception and the accuracy of the results. The limits of resolution are discussed in analysis of the one-photon and two-photon point spread functions.
Collapse
Affiliation(s)
- Maciej M Bartuzel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland.
| | - Alejandra Consejo
- Aragon Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Patrycjusz Stremplewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Marcin Sylwestrzak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Iwona Gorczynska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
24
|
Rosin B, Banin E, Sahel JA. Current Status of Clinical Trials Design and Outcomes in Retinal Gene Therapy. Cold Spring Harb Perspect Med 2024; 14:a041301. [PMID: 37696658 PMCID: PMC11216172 DOI: 10.1101/cshperspect.a041301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
With the rapid expansion of methods encompassed by the term gene therapy, new trials exploring the safety and efficacy of these methods are initiated more frequently. As a result, important questions arise pertaining the design of these trials and patient participation. One of the most important aspects of any clinical trial is the ability to measure the trial's outcome in a manner that will reflect the effect of the treatment and allow its quantification, whether the trial is aimed at preservation or restoration of retinal cells (photoreceptors and others), vision, or both. Here we will review the existing methods for quantification of trial outcomes, stressing the importance of assessing the participant's visual function and not just visual acuity. We will also describe the key considerations in trial design. Finally, as patient safety remains the primary concern in any trial participation, we will outline the key principles in that regard.
Collapse
Affiliation(s)
- Boris Rosin
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Eyal Banin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jose-Alain Sahel
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Institut Hospitalo-Universitaire FOReSIGHT, Paris 75012, France
| |
Collapse
|
25
|
Tan B, Li H, Zhuo Y, Han L, Mupparapu R, Nanni D, Barathi VA, Palanker D, Schmetterer L, Ling T. Light-evoked deformations in rod photoreceptors, pigment epithelium and subretinal space revealed by prolonged and multilayered optoretinography. Nat Commun 2024; 15:5156. [PMID: 38898002 PMCID: PMC11186825 DOI: 10.1038/s41467-024-49014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Phototransduction involves changes in concentration of ions and other solutes within photoreceptors and in subretinal space, which affect osmotic pressure and the associated water flow. Corresponding expansion and contraction of cellular layers can be imaged using optoretinography (ORG), based on phase-resolved optical coherence tomography (OCT). Until now, ORG could reliably detect only photoisomerization and phototransduction in photoreceptors, primarily in cones under bright stimuli. Here, by employing a phase-restoring subpixel motion correction algorithm, which enables imaging of the nanometer-scale tissue dynamics during minute-long recordings, and unsupervised learning of spatiotemporal patterns, we discover optical signatures of the other retinal structures' response to visual stimuli. These include inner and outer segments of rod photoreceptors, retinal pigment epithelium, and subretinal space in general. The high sensitivity of our technique enables detection of the retinal responses to dim stimuli: down to 0.01% bleach level, corresponding to natural levels of scotopic illumination. We also demonstrate that with a single flash, the optoretinogram can map retinal responses across a 12° field of view, potentially replacing multifocal electroretinography. This technique expands the diagnostic capabilities and practical applicability of optoretinography, providing an alternative to electroretinography, while combining structural and functional retinal imaging in the same OCT machine.
Collapse
Affiliation(s)
- Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
| | - Huakun Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yueming Zhuo
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Le Han
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
| | - Rajeshkumar Mupparapu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore
| | - Davide Nanni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA.
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Department of Ophthalmology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Tong Ling
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Gaffney M, Connor TB, Cooper RF. Intensity-based optoretinography reveals sub-clinical deficits in cone function in retinitis pigmentosa. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1373549. [PMID: 38984134 PMCID: PMC11182324 DOI: 10.3389/fopht.2024.1373549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Introduction Clinical tools have been widely used in the diagnosis, description, and monitoring the progression of retinitis pigmentosa (RP); however, many of these methods have inherently low sensitivity and specificity, and significant photoreceptor disruption can occur before RP progression has clinically manifest. Adaptive optics scanning light ophthalmoscopy (AOSLO) has shown promise as a powerful tool for assessing photoreceptor disruption both structurally and functionally due to its increased resolution. Methods Here we assess photoreceptor structure and function at the cellular level through AOSLO by acquiring intensity based optoretinography (iORG) in 15 individuals with no reported retinal pathology and 7 individuals with a prior clinical diagnosis of RP. Photoreceptor structure was quantified by calculating cone nearest neighbor distance (NND) across different retinal eccentricities from the AOSLO images. Cone outer segment length was measured across different retinal eccentricities using optical coherence tomography (OCT) derived longitudinal reflectivity profiles (LRPs). Finally, iORG measures of photoreceptor function were compared to retinal sensitivity as measured using the macular integrity assessment (MAIA) microperimeter. Results Broadly, participants with RP exhibited increasing cone nearest neighbor distances and decreasing cone outer segment length as a function of retinal eccentricity, consistent with prior reports for both controls and individuals with RP. Nearly all individuals with RP had reduced iORG amplitudes for all retinal eccentricities when compared to the control cohort, and the reduction was greater in eccentricities further from the fovea. Comparing iORG amplitudes to MAIA retinal sensitivity, we found that the iORG was more sensitive to early changes in photoreceptor function whereas MAIA was more sensitive to later stages of disease. Discussion This highlights the utility of iORG as a method to detect sub-clinical deficits in cone function in all stages of disease progression and supports the future use of iORG for identifying cells that are candidates for cellular based therapies.
Collapse
Affiliation(s)
- Mina Gaffney
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thomas B. Connor
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert F. Cooper
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
27
|
Tomczewski S, Węgrzyn P, Wojtkowski M, Curatolo A. Chirped flicker optoretinography for in vivo characterization of human photoreceptors' frequency response to light. OPTICS LETTERS 2024; 49:2461-2464. [PMID: 38691744 DOI: 10.1364/ol.514637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Flicker electroretinography (ERG) has served as a valuable noninvasive objective tool for investigating retinal physiological function through the measurement of electrical signals originating from retinal neurons in response to temporally modulated light stimulation. Deficits in the response at certain frequencies can be used as effective biomarkers of cone-pathway dysfunction. In this Letter, we present the progress we made on its optical counterpart-photopic flicker optoretinography (f-ORG). Specifically, we focus on the measurement of the response of light-adapted retinal photoreceptors to a flicker stimulus with chirped frequency modulation. In contrast to measurements performed at discrete frequencies, this technique enables a significantly accelerated characterization of photoreceptor outer segment optical path length modulation amplitudes in the nanometer range as a function of stimulus frequency, enabling the acquisition of the characteristic frequency response in less than 2 sec.
Collapse
|
28
|
Xu P, Cooper RF, Jiang YY, Morgan JIW. Parafoveal cone function in choroideremia assessed with adaptive optics optoretinography. Sci Rep 2024; 14:8339. [PMID: 38594294 PMCID: PMC11004114 DOI: 10.1038/s41598-024-58059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Choroideremia (CHM) is an X-linked retinal degeneration leading to loss of the photoreceptors, retinal pigment epithelium (RPE), and choroid. Adaptive optics optoretinography is an emerging technique for noninvasive, objective assessment of photoreceptor function. Here, we investigate parafoveal cone function in CHM using adaptive optics optoretinography and compare with cone structure and clinical assessments of vision. Parafoveal cone mosaics of 10 CHM and four normal-sighted participants were imaged with an adaptive optics scanning light ophthalmoscope. While acquiring video sequences, a 2 s 550Δ10 nm, 450 nW/deg2 stimulus was presented. Videos were registered and the intensity of each cone in each frame was extracted, normalized, standardized, and aggregated to generate the population optoretinogram (ORG) over time. A gamma-pdf was fit to the ORG and the peak was extracted as ORG amplitude. CHM ORG amplitudes were compared to normal and were correlated with bound cone density, ellipsoid zone to RPE/Bruch's membrane (EZ-to-RPE/BrM) distance, and foveal sensitivity using Pearson correlation analysis. ORG amplitude was significantly reduced in CHM compared to normal (0.22 ± 0.15 vs. 1.34 ± 0.31). In addition, CHM ORG amplitude was positively correlated with cone density, EZ-to-RPE/BrM distance, and foveal sensitivity. Our results demonstrate promise for using ORG as a biomarker of photoreceptor function.
Collapse
Affiliation(s)
- Peiluo Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert F Cooper
- Department of Ophthalmology, Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica I W Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Pfäffle C, Puyo L, Spahr H, Hillmann D, Miura Y, Hüttmann G. Unraveling the functional signals of rods and cones in the human retina: separation and analysis. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1340692. [PMID: 38984116 PMCID: PMC11182095 DOI: 10.3389/fopht.2024.1340692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/20/2024] [Indexed: 07/11/2024]
Abstract
In recent years, optoretinography has become an important functional imaging method for the retina, as light-evoked changes in the photoreceptors have been demonstrated for a large number of different OCT systems. Full-field swept-source optical coherence tomography (FF-SS-OCT) is particularly phase-stable, and it is currently the only technique sensitive enough to detect the smaller functional changes in the inner plexiform layer (IPL). However, the resolution of state-of-the art FF-SS-OCT systems is not high enough to distinguish individual photoreceptors. This makes it difficult to separate rods from cones. In this work, we circumvent this problem by separating the functional changes in rods and cones by their different temporal dynamics to the same light stimulus. For this purpose, a mathematical model was developed that represents the measured signals as a superposition of two impulse responses. The developed model describes the measured data under different imaging conditions very well and is able to analyze the sensitivity and temporal dynamics of the two photoreceptor types separately.
Collapse
Affiliation(s)
- Clara Pfäffle
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Léo Puyo
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Hendrik Spahr
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Dierck Hillmann
- Department of Physics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yoko Miura
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
- Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
30
|
Kurokawa K, Nemeth M. Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:1331-1354. [PMID: 38404344 PMCID: PMC10890865 DOI: 10.1364/boe.505395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Clinicians are unable to detect glaucoma until substantial loss or dysfunction of retinal ganglion cells occurs. To this end, novel measures are needed. We have developed an optical imaging solution based on adaptive optics optical coherence tomography (AO-OCT) to discern key clinical features of glaucoma and other neurodegenerative diseases at the cellular scale in the living eye. Here, we test the feasibility of measuring AO-OCT-based reflectance, retardance, optic axis orientation, and angiogram at specifically targeted locations in the living human retina and optic nerve head. Multifunctional imaging, combined with focus stacking and global image registration algorithms, allows us to visualize cellular details of retinal nerve fiber bundles, ganglion cell layer somas, glial septa, superior vascular complex capillaries, and connective tissues. These are key histologic features of neurodegenerative diseases, including glaucoma, that are now measurable in vivo with excellent repeatability and reproducibility. Incorporating this noninvasive cellular-scale imaging with objective measurements will significantly enhance existing clinical assessments, which is pivotal in facilitating the early detection of eye disease and understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Morgan Nemeth
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
31
|
Neuhaus K, Khan S, Thaware O, Ni S, Aga M, Jia Y, Redd T, Chen S, Huang D, Jian Y. Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:1059-1073. [PMID: 38404311 PMCID: PMC10890841 DOI: 10.1364/boe.511187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.
Collapse
Affiliation(s)
- Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Omkar Thaware
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mini Aga
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Travis Redd
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Siyu Chen
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
32
|
Ding J, Kim TH, Ma G, Yao X. Intrinsic signal optoretinography of dark adaptation abnormality due to rod photoreceptor degeneration. Exp Biol Med (Maywood) 2024; 249:10024. [PMID: 38463390 PMCID: PMC10911128 DOI: 10.3389/ebm.2024.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
This research aims to investigate the potential of using intrinsic optical signal (IOS) optoretinography (ORG) to objectively detect dark adaptation (DA) abnormalities related to rod photoreceptor degeneration. Functional optical coherence tomography (OCT) was employed in both wild-type (WT) and retinal degeneration 10 (rd10) mice to conduct this assessment. Dynamic OCT measurements captured the changes in retinal thickness and reflectance from light-to-dark transition. Comparative analysis revealed significant IOS alterations within the outer retina. Specifically, a reduction in thickness from external limiting membrane (ELM) peak to retinal pigment epithelium (RPE) peak was observed (WT: 1.13 ± 0.69 µm, 30 min DA; rd10: 2.64 ± 0.86 µm, 30 min DA), as well as a decrease in the intensity of the inner segment ellipsoid zone (EZ) in 30 min DA compared to light adaptation (LA). The reduction of relative EZ intensity was notable in rd10 after 5 min DA and in WT after 15 min DA, with a distinguishable difference between rd10 and WT after 10 min DA. Furthermore, our findings indicated a significant decrease in the relative intensity of the hypo-reflective band between EZ and RPE in rd10 retinas during DA, which primarily corresponds to the outer segment (OS) region. In conclusion, the observed DA-IOS abnormalities, including changes in ELM-RPE thickness, EZ, and OS intensity, hold promise as differentiators between WT and rd10 mice before noticeable morphological abnormalities occur. These findings suggest the potential of this non-invasive imaging technique for the early detection of dysfunction in retinal photoreceptors.
Collapse
Affiliation(s)
- Jie Ding
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023; 65:1631-1655. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
35
|
Zhang P, Vafaeva O, Dolf C, Ma Y, Wang G, Cho J, Chan HHL, Marsh-Armstrong N, Zawadzki RJ. Evaluating the performance of OCT in assessing static and potential dynamic properties of the retinal ganglion cells and nerve fiber bundles in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2023; 14:6422-6441. [PMID: 38420317 PMCID: PMC10898556 DOI: 10.1364/boe.504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 03/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes. We evaluated parameters such as RNFL thickness and possible dynamics, as well as compared the ganglion cell layer (GCL) soma density obtained from in vivo OCT, fluorescence scanning laser ophthalmoscopy (SLO), and ex vivo histology.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Olga Vafaeva
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Christian Dolf
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Yanhong Ma
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Guozhen Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Jessicca Cho
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Robert J Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
- Center for Human Ocular Imaging Research (CHOIR), Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| |
Collapse
|
36
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Chen S, Ni S, Jiménez-Villar A, Jian Y, Jia Y, Huang D. Optical coherence tomography split-spectrum amplitude-decorrelation optoretinography. OPTICS LETTERS 2023; 48:3921-3924. [PMID: 37527083 DOI: 10.1364/ol.492178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
This pilot study reports the development of optical coherence tomography (OCT) split-spectrum amplitude-decorrelation optoretinography (SSADOR) that measures spatially resolved photoreceptor response to light stimuli. Using spectrally multiplexed narrowband OCT, SSADOR improves sensitivity to microscopic changes without the need for cellular resolution or optical phase detection. Therefore, a large field of view (up to 3 × 1 mm2 demonstrated) using conventional OCT instrument design can be achieved, paving the way for clinical translation. SSADOR promises a fast, objective, and quantifiable functional biomarker for photoreceptor damage in the macula.
Collapse
|
38
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
39
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-Cone Syndrome: Elevated Cone Counts Confer Supernormal Visual Acuity in the S-Cone Pathway. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37459066 PMCID: PMC10362924 DOI: 10.1167/iovs.64.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
40
|
Vanston JE, Boehm AE, Tuten WS, Roorda A. It's not easy seeing green: The veridical perception of small spots. J Vis 2023; 23:2. [PMID: 37133838 PMCID: PMC10166115 DOI: 10.1167/jov.23.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/26/2023] [Indexed: 05/04/2023] Open
Abstract
When single cones are stimulated with spots of 543-nm light presented against a white background, subjects report percepts that vary between predominately red, white, and green. However, light of the same spectral composition viewed over a large field under normal viewing conditions looks invariably green and highly saturated. It remains unknown what stimulus parameters are most important for governing the color appearance in the transition between these two extreme cases. The current study varied the size, intensity and retinal motion of stimuli presented in an adaptive optics scanning laser ophthalmoscope. Stimuli were either stabilized on target locations or allowed to drift across the retina with the eye's natural motion. Increasing both stimulus size and intensity led to higher likelihoods that monochromatic spots of light were perceived as green, whereas only higher intensities led to increases in perceived saturation. The data also show an interaction between size and intensity, suggesting that the balance between magnocellular and parvocellular activation may be critical factors for color perception. Surprisingly, under the range of conditions tested, color appearance did not depend on whether stimuli were stabilized. Sequential activation of many cones does not appear to drive hue and saturation perception as effectively as simultaneous activation of many cones.
Collapse
Affiliation(s)
- John Erik Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| |
Collapse
|
41
|
Chen K, Song W, Han L, Bizheva K. Powell lens-based line-field spectral domain optical coherence tomography system for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2023; 14:2003-2014. [PMID: 37206146 PMCID: PMC10191637 DOI: 10.1364/boe.486980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
A Powell lens is used in a line-field spectral domain OCT (PL-LF-SD-OCT) system to generate a line-shaped imaging beam with almost uniform distribution of the optical power in the line direction. This design overcomes the severe sensitivity loss (∼10 dB) observed along the line length direction (B-scan) in LF-OCT systems based on cylindrical lens line generators. The PL-LF-SD-OCT system offers almost isotropic spatial resolution (Δx and Δy ∼2 µm, Δz ∼1.8 µm) in free space and sensitivity of ∼87 dB for 2.5 mW imaging power at 2,000 fps imaging rate with only ∼1.6 dB sensitivity loss along the line length. Images acquired with the PL-LF-SD-OCT system allow for visualization of the cellular and sub-cellular structure of biological tissues.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Weixiang Song
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Le Han
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Systems Design Engineering Department, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
42
|
Optical coherence tomography in healthy human subjects in the setting of prolonged dark adaptation. Sci Rep 2023; 13:3725. [PMID: 36879027 PMCID: PMC9988879 DOI: 10.1038/s41598-023-30747-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Human studies have established that short periods of dark adaptation can induce outer retinal thinning and various band intensity changes that can be detected with Optical Coherence Tomography (OCT). Similar findings were observed in mice, including a positive correlation between the degree of outer retinal changes and dark adaptation duration. We decided to assess potential retinal structural changes following prolonged dark adaptation in humans. 40 healthy subjects without any ocular diseases participated in this study. For each subject, one eye was covered for dark adaptation for four hours, and the other eye was left uncovered as a control. Before and after the dark adaptation period, both eyes were assessed with OCT. Using the Heidelberg Spectralis system, basic statistical functions, and qualitative and quantitative analysis, we were able to compare retinal layer thicknesses and band intensities between covered (dark adapted) versus uncovered (control) eyes. Prolonged dark adaptation did not induce any significant thickness, volume, or intensity changes in the outer retina or in the inner or overall retina. These observations thus alter our current understanding of the mechanisms underlying dark adaptation's neuroprotective effects in preventing blindness and require further study.
Collapse
|
43
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
44
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
45
|
Ma G, Son T, Adejumo T, Yao X. Rotational Distortion and Compensation in Optical Coherence Tomography with Anisotropic Pixel Resolution. Bioengineering (Basel) 2023; 10:313. [PMID: 36978706 PMCID: PMC10045376 DOI: 10.3390/bioengineering10030313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Accurate image registration is essential for eye movement compensation in optical coherence tomography (OCT) and OCT angiography (OCTA). The spatial resolution of an OCT instrument is typically anisotropic, i.e., has different resolutions in the lateral and axial dimensions. When OCT images have anisotropic pixel resolution, residual distortion (RD) and false translation (FT) are always observed after image registration for rotational movement. In this study, RD and FT were quantitively analyzed over different degrees of rotational movement and various lateral and axial pixel resolution ratio (RL/RA) values. The RD and FT provide the evaluation criteria for image registration. The theoretical analysis confirmed that the RD and FT increase significantly with the rotation degree and RL/RA. An image resizing assisting registration (RAR) strategy was proposed for accurate image registration. The performance of direct registration (DR) and RAR for retinal OCT and OCTA images were quantitatively compared. Experimental results confirmed that unnormalized RL/RA causes RD and FT; RAR can effectively improve the performance of OCT and OCTA image registration and distortion compensation.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
46
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
47
|
Veysset D, Zhuo Y, Hattori J, Buckhory M, Palanker D. Interferometric thermometry of ocular tissues for retinal laser therapy. BIOMEDICAL OPTICS EXPRESS 2023; 14:37-53. [PMID: 36698667 PMCID: PMC9842005 DOI: 10.1364/boe.475705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Controlling the tissue temperature rise during retinal laser therapy is highly desirable for predictable and reproducible outcomes of the procedure, especially with non-damaging settings. In this work, we demonstrate a method for determining the optical absorption, the thermal conductivity, and the thermal expansion coefficients of RPE and choroid using phase-resolved optical coherence tomography (pOCT). These parameters are extracted from the measured changes in the optical path length (ΔOPL) using an axisymmetric thermo-mechanical model. This allows the calculation of the temperature rise during hyperthermia, which was further validated by imaging the temperature-sensitive fluorescence at the same location. We demonstrate that, with a temperature uncertainty of ±0.9°C and a peak heating of about 17°C following a laser pulse of 20 ms, this methodology is expected to be safe and sufficiently precise for calibration of the non-damaging retinal laser therapy. The method is directly translatable to in-vivo studies, where we expect a similar precision.
Collapse
Affiliation(s)
- David Veysset
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Yueming Zhuo
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Junya Hattori
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Mohajeet Buckhory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
49
|
Pandiyan VP, Schleufer S, Slezak E, Fong J, Upadhyay R, Roorda A, Ng R, Sabesan R. Characterizing cone spectral classification by optoretinography. BIOMEDICAL OPTICS EXPRESS 2022; 13:6574-6594. [PMID: 36589563 PMCID: PMC9774847 DOI: 10.1364/boe.473608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
Light propagation in photoreceptor outer segments is affected by photopigment absorption and the phototransduction amplification cascade. Photopigment absorption has been studied using retinal densitometry, while recently, optoretinography (ORG) has provided an avenue to probe changes in outer segment optical path length due to phototransduction. With adaptive optics (AO), both densitometry and ORG have been used for cone spectral classification based on the differential bleaching signatures of the three cone types. Here, we characterize cone classification by ORG, implemented in an AO line-scan optical coherence tomography (OCT), and compare it against densitometry. The cone mosaics of five color normal subjects were classified using ORG showing high probability (∼0.99), low error (<0.22%), high test-retest reliability (∼97%), and short imaging durations (< 1 hour). Of these, the cone spectral assignments in two subjects were compared against AO-scanning laser opthalmoscope densitometry. High agreement (mean: 91%) was observed between the two modalities in these two subjects, with measurements conducted 6-7 years apart. Overall, ORG benefits from higher sensitivity and dynamic range to probe cone photopigments compared to densitometry, and thus provides greater fidelity for cone spectral classification.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sierra Schleufer
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Emily Slezak
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - James Fong
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Rishi Upadhyay
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Ren Ng
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
50
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|