1
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. Proc Natl Acad Sci U S A 2025; 122:e2417024122. [PMID: 40359049 DOI: 10.1073/pnas.2417024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoans and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this "leaflet replacement" model and also reveal that CAV1-8S accumulates 40 to 70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna 171 65, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Tyler R Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Hannah I Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
2
|
Gao Y, Tillu VA, Wu Y, Rae J, Hall TE, Chen KE, Weeratunga S, Guo Q, Livingstone E, Tham WH, Parton RG, Collins BM. Nanobodies against Cavin1 reveal structural flexibility and regulated interactions of its N-terminal coiled-coil domain. J Cell Sci 2025; 138:jcs263756. [PMID: 40260863 PMCID: PMC12079668 DOI: 10.1242/jcs.263756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Caveolae are abundant plasma membrane structures that regulate signalling, membrane homeostasis and mechanoprotection. Their formation is driven by caveolins and cavins and their coordinated interactions with lipids. Here, we developed nanobodies against the trimeric HR1 coiled-coil domain of Cavin1. We identified specific nanobodies that do not perturb Cavin1 membrane binding and localise to caveolae when expressed in cells. The crystal structure of a nanobody-Cavin 1 HR1 complex reveals a symmetric 3:3 architecture as validated by mutagenesis. In this structure, the C-terminal half of the HR1 domain is disordered, suggesting that the nanobody stabilises an open conformation of Cavin1, which has previously been identified as important for membrane interactions. A phosphomimic mutation in a threonine-serine pair proximal to this region reveals selective regulation of Cavin2 and Cavin3 association. These studies provide new insights into cavin domains required for assembly of multiprotein caveolar assemblies and describe new nanobody tools for structural and functional studies of caveolae.
Collapse
Affiliation(s)
- Ya Gao
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Yeping Wu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Emma Livingstone
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4067, Australia
| |
Collapse
|
3
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.28.610209. [PMID: 39257813 PMCID: PMC11383982 DOI: 10.1101/2024.08.28.610209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this 'leaflet replacement' model and also reveal that CAV1-8S accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Tyler R. Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Hannah I. Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| |
Collapse
|
4
|
Nabi IR, Cardoen B, Khater IM, Gao G, Wong TH, Hamarneh G. AI analysis of super-resolution microscopy: Biological discovery in the absence of ground truth. J Cell Biol 2024; 223:e202311073. [PMID: 38865088 PMCID: PMC11169916 DOI: 10.1083/jcb.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous potential for the discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.
Collapse
Affiliation(s)
- Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Ismail M. Khater
- School of Computing Science, Simon Fraser University, Burnaby, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering and Technology, Birzeit University, Birzeit, Palestine
| | - Guang Gao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Timothy H. Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
5
|
Ocket E, Matthaeus C. Insights in caveolae protein structure arrangements and their local lipid environment. Biol Chem 2024; 0:hsz-2024-0046. [PMID: 38970809 DOI: 10.1515/hsz-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.
Collapse
Affiliation(s)
- Esther Ocket
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| | - Claudia Matthaeus
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Lim JE, Bernatchez P, Nabi IR. Scaffolds and the scaffolding domain: an alternative paradigm for caveolin-1 signaling. Biochem Soc Trans 2024; 52:947-959. [PMID: 38526159 PMCID: PMC11088920 DOI: 10.1042/bst20231570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.
Collapse
Affiliation(s)
- John E. Lim
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences Mall, Room 217, Vancouver, BC V6T 1Z3, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences Mall, Room 217, Vancouver, BC V6T 1Z3, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Vasquez Rodriguez SY, Lazaridis T. Simulations suggest a scaffolding mechanism of membrane deformation by the caveolin 8S complex. Biophys J 2023; 122:4082-4090. [PMID: 37742070 PMCID: PMC10598286 DOI: 10.1016/j.bpj.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Caveolins form complexes of various sizes that deform membranes into polyhedral shapes. However, the recent structure of the 8S complex was disk-like with a flat membrane-binding surface. How can a flat complex deform membranes into nonplanar structures? Molecular dynamics simulations revealed that the 8S complex rapidly takes the form of a suction cup. Simulations on implicit membrane vesicles determined that binding is stronger when E140 gets protonated. In that case, the complex binds much more strongly to 5- and 10-nm-radius vesicles. A concave membrane-binding surface readily explains the membrane-deforming ability of caveolins by direct scaffolding. We propose that the 8S complex sits at the vertices of the caveolar polyhedra, rather than at the center of the polyhedral faces.
Collapse
Affiliation(s)
| | - Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
8
|
Afshinpour M, Smith LA, Chakravarty S. AQcalc: A web server that identifies weak molecular interactions in protein structures. Protein Sci 2023; 32:e4762. [PMID: 37596782 PMCID: PMC10503417 DOI: 10.1002/pro.4762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Weak molecular interactions play an important role in protein structure and function. Computational tools that identify weak molecular interactions are, therefore, valuable for the study of proteins. Here, we present AQcalc, a web server (https://aqcalcbiocomputing.com/) that can be used to identify anion-quadrupole (AQ) interactions, which are weak interactions involving aromatic residue (Trp, Tyr, and Phe) ring edges and anions (Asp, Glu, and phosphate ion) both within proteins and at their interfaces (protein-protein, protein-nucleic acids, and protein-lipid bilayer). AQcalc identifies AQ interactions as well as clusters involving AQ, cation-π, and salt bridges, among others. Utilizing AQcalc we analyzed weak interactions in protein models, even in the absence of experimental structures, to understand the contributions of weak interactions to deleterious structural changes, including those associated with oncogenic and germline disease variants. We identified several deleterious variants with disrupted AQ interactions (comparable in frequency to cation-π disruptions). Amyloid fibrils utilize AQ to bury anions at frequencies that far exceed those observed for globular proteins. AQ interactions were detected three and five times more frequently than the hydrogen-bonded AQ (HBAQ) in fibril structures and protein-lipid bilayer interfaces, respectively. By contrast, AQ and HBAQ interactions were detected with similar frequencies in globular proteins. Collectively, these findings suggest AQcalc will be effective in facilitating fine structural analysis. As other web utilities designed to identify protein residue interaction networks do not report AQ interactions, wide use of AQcalc will enrich our understanding of residue interaction networks and facilitate hypothesis testing by identifying and experimentally characterizing these comparably weak but important interactions.
Collapse
Affiliation(s)
- Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Logan A. Smith
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
9
|
Gulsevin A, Han B, Porta JC, Mchaourab HS, Meiler J, Kenworthy AK. Template-free prediction of a new monotopic membrane protein fold and assembly by AlphaFold2. Biophys J 2023; 122:2041-2052. [PMID: 36352786 PMCID: PMC10257013 DOI: 10.1016/j.bpj.2022.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
AlphaFold2 (AF2) has revolutionized the field of protein structural prediction. Here, we test its ability to predict the tertiary and quaternary structure of a previously undescribed scaffold with new folds and unusual architecture, the monotopic membrane protein caveolin-1 (CAV1). CAV1 assembles into a disc-shaped oligomer composed of 11 symmetrically arranged protomers, each assuming an identical new fold, and contains the largest parallel β-barrel known to exist in nature. Remarkably, AF2 predicts both the fold of the protomers and the interfaces between them. It also assembles between seven and 15 copies of CAV1 into disc-shaped complexes. However, the predicted multimers are energetically strained, especially the parallel β-barrel. These findings highlight the ability of AF2 to correctly predict new protein folds and oligomeric assemblies at a granular level while missing some elements of higher-order complexes, thus positing a new direction for the continued development of deep-learning protein structure prediction approaches.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jason C Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University, Leipzig, Germany.
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
10
|
Kenworthy AK. The building blocks of caveolae revealed: caveolins finally take center stage. Biochem Soc Trans 2023; 51:855-869. [PMID: 37082988 PMCID: PMC10212548 DOI: 10.1042/bst20221298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ability of cells to divide, migrate, relay signals, sense mechanical stimuli, and respond to stress all rely on nanoscale invaginations of the plasma membrane known as caveolae. The caveolins, a family of monotopic membrane proteins, form the inner layer of the caveolar coat. Caveolins have long been implicated in the generation of membrane curvature, in addition to serving as scaffolds for signaling proteins. Until recently, however, the molecular architecture of caveolins was unknown, making it impossible to understand how they operate at a mechanistic level. Over the past year, two independent lines of evidence - experimental and computational - have now converged to provide the first-ever glimpse into the structure of the oligomeric caveolin complexes that function as the building blocks of caveolae. Here, we summarize how these discoveries are transforming our understanding of this long-enigmatic protein family and their role in caveolae assembly and function. We present new models inspired by the structure for how caveolins oligomerize, remodel membranes, interact with their binding partners, and reorganize when mutated. Finally, we discuss emerging insights into structural differences among caveolin family members that enable them to support the proper functions of diverse tissues and organisms.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, U.S.A
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| |
Collapse
|
11
|
Han B, Gulsevin A, Connolly S, Wang T, Meyer B, Porta J, Tiwari A, Deng A, Chang L, Peskova Y, Mchaourab HS, Karakas E, Ohi MD, Meiler J, Kenworthy AK. Structural analysis of the P132L disease mutation in caveolin-1 reveals its role in the assembly of oligomeric complexes. J Biol Chem 2023; 299:104574. [PMID: 36870682 PMCID: PMC10124911 DOI: 10.1016/j.jbc.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.
Collapse
Affiliation(s)
- Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sarah Connolly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting Wang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brigitte Meyer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Angie Deng
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
13
|
Yariv B, Yariv E, Kessel A, Masrati G, Chorin AB, Martz E, Mayrose I, Pupko T, Ben‐Tal N. Using evolutionary data to make sense of macromolecules with a "face-lifted" ConSurf. Protein Sci 2023; 32:e4582. [PMID: 36718848 PMCID: PMC9942591 DOI: 10.1002/pro.4582] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
The ConSurf web-sever for the analysis of proteins, RNA, and DNA provides a quick and accurate estimate of the per-site evolutionary rate among homologues. The analysis reveals functionally important regions, such as catalytic and ligand-binding sites, which often evolve slowly. Since the last report in 2016, ConSurf has been improved in multiple ways. It now has a user-friendly interface that makes it easier to perform the analysis and to visualize the results. Evolutionary rates are calculated based on a set of homologous sequences, collected using hidden Markov model-based search tools, recently embedded in the pipeline. Using these, and following the removal of redundancy, ConSurf assembles a representative set of effective homologues for protein and nucleic acid queries to enable informative analysis of the evolutionary patterns. The analysis is particularly insightful when the evolutionary rates are mapped on the macromolecule structure. In this respect, the availability of AlphaFold model structures of essentially all UniProt proteins makes ConSurf particularly relevant to the research community. The UniProt ID of a query protein with an available AlphaFold model can now be used to start a calculation. Another important improvement is the Python re-implementation of the entire computational pipeline, making it easier to maintain. This Python pipeline is now available for download as a standalone version. We demonstrate some of ConSurf's key capabilities by the analysis of caveolin-1, the main protein of membrane invaginations called caveolae.
Collapse
Affiliation(s)
- Barak Yariv
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | - Elon Yariv
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | - Amit Kessel
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | - Gal Masrati
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | - Adi Ben Chorin
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | - Eric Martz
- Department of MicrobiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Itay Mayrose
- George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Tal Pupko
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel AvivIsrael
| | - Nir Ben‐Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
14
|
Kozlov MM, Taraska JW. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 2023; 24:63-78. [PMID: 35918535 DOI: 10.1038/s41580-022-00511-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Matthaeus C, Sochacki KA, Dickey AM, Puchkov D, Haucke V, Lehmann M, Taraska JW. The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat Commun 2022; 13:7234. [PMID: 36433988 PMCID: PMC9700719 DOI: 10.1038/s41467-022-34958-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Ohi MD, Kenworthy AK. Emerging Insights into the Molecular Architecture of Caveolin-1. J Membr Biol 2022; 255:375-383. [PMID: 35972526 PMCID: PMC9588732 DOI: 10.1007/s00232-022-00259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Caveolins are an unusual family of membrane proteins whose primary biological function is to build small invaginated membrane structures at the surface of cells known as caveolae. Caveolins and caveolae regulate numerous signaling pathways, lipid homeostasis, intracellular transport, cell adhesion, and cell migration. They also serve as sensors and protect the plasma membrane from mechanical stress. Despite their many important functions, the molecular basis for how these 50-100 nm "little caves" are assembled and regulate cell physiology has perplexed researchers for 70 years. One major impediment to progress has been the lack of information about the structure of caveolin complexes that serve as building blocks for the assembly of caveolae. Excitingly, recent advances have finally begun to shed light on this long-standing question. In this review, we highlight new developments in our understanding of the structure of caveolin oligomers, including the landmark discovery of the molecular architecture of caveolin-1 complexes using cryo-electron microscopy.
Collapse
Affiliation(s)
- Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Porta JC, Han B, Gulsevin A, Chung JM, Peskova Y, Connolly S, Mchaourab HS, Meiler J, Karakas E, Kenworthy AK, Ohi MD. Molecular architecture of the human caveolin-1 complex. SCIENCE ADVANCES 2022; 8:eabn7232. [PMID: 35544577 PMCID: PMC9094659 DOI: 10.1126/sciadv.abn7232] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane-sculpting proteins shape the morphology of cell membranes and facilitate remodeling in response to physiological and environmental cues. Complexes of the monotopic membrane protein caveolin function as essential curvature-generating components of caveolae, flask-shaped invaginations that sense and respond to plasma membrane tension. However, the structural basis for caveolin's membrane remodeling activity is currently unknown. Here, we show that, using cryo-electron microscopy, the human caveolin-1 complex is composed of 11 protomers organized into a tightly packed disc with a flat membrane-embedded surface. The structural insights suggest a previously unrecognized mechanism for how membrane-sculpting proteins interact with membranes and reveal how key regions of caveolin-1, including its scaffolding, oligomerization, and intramembrane domains, contribute to its function.
Collapse
Affiliation(s)
- Jason C. Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
| | - Jeong Min Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah Connolly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University, Germany
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Corresponding author. (E.K.); (A.K.K.); (M.D.O.)
| |
Collapse
|
18
|
Molecular Mechanisms Underlying Caveolin-1 Mediated Membrane Curvature. J Membr Biol 2022; 255:225-236. [PMID: 35467110 DOI: 10.1007/s00232-022-00236-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Caveolin-1 is one of the main protein components of caveolae that acts as a mechanosensor at the cell membrane. The interactions of caveolin-1 with membranes have been shown to lead to complex effects such as curvature and the clustering of specific lipids. Here, we review the emerging concepts on the molecular interactions of caveolin-1, with a focus on insights from coarse-grain molecular dynamics simulations. Consensus structural models of caveolin-1 report a helix-turn-helix core motif with flanking domains of higher disorder that could be membrane composition dependent. Caveolin-1 appears to be mainly surface-bound and does not embed very deep in the membrane to which it is bound. The most interesting aspect of caveolin-1 membrane binding is the interplay of cholesterol clustering and membrane curvature. Although cholesterol has been reported to cluster in the vicinity of caveolin-1 by several approaches, simulations show that the clustering is maximal in membrane leaflet opposing the surface-bound caveolin-1. The intrinsic negative curvature of cholesterol appears to stabilize the negative curvature in the opposing leaflet. In fact, the simulations show that blocking cholesterol clustering (through artificial position restraints) blocks membrane curvature, and vice versa. Concomitant with cholesterol clustering is sphingomyelin clustering, again in the opposing leaflet, but in a concentration-dependent manner. The differential stress due to caveolin-1 binding and the inherent asymmetry of the membrane leaflets could be the determinant for membrane curvature and needs to be further probed. The review is an important step to reconcile the molecular level details emerging from simulations with the mesoscopic details provided by state of the art experimental approaches.
Collapse
|
19
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
20
|
Zhang Y, Zhang X, Kong W, Wang S. Reconstitution of Caveolin-1 into Artificial Lipid Membrane: Characterization by Transmission Electron Microscopy and Solid-State Nuclear Magnetic Resonance. Molecules 2021; 26:molecules26206201. [PMID: 34684779 PMCID: PMC8539922 DOI: 10.3390/molecules26206201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Caveolin-1 (CAV1), a membrane protein that is necessary for the formation and maintenance of caveolae, is a promising drug target for the therapy of various diseases, such as cancer, diabetes, and liver fibrosis. The biology and pathology of caveolae have been widely investigated; however, very little information about the structural features of full-length CAV1 is available, as well as its biophysical role in reshaping the cellular membrane. Here, we established a method, with high reliability and reproducibility, for the expression and purification of CAV1. Amyloid-like properties of CAV1 and its C-terminal peptide CAV1(168-178) suggest a structural basis for the short linear CAV1 assemblies that have been recently observed in caveolin polyhedral cages in Escherichia coli (E. coli). Reconstitution of CAV1 into artificial lipid membranes induces a caveolae-like membrane curvature. Structural characterization of CAV1 in the membrane by solid-state nuclear magnetic resonance (ssNMR) indicate that it is largely α-helical, with very little β-sheet content. Its scaffolding domain adopts a α-helical structure as identified by chemical shift analysis of threonine (Thr). Taken together, an in vitro model was developed for the CAV1 structural study, which will further provide meaningful evidences for the design and screening of bioactive compounds targeting CAV1.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan 250012, China;
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Xinyan Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Wenru Kong
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Shuqi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- Correspondence: ; Tel.: +86-0531-88382014
| |
Collapse
|
21
|
Wong TH, Khater IM, Joshi B, Shahsavari M, Hamarneh G, Nabi IR. Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain. Sci Rep 2021; 11:7810. [PMID: 33833286 PMCID: PMC8032680 DOI: 10.1038/s41598-021-86770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1 (CAV1), the caveolae coat protein, also associates with non-caveolar scaffold domains. Single molecule localization microscopy (SMLM) network analysis distinguishes caveolae and three scaffold domains, hemispherical S2 scaffolds and smaller S1B and S1A scaffolds. The caveolin scaffolding domain (CSD) is a highly conserved hydrophobic region that mediates interaction of CAV1 with multiple effector molecules. F92A/V94A mutation disrupts CSD function, however the structural impact of CSD mutation on caveolae or scaffolds remains unknown. Here, SMLM network analysis quantitatively shows that expression of the CAV1 CSD F92A/V94A mutant in CRISPR/Cas CAV1 knockout MDA-MB-231 breast cancer cells reduces the size and volume and enhances the elongation of caveolae and scaffold domains, with more pronounced effects on S2 and S1B scaffolds. Convex hull analysis of the outer surface of the CAV1 point clouds confirms the size reduction of CSD mutant CAV1 blobs and shows that CSD mutation reduces volume variation amongst S2 and S1B CAV1 blobs at increasing shrink values, that may reflect retraction of the CAV1 N-terminus towards the membrane, potentially preventing accessibility of the CSD. Detection of point mutation-induced changes to CAV1 domains highlights the utility of SMLM network analysis for mesoscale structural analysis of oligomers in their native environment.
Collapse
Affiliation(s)
- Timothy H Wong
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ismail M Khater
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Bharat Joshi
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mona Shahsavari
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Ivan R Nabi
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|