1
|
Zhang Y, Zhuang H, Ren X, Zhou P. Implications of mechanosensitive ion channels in the pathogenesis of osteoarthritis: a comprehensive review. Front Cell Dev Biol 2025; 13:1549812. [PMID: 40376614 PMCID: PMC12078208 DOI: 10.3389/fcell.2025.1549812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Osteoarthritis (OA) is the predominant cause of joint pain and limited mobility in older people, and its prevalence is increasing as the population ages. Given the lack of effective therapeutic interventions, the disability rate associated with OA is a staggering 53%, which significantly affects the wellbeing of those affected and represents a significant social and family financial burden. Consequently, OA has emerged as a pressing social and public health concern globally. Various forms of mechanical strain, such as dynamic compression, fluid shear, tissue shear, and hydrostatic pressure, serve as crucial physical stimuli perceived by chondrocytes. Recent studies indicate that aberrant mechanical loading represents a fundamental risk factor for OA. Upon exposure to mechanical loading, chondrocytes translate mechanical cues into chemical signals primarily via mechanosensitive ion channels, resulting in alterations in cartilage metabolism. Numerous studies have demonstrated the significance of mechanosensitive ion channels in the pathogenesis of OA, suggesting that therapeutic interventions targeting these channels on chondrocytes may offer potential benefits.
Collapse
Affiliation(s)
| | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Sup ME, Abraham AC, Kim MKM, Thomopoulos S. Development of a Mouse Model of Enthesis-Specific NF-κB Activation. J Orthop Res 2025; 43:719-727. [PMID: 39789822 PMCID: PMC11903135 DOI: 10.1002/jor.26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies. Therefore, we developed a murine model of inducible enthesis-specific inflammation by constitutively activating the NF-κB pathway in Gli1+ cells. Gli1CreERT mice were crossed with IKKβ-overexpression mice and given tamoxifen injections 5 days postnatally to induce enthesitis. Sixteen weeks of IKKβ overexpression in enthesis cells led to impaired mechanical properties, subtle histologic changes, and changes to expression of extracellular matrix- and inflammation-related genes. Increased loading from treadmill overuse activity did not exacerbate this phenotype. Clinical significance: The new murine model may have utility for studying the pathogenesis of enthesitis and approaches to treat the condition.
Collapse
Affiliation(s)
- McKenzie E. Sup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Kyu M. Kim
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Fang F, Casserly M, Robbins J, Thomopoulos S. Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing. NPJ Regen Med 2025; 10:3. [PMID: 39833191 PMCID: PMC11747568 DOI: 10.1038/s41536-025-00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair. This study revealed cell-cell communication within the Hh-lineage cell population. To further characterize the role of Hh signaling, we used mouse models to activate and inactivate the Hh pathway in enthesis progenitors. Activation of Hh target genes during enthesis development increased its mineralization and mechanical properties. Activation of Hh signaling at the injured mature enthesis promoted fibrocartilage formation, enhanced mineralization, and increased expression of chondrogenic and osteogenic markers, which implies that Hh signaling drives cell differentiation to regenerate the damaged enthesis. Conversely, deletion of Hh target genes impaired enthesis healing. In summary, this study revealed a new strategy for enthesis repair via activation of Hh signaling in endogenous cells.
Collapse
Affiliation(s)
- Fei Fang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew Casserly
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Robbins
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Timmer KB, Killian ML, Harley BAC. Paracrine signals influence patterns of fibrocartilage differentiation in a lyophilized gelatin hydrogel for applications in rotator cuff repair. Biomater Sci 2024; 12:4806-4822. [PMID: 39150417 PMCID: PMC11404831 DOI: 10.1039/d4bm00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-β3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.
Collapse
Affiliation(s)
- Kyle B Timmer
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Bousso I, Genin G, Thomopoulos S. Achieving tendon enthesis regeneration across length scales. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100547. [PMID: 39219714 PMCID: PMC11364215 DOI: 10.1016/j.cobme.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Surgical reattachment of tendon to bone is a clinical challenge, with unacceptably high retear rates in the early period after repair. A primary reason for these repeated tears is that the multiscale toughening mechanisms found at the healthy tendon enthesis are not regenerated during tendon-to-bone healing. The need for technologies to improve these outcomes is pressing, and the tissue engineering community has responded with many advances that hold promise for eventually regenerating the multiscale tissue interface that transfers loads between the two dissimilar materials, tendon, and bone. This review provides an assessment of the state of these approaches, with the aim of identifying a critical agenda for future progress.
Collapse
Affiliation(s)
- Ismael Bousso
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Guy Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Orthopaedic Surgery, Columbia University, New York, NY USA
| |
Collapse
|
7
|
He K, Jiang H, Li W, Toutounchi S, Huang Y, Wu J, Ma X, Baehr W, Pignolo RJ, Ling K, Zhou X, Wang H, Hu J. Primary cilia mediate skeletogenic BMP and Hedgehog signaling in heterotopic ossification. Sci Transl Med 2024; 16:eabn3486. [PMID: 39047114 DOI: 10.1126/scitranslmed.abn3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Heterotopic ossification (HO), defined as the formation of extraskeletal bone in muscle and soft tissues, is a diverse pathological process caused by either genetic mutations or inciting trauma. Fibrodysplasia ossificans progressiva (FOP) is a genetic form of HO caused by mutations in the bone morphogenetic protein (BMP) type I receptor gene activin A receptor type 1 (ACVR1). These mutations make ACVR1 hypersensitive to BMP and responsive to activin A. Hedgehog (Hh) signaling also contributes to HO development. However, the exact pathophysiology of how skeletogenic cells contribute to endochondral ossification in FOP remains unknown. Here, we showed that the wild-type or FOP-mutant ACVR1 localized in the cilia of stem cells from human exfoliated deciduous teeth with key FOP signaling components, including activin A receptor type 2A/2B, SMAD family member 1/5, and FK506-binding protein 12kD. Cilia suppression by deletion of intraflagellar transport 88 or ADP ribosylation factor like GTPase 3 effectively inhibited pathological BMP and Hh signaling, subdued aberrant chondro-osteogenic differentiation in primary mouse or human FOP cells, and diminished in vivo extraskeletal ossification in Acvr1Q207D, Sox2-Cre; Acvr1R206H/+ FOP mice and in burn tenotomy-treated wild-type mice. Our results provide a rationale for early and localized suppression of cilia in affected tissues after injury as a therapeutic strategy against either genetic or acquired HO.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heng Jiang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Weijun Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Saman Toutounchi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jianfeng Wu
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah, Salt Lake City, UT 84132, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Xuhui Zhou
- Translational Research Center of Orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haitao Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Wang L, Liu Y, Lin Z, Chen H, Liu B, Yan X, Zhu T, Zhang Q, Zhao J. Durable immunomodulatory hierarchical patch for rotator cuff repairing. Bioact Mater 2024; 37:477-492. [PMID: 38698919 PMCID: PMC11063994 DOI: 10.1016/j.bioactmat.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Degradable rotator cuff patches, followed over five years, have been observed to exhibit high re-tear rates exceeding 50%, which is attributed to the inability of degradable polymers alone to restore the post-rotator cuff tear (RCT) inflammatory niche. Herein, poly(ester-ferulic acid-urethane)urea (PEFUU) was developed, featuring prolonged anti-inflammatory functionality, achieved by the integration of ferulic acid (FA) into the polyurethane repeating units. PEFUU stably releases FA in vitro, reversing the inflammatory niche produced by M1 macrophages and restoring the directed differentiation of stem cells. Utilizing PEFUU, hierarchical composite nanofiber patch (HCNP) was fabricated, simulating the natural microstructure of the tendon-to-bone interface with an aligned-random alignment. The incorporation of enzymatic hydrolysate derived from decellularized Wharton jelly tissue into the random layer could further enhance cartilage regeneration at the tendon-to-bone interface. Via rat RCT repairing model, HCNP possessing prolonged anti-inflammatory properties uniquely facilitated physiological healing at the tendon-to-bone interface's microstructure. The alignment of fibers was restored, and histologically, the characteristic tripartite distribution of collagen I - collagen II - collagen I was achieved. This study offers a universal approach to the functionalization of degradable polymers and provides a foundational reference for their future applications in promoting the in vivo regeneration of musculoskeletal tissues.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yonghang Liu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, China
| | - Zhiqi Lin
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Huiang Chen
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Bowen Liu
- Bioarticure Medical Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai, 200444, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
9
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Cenni V, Sabatelli P, Di Martino A, Merlini L, Antoniel M, Squarzoni S, Neri S, Santi S, Metti S, Bonaldo P, Faldini C. Collagen VI Deficiency Impairs Tendon Fibroblasts Mechanoresponse in Ullrich Congenital Muscular Dystrophy. Cells 2024; 13:378. [PMID: 38474342 PMCID: PMC10930931 DOI: 10.3390/cells13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| |
Collapse
|
11
|
Brown ME, Puetzer JL. Enthesis maturation in engineered ligaments is differentially driven by loads that mimic slow growth elongation and rapid cyclic muscle movement. Acta Biomater 2023; 172:106-122. [PMID: 37839633 DOI: 10.1016/j.actbio.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Entheses are complex attachments that translate load between elastic-ligaments and stiff-bone via organizational and compositional gradients. Neither natural healing, repair, nor engineered replacements restore these gradients, contributing to high re-tear rates. Previously, we developed a culture system which guides ligament fibroblasts in high-density collagen gels to develop early postnatal-like entheses, however further maturation is needed. Mechanical cues, including slow growth elongation and cyclic muscle activity, are critical to enthesis development in vivo but these cues have not been widely explored in engineered entheses and their individual contribution to maturation is largely unknown. Our objective here was to investigate how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, individually drive enthesis maturation in our system so to shed light on the cues governing enthesis development, while further developing our tissue engineered replacements. Interestingly, we found these loads differentially drive organizational maturation, with slow stretch driving improvements in the interface/enthesis region, and cyclic load improving the ligament region. However, despite differentially affecting organization, both loads produced improvements to interface mechanics and zonal composition. This study provides insight into how mechanical cues differentially affect enthesis development, while producing some of the most organized engineered enthesis to date. STATEMENT OF SIGNIFICANCE: Entheses attach ligaments to bone and are critical to load transfer; however, entheses do not regenerate with repair or replacement, contributing to high re-tear rates. Mechanical cues are critical to enthesis development in vivo but their individual contribution to maturation is largely unknown and they have not been widely explored in engineered replacements. Here, using a novel culture system, we provide new insight into how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, differentially affect enthesis maturation in engineered ligament-to-bone tissues, ultimately producing some of the most organized entheses to date. This system is a promising platform to explore cues regulating enthesis formation so to produce functional engineered replacements and better drive regeneration following repair.
Collapse
Affiliation(s)
- M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
12
|
Subramanian A, Kanzaki LF, Schilling TF. Mechanical force regulates Sox9 expression at the developing enthesis. Development 2023; 150:dev201141. [PMID: 37497608 PMCID: PMC10445799 DOI: 10.1242/dev.201141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Entheses transmit force from tendons and ligaments to the skeleton. Regional organization of enthesis extracellular matrix (ECM) generates differences in stiffness required for force transmission. Two key transcription factors co-expressed in entheseal tenocytes, scleraxis (Scx) and Sox9, directly control production of enthesis ECM components. Formation of embryonic craniofacial entheses in zebrafish coincides with onset of jaw movements, possibly in response to the force of muscle contraction. We show dynamic changes in scxa and sox9a mRNA levels in subsets of entheseal tenocytes that correlate with their roles in force transmission. We also show that transcription of a direct target of Scxa, Col1a, in enthesis ECM is regulated by the ratio of scxa to sox9a expression. Eliminating muscle contraction by paralyzing embryos during early stages of musculoskeletal differentiation alters relative levels of scxa and sox9a in entheses, primarily owing to increased sox9a expression. Force-dependent TGF-β (TGFβ) signaling is required to maintain this balance of scxa and sox9a expression. Thus, force from muscle contraction helps establish a balance of transcription factor expression that controls specialized ECM organization at the tendon enthesis and its ability to transmit force.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Lauren F. Kanzaki
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Butler DL. Evolution of functional tissue engineering for tendon and ligament repair. J Tissue Eng Regen Med 2022; 16:1091-1108. [PMID: 36397198 DOI: 10.1002/term.3360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
Abstract
This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called "bioMECHANICS") on a larger (tissue) scale to a more recent focus on biology (called "mechanoBIOLOGY") on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.
Collapse
Affiliation(s)
- David L Butler
- College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Fang F, Xiao Y, Zelzer E, Leong KW, Thomopoulos S. A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential. Cell Stem Cell 2022; 29:1669-1684.e6. [PMID: 36459968 PMCID: PMC10422080 DOI: 10.1016/j.stem.2022.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
The enthesis, a fibrocartilaginous transition between tendon and bone, is necessary for force transfer from muscle to bone to produce joint motion. The enthesis is prone to injury due to mechanical demands, and it cannot regenerate. A better understanding of how the enthesis develops will lead to more effective therapies to prevent pathology and promote regeneration. Here, we used single-cell RNA sequencing to define the developmental transcriptome of the mouse entheses over postnatal stages. Six resident cell types, including enthesis progenitors and mineralizing chondrocytes, were identified along with their transcription factor regulons and temporal regulation. Following the prior discovery of the necessity of Gli1-lineage cells for mouse enthesis development and healing, we then examined their transcriptomes at single-cell resolution and demonstrated clonogenicity and multipotency of the Gli1-expressing progenitors. Transplantation of Gli1-lineage cells to mouse enthesis injuries improved healing, demonstrating their therapeutic potential for enthesis regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Freedman BR, Adu-Berchie K, Barnum C, Fryhofer GW, Salka NS, Shetye S, Soslowsky LJ. Nonsurgical treatment reduces tendon inflammation and elevates tendon markers in early healing. J Orthop Res 2022; 40:2308-2319. [PMID: 34935170 PMCID: PMC9209559 DOI: 10.1002/jor.25251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Operative treatment is assumed to provide superior outcomes to nonoperative (conservative) treatment following Achilles tendon rupture, however, this remains controversial. This study explores the effect of surgical repair on Achilles tendon healing. Rat Achilles tendons (n = 101) were bluntly transected and were randomized into groups receiving repair or non-repair treatments. By 1 week after injury, repaired tendons had inferior mechanical properties, which continued to 3- and 6-week post-injury, evidenced by decreased dynamic modulus and failure stress. Transcriptomics analysis revealed >7000 differentially expressed genes between repaired and non-repaired tendons after 1-week post-injury. While repaired tendons showed enriched inflammatory gene signatures, non-repaired tendons showed increased tenogenic, myogenic, and mechanosensitive gene signatures, with >200-fold enrichment in Tnmd expression. Analysis of gastrocnemius muscle revealed elevated MMP activity in tendons receiving repair treatment, despite no differences in muscle fiber morphology. Transcriptional regulation analysis highlighted that the highest expressed transcription factors in repaired tendons were associated with inflammation (Nfκb, SpI1, RelA, and Stat1), whereas non-repaired tendons expressed markers associated with tissue development and mechano-activation (Smarca1, Bnc2, Znf521, Fbn1, and Gli3). Taken together, these data highlight distinct differences in healing mechanism occurring immediately following injury and provide insights for new therapies to further augment tendons receiving repaired and non-repaired treatments.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Kwasi Adu-Berchie
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Carrie Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George W Fryhofer
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nabeel S Salka
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Snehal Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Role of Primary Cilia in Skeletal Disorders. Stem Cells Int 2022; 2022:6063423. [PMID: 35761830 PMCID: PMC9233574 DOI: 10.1155/2022/6063423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments, providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods, including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for clinical intervention for skeletal diseases.
Collapse
|
18
|
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, Carnegie J, Chang E, Corrin CJ, Coveney T, Stott B, Parisi I, Duarte C, Vincent TL, Staines KA, Wann AK. Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. J Bone Miner Res 2022; 37:1081-1096. [PMID: 35038201 PMCID: PMC9304194 DOI: 10.1002/jbmr.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Clarissa R Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hasmik J Samvelyan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Jadwiga Miotla-Zarebska
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Josephine Carnegie
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emer Chang
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - C Jonty Corrin
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Trystan Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Bryony Stott
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ida Parisi
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Claudia Duarte
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Katherine A Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Angus Kt Wann
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Lei J, Chen S, Jing J, Guo T, Feng J, Ho T, Chai Y. Inhibiting Hh Signaling in Gli1 + Osteogenic Progenitors Alleviates TMJOA. J Dent Res 2022; 101:664-674. [PMID: 35045740 PMCID: PMC9124909 DOI: 10.1177/00220345211059079] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The increased prevalence of temporomandibular joint osteoarthritis (TMJOA) in children and adolescents has drawn considerable attention as it may interfere with mandibular condyle growth, resulting in dento-maxillofacial deformities. However, treatments for osteoarthritis have been ineffective at restoring the damaged bone and cartilage structures due to poor understanding of the underlying degenerative mechanism. In this study, we demonstrate that Gli1+ cells residing in the subchondral bone contribute to bone formation and homeostasis in the mandibular condyle, identifying them as osteogenic progenitors in vivo. Furthermore, we show that, in a TMJOA mouse model, derivatives of Gli1+ cells undergo excessive expansion along with increased but uneven distribution of osteogenic differentiation in the subchondral bone, which leads to abnormal subchondral bone remodeling via Hedgehog (Hh) signaling activation and to the development of TMJOA. The selective pharmacological inhibition and specific genetic inhibition of Hh signaling in Gli1+ osteogenic progenitors result in improved subchondral bone microstructure, attenuated local immune inflammatory response in the subchondral bone, and reduced degeneration of the articular cartilage, providing in vivo functional evidence that targeting Hh signaling in Gli1+ osteogenic progenitors can modulate bone homeostasis in osteoarthritis and provide a potential approach for treating TMJOA.
Collapse
Affiliation(s)
- J. Lei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - S. Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T. Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T.V. Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y. Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Fang F, Linstadt RTH, Genin GM, Ahn K, Thomopoulos S. Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair. Adv Healthc Mater 2022; 11:e2102344. [PMID: 35026059 PMCID: PMC9117437 DOI: 10.1002/adhm.202102344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Current suture-based surgical techniques used to repair torn rotator cuff tendons do not result in mechanically competent tendon-to-bone attachments, leading to high postoperative failure rates. Although adhesives have been proposed to protect against sutures tearing through tendon during healing, no currently available adhesive meets the clinical needs of adhesive strength, biocompatibility, and promotion of healing. Here, a biocompatible, graded, 3,4-dihydroxy phenyl chitosan (BGC) bioadhesive designed to meet these needs is presented. Although 3,4-dihydroxy phenyl chitosan (DP-chitosan) bioadhesives are biocompatible, their adhesion strength is low; soluble oxidants or cross-linking agents can be added for higher bonding strength, but this sacrifices biocompatibility. These challenges are overcome by developing a periodate-modified ion exchange resin-bead filtration system that oxidizes catechol moieties to quinones and filters off the activating agent and resin. The resulting BGC bioadhesive exhibited sixfold higher strength compared to commercially available tissue adhesives, with strength in the range necessary to improve tendon-to-bone repair (≈1MPa, ≈20% of current suture repair strength). The bioadhesive is biocompatible and promoted tenogenesis; cells exposed to the bioadhesive demonstrated enhanced expression of collagen I and the tenogenic marker Scx. Results demonstrated that the bioadhesive has the potential to improve the strength of a tendon-to-bone repair and promote healing.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | | | - Guy M. Genin
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, USA
| | - Kollbe Ahn
- ACatechol, Inc., Pasadena, CA 91107, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Xiao H, Zhang T, Li CJ, Cao Y, Wang LF, Chen HB, Li SC, Guan CB, Hu JZ, Chen D, Chen C, Lu HB. Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. eLife 2022; 11:73614. [PMID: 35475783 PMCID: PMC9094755 DOI: 10.7554/elife.73614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Jun Li
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lin Feng Wang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Hua Bin Chen
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Sheng Can Li
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Biao Guan
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhong Hu
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Can Chen
- Department of Orthopedic, Xiangya Hospital Central South University, Changsha, China
| | - Hong Bin Lu
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
23
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
24
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
25
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
26
|
Chatterjee M, Muljadi PM, Andarawis-Puri N. The role of the tendon ECM in mechanotransduction: disruption and repair following overuse. Connect Tissue Res 2022; 63:28-42. [PMID: 34030531 DOI: 10.1080/03008207.2021.1925663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Tendon overuse injuries are prevalent conditions with limited therapeutic options to halt disease progression. The specialized extracellular matrix (ECM) both enables joint function and mediates mechanical signals to tendon cells, driving biological responses to exercise or injury. With overuse, tendon ECM composition and structure changes at multiple scales, disrupting mechanotransduction and resulting in inadequate repair and disease progression. This review highlights the multiscale ECM changes that occur with tendon overuse and corresponding effects on cell-matrix interactions and cellular response to load.Results: Different functional joint requirements and tendon types experience a wide range of loading profiles, creating varied downstream mechanical stimuli. Distinct ECM structure and mechanical properties within the fascicle matrix, interfascicle matrix, and enthesis and their varied disruption with overuse are considered. The pericellular matrix (PCM) comprising the microscale tendon cell environment has a unique composition that changes with overuse injury and exercise, suggesting an important role in mechanotransduction and promoting repair. Cell-matrix interactions are mediated by structures including cilia, integrins, connexins and cytoskeleton that signal downstream homeostasis, adaptation, or repair. ECM disruption with tendon overuse may cause altered mechanical loading and cell-matrix interactions, resulting in mechanobiological understimulation, apoptosis, and ineffective repair. Current interventions to promote repair of tendon overuse injuries including exercise, targeting cell signaling, and modulating inflammation are considered.Conclusion: Future therapeutics should be assessed with regard of their effects on multiscale mechanotransduction in addition to joint function, with consideration of the central role of ECM.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Patrick M Muljadi
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.,Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
27
|
Fang F, Sup M, Luzzi A, Ferrer X, Thomopoulos S. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol 2022; 105:87-103. [PMID: 34954379 PMCID: PMC8821161 DOI: 10.1016/j.matbio.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling has been widely acknowledged to play essential roles in many developmental processes, including endochondral ossification and growth plate maintenance. Furthermore, a rising number of studies have shown that Hh signaling is necessary for tendon enthesis development. Specifically, the well-tuned regulation of Hh signaling during development drives the formation of a mineral gradient across the tendon enthesis fibrocartilage. However, aberrant Hh signaling can also lead to pathologic heterotopic ossification in tendon or osteophyte formation at the enthesis. Therefore, the therapeutic potential of Hh signaling modulation for treating tendon and enthesis diseases remains uncertain. For example, increased Hh signaling may enhance tendon-to-bone healing by promoting the formation of mineralized fibrocartilage at the healing interface, but pathologic heterotopic ossification may also be triggered in the adjacent tendon. Further work is needed to elucidate the distinct functions of Hh signaling in the tendon and enthesis to support the development of therapies that target the pathway.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - McKenzie Sup
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew Luzzi
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Xavier Ferrer
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
28
|
Feng M, Liu W, Ding J, Qiu Y, Chen Q. Sonic Hedgehog Induces Mesenchymal Stromal Cell Senescence-Associated Secretory Phenotype and Chondrocyte Apoptosis in Human Osteoarthritic Cartilage. Front Cell Dev Biol 2021; 9:716610. [PMID: 34646822 PMCID: PMC8502980 DOI: 10.3389/fcell.2021.716610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Hedgehog (HH) signaling plays a critical role in osteoarthritis (OA) pathogenesis, but the molecular mechanism remains to be elucidated. We show here that Sonic Hedgehog (SHH) gene expression is initiated in human normal cartilage stromal cells (NCSC) and increased in OA cartilage mesenchymal stromal cells (OA-MSCs) during aging. Manifesting a reciprocal cellular distribution pattern, the SHH receptors PTCH1 and SMO and transcription factors GLI2 and GLI3 are expressed by chondrocytes (OAC) in OA cartilage. SHH autocrine treatment of osteoarthritis MSC stimulates proliferation, chondrogenesis, hypertrophy, and replicative senescence with elevated SASP gene expression including IL1B, IL6, CXCL1, and CXCL8. SHH paracrine treatment of OAC suppresses COL2A1, stimulates MMP13, and induces chondrocyte apoptosis. The OA-MSC conditioned medium recapitulates the stimulatory effects of SHH on OAC catabolism and apoptosis. SHH knock-down in OA-MSC not only inhibits catabolic and senescence marker expression in OA-MSC, but also abolishes the effect of the OA-MSC conditioned medium on OAC catabolism and apoptosis. We propose that SHH is a key mediator between OA-MSC and OA chondrocytes interaction in human OA cartilage via two mechanisms: (1) SHH mediates MSC growth and aging by activating not only its proliferation and chondrogenesis, but also low-grade inflammation and replicative senescence, and (2) SHH mediates OA-MSC-induced OAC catabolism and apoptosis by creating a pro-inflammatory microenvironment favoring tissue degeneration during OA pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
29
|
Li X, Yang S, Deepk V, Chinipardaz Z, Yang S. Identification of Cilia in Different Mouse Tissues. Cells 2021; 10:cells10071623. [PMID: 34209603 PMCID: PMC8307782 DOI: 10.3390/cells10071623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Cilia are microtubule-based hair-like organelles that extend from the cell surface. However, the existence and distribution of cilia in each organ and tissue at the postnatal stage in vivo remain largely unknown. In this study, we defined cilia distribution and arrangement and measured the ciliary lengths and the percentage of ciliated cells in different organs and tissues in vivo by using cilium dual reporter-expressing transgenic mice. Cilia were identified by the presence of ARL13B with an mCherry+ signal, and the cilium basal body was identified by the presence of Centrin2 with a GFP+ signal. Here, we provide in vivo evidence that chondrocytes and cells throughout bones have cilia. Most importantly, we reveal that: 1. primary cilia are present in hepatocytes; 2. no cilia but many centrioles are distributed on the apical cell surface in the gallbladder, intestine, and thyroid epithelia; 3. cilia on the cerebral cortex are well oriented, pointing to the center of the brain; 4. ARL13B+ inclusion is evident in the thyroid and islets of Langerhans; and 5. approximately 2% of cilia show irregular movement in nucleus pulposus extracellular fluid. This study reveals the existence and distribution of cilia and centrioles in different tissues and organs, and provides new insights for further comprehensive study of ciliary function in these organs and tissues.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (X.L.); (S.Y.); (V.D.); (Z.C.)
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Spinal Surgery, East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Shuting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (X.L.); (S.Y.); (V.D.); (Z.C.)
| | - Vishwa Deepk
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (X.L.); (S.Y.); (V.D.); (Z.C.)
| | - Zahra Chinipardaz
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (X.L.); (S.Y.); (V.D.); (Z.C.)
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (X.L.); (S.Y.); (V.D.); (Z.C.)
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-898-2685; Fax: +1-215-573-2324
| |
Collapse
|