1
|
Locatelli NS, Baums IB. Genomes of the Caribbean reef-building corals Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. G3 (BETHESDA, MD.) 2025; 15:jkaf020. [PMID: 39891726 PMCID: PMC12005156 DOI: 10.1093/g3journal/jkaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Coral populations worldwide are declining rapidly due to elevated ocean temperatures and other human impacts. The Caribbean harbors a high number of threatened, endangered, and critically endangered coral species compared with reefs of the larger Indo-Pacific. The reef corals of the Caribbean are also long diverged from their Pacific counterparts and may have evolved different survival strategies. Most genomic resources have been developed for Pacific coral species which may impede our ability to study the changes in genetic composition of Caribbean reef communities in response to global change. To help fill the gap in genomic resources, we used PacBio HiFi sequencing to generate the first genome assemblies for 3 Caribbean reef-building corals, Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. We also explore the genomic novelties that shape scleractinian genomes. Notably, we find abundant gene duplications of all classes (e.g. tandem and segmental), especially in S. siderea. This species has one of the largest genomes of any scleractinian coral (822 Mb) which seems to be driven by repetitive content and gene family expansion and diversification. As the genome size of S. siderea was double the size expected of stony corals, we also evaluated the possibility of an ancient whole-genome duplication using Ks tests and found no evidence of such an event in the species. By presenting these genome assemblies, we hope to develop a better understanding of coral evolution as a whole and to enable researchers to further investigate the population genetics and diversity of these 3 species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Carl von Ossietzky Universität Oldenburg, Im Technologie Park 5, Oldenburg 26129, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| |
Collapse
|
2
|
Guillaume AS, Ferrari R, Selmoni O, Mocellin VJL, Denis H, Naugle M, Howells E, Bay LK, Joost S. Harnessing Multiscale Topographic Environmental Variables for Regional Coral Species Distribution Models. Ecol Evol 2025; 15:e71292. [PMID: 40270802 PMCID: PMC12017900 DOI: 10.1002/ece3.71292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Effective biodiversity conservation requires knowledge of species' distributions across large areas, yet prevalence data for marine sessile species is scarce, with traditional variables often unavailable at appropriate temporal and spatial resolutions. As marine organism distributions generally depend on terrain heterogeneity, topographic variables derived from digital elevation models (DEMs) can be useful proxies in ecological modelling, given appropriate spatial resolutions. Here, we use three reef-building Acropora coral species across the Great Barrier Reef, Australia, in a case study to (1) assess high-resolution bathymetry DEM sources for accuracy, (2) harness their derived topographic variables for regional coral species distribution models (SDMs), and (3) develop a transferable framework to produce, select and integrate multi-resolution variables into marine spatial models. For this, we obtained and processed three distinct bathymetric digital depth models that we treat as DEMs, which are available across the GBR extent: (i) Allen Coral Atlas (ACA) at 10 m, (ii) DeepReef at 30 m and (iii) DeepReef at 100 m. We generalised the three DEMs to multiple nested spatial resolutions (15 m-120 m) and derived the same eight topographic variables to assess SDM sensitivity to bathymetry source and spatial resolution. The ACA and DeepReef DEMs shared similar vertical accuracies, each producing topographic variables relevant to marine SDMs. Slope and vector ruggedness measure (VRM), capturing hydrodynamic movement and shelter or exposure, were the most relevant variables in SDMs of all three species. Interestingly, variables at the finest resolution (15 m) were not always the most relevant for producing accurate coral SDMs, with optimal resolutions between 15 and 60 m depending on the variable type and species. Using multi-resolution topographic variables in SDMs provided nuanced insights into the multiscale drivers of regional coral distributions. Drawing from this case study, we provide a practical and transferable framework to facilitate the adoption of multiscale SDMs for better-informed conservation and management planning.
Collapse
Affiliation(s)
- Annie S. Guillaume
- Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Renata Ferrari
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Oliver Selmoni
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | | | - Hugo Denis
- UMR250/9220 ENTROPIE (IRD‐CNRS‐UR‐IFREMER‐UNC)Noumea CedexNew CaledoniaFrance
- ED 129, SU Sorbonne UniversitéParisFrance
- National Marine Science Centre, Faculty of Science and EngineeringSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Melissa Naugle
- National Marine Science Centre, Faculty of Science and EngineeringSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Emily Howells
- National Marine Science Centre, Faculty of Science and EngineeringSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Stéphane Joost
- Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
3
|
Leiva C, Torda G, Zhou C, Pan Y, Harris J, Xiang X, Tan S, Tian W, Hume B, Miller DJ, Li Q, Zhang G, Cooke I, Rodolfo‐Metalpa R. Rapid Evolution in Action: Environmental Filtering Supports Coral Adaptation to a Hot, Acidic, and Deoxygenated Extreme Habitat. GLOBAL CHANGE BIOLOGY 2025; 31:e70103. [PMID: 40028829 PMCID: PMC11874183 DOI: 10.1111/gcb.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The semienclosed Bouraké lagoon in New Caledonia is a natural system that enables observation of evolution in action with respect to stress tolerance in marine organisms, a topic directly relevant to understanding the consequences of global climate change. Corals inhabiting the Bouraké lagoon endure extreme conditions of elevated temperature (> 33°C), acidification (7.2 pH units), and deoxygenation (2.28 mg O2 L-1), which fluctuate with the tide due to the lagoon's geomorphology. To investigate the underlying bases of the apparent stress tolerance of these corals, we combined whole genome resequencing of the coral host and ITS2 metabarcoding of the photosymbionts from 90 Acropora tenuis colonies from three localities along the steep environmental gradient from Bouraké to two nearby control reefs. Our results highlight the importance of coral flexibility to associate with different photosymbionts in facilitating stress tolerance of the holobiont; but, perhaps more significantly, strong selective effects were detected at specific loci in the host genome. Fifty-seven genes contained SNPs highly associated with the extreme environment of Bouraké and were enriched in functions related to sphingolipid metabolism. Within these genes, the conserved sensor of noxious stimuli TRPA1 and the ABCC4 transporter stood out due to the high number of environmentally selected SNPs that they contained. Protein 3D structure predictions suggest that a single-point mutation causes the rotation of the main regulatory domain of TRPA1, which may be behind this case of natural selection through environmental filtering. While the corals of the Bouraké lagoon provide a striking example of rapid adaptation to extreme conditions, overall, our results highlight the need to preserve the current standing genetic variation of coral populations to safeguard their adaptive potential to ongoing rapid environmental change.
Collapse
Affiliation(s)
- Carlos Leiva
- Marine LaboratoryUniversity of GuamGuamUSA
- Laboratoire d'Excellence CORAILENTROPIE (UMR9220), IRDNouméaNew Caledonia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Chengran Zhou
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
| | - Yunrui Pan
- Research Center for eco‐Environmental ScienceChinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jess Harris
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Xueyan Xiang
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
| | - Shangjin Tan
- BGI ResearchWuhanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wei Tian
- BGI‐AustraliaHerstonQueenslandAustralia
| | - Benjamin Hume
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Qiye Li
- BGI ResearchWuhanChina
- State Key Laboratory of Genome and Multi‐Omics TechnologiesBGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology and Women's Hospital at Zhejiang University School of Medicine, and Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Ira Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Riccardo Rodolfo‐Metalpa
- Laboratoire d'Excellence CORAILENTROPIE (UMR9220), IRDNouméaNew Caledonia
- ENTROPIE, IRDUniversité de la Réunion, IFREMER, Université de Nouvelle‐CalédonieNouméaNew Caledonia
- Labex ICONA International CO2 Natural Analogues NetworkTsukubaJapan
| |
Collapse
|
4
|
deMayo JA, Ragland GJ. (Limited) Predictability of thermal adaptation in invertebrates. J Exp Biol 2025; 228:JEB249450. [PMID: 40052398 DOI: 10.1242/jeb.249450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research.
Collapse
Affiliation(s)
- James A deMayo
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
5
|
Black KL, Bay LK, Matz MV. A Genetic Variant of Delta-9 Desaturase Is Associated With Latitudinal Adaptation in a Coral from the Great Barrier Reef. Mol Ecol 2025; 34:e17634. [PMID: 39717908 DOI: 10.1111/mec.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred. In colonies reciprocally transplanted across 4.5° of latitude, the expression of Δ9-desaturase is upregulated at the high-latitude reef. Furthermore, corals from the low-latitude reef bearing the derived Δ9-desaturase allele express the gene more and grow faster than their peers when transplanted to the high-latitude reef. In other organisms ranging from bacteria to fish, Δ9-desaturase is upregulated under cold conditions to adjust membrane fluidity by introducing double bonds into fatty acid chains of membrane lipids. It is therefore plausible that the signal of latitudinal adaptation at the Δ9-desaturase locus is due to its involvement in adaptation to cooler temperatures at higher latitudes.
Collapse
Affiliation(s)
- Kristina L Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Manullang C, Hanahara N, Tarigan AI, Abe Y, Furukawa M, Morita M. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages. BMC Genomics 2025; 26:36. [PMID: 39810102 PMCID: PMC11730148 DOI: 10.1186/s12864-024-11194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability. This study uses individual larval sequencing to investigate genotype-specific responses to heat stress and the selective pressures shaping their genomes, offering finer resolution and deeper insights. RESULTS This study investigates the larval response to heat stress before acquiring symbiotic algae, aiming to elucidate the relationship between coral genetic diversity and heat stress. Larvae sourced from eight Acropora digitifera colonies were subjected to ambient temperature (28 °C) and heat conditions (31 °C). The impact of heat stress on larval genetic diversity was assessed through sequencing. While overall genetic diversity, represented by π, did not significantly differ between the control and heat-exposed groups, Tajima's D differed, indicating different selective pressures in each group. The genomic regions under higher and lower Tajima's D were not broadly shared among control and head conditions, implying that selective pressures operated in distinctive manners. Many larval protein-coding sequences were identified in this genomic region, and the codon evolution of many of these genes showed signs of positive selection. These results highlight the complex selective pressures on coral larvae under different temperatures. The genes showing signs of positive selection in response to heat stress may have also been influenced by historical temperature fluctuations, as suggested by their association with loci identified during Acroporid speciation. These loci under codon-level positive selection during speciation highlight the potential role of genetic diversity in shaping adaptation to environmental changes over evolutionary timescales. CONCLUSION These findings underscore the significance of genetic diversity in coral reproduction for maintaining reef ecosystems. They also indicate that even minor heat stress can exert significant selective pressure, potentially leading to profound implications for coral reef ecosystems. This research is crucial for understanding the impact of rising seawater temperatures on coral reefs.
Collapse
Affiliation(s)
- Cristiana Manullang
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Nozomi Hanahara
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Ariyo Imanuel Tarigan
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Yuko Abe
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Mao Furukawa
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Masaya Morita
- Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
| |
Collapse
|
7
|
Li R, Leiva C, Lemer S, Kirkendale L, Li J. Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams. Commun Biol 2025; 8:7. [PMID: 39755777 DOI: 10.1038/s42003-024-07423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome. Giant clams thrive in oligotrophic waters by forming a remarkable association with photosymbiotic dinoflagellate algae. Genome-based demographic inferences uncover a tight correlation between T. maxima global population change and major paleoclimate and habitat shifts, revealing how abiotic and biotic factors may dictate T. maxima microevolution. Comparative analyses reveal genomic features that may be symbiosis-driven, including expansion and contraction of immunity-related gene families and a large proportion of lineage-specific genes. Strikingly, about 70% of the genome is composed of repetitive elements, especially transposable elements, most likely resulting from a symbiosis-adapted immune system. This work greatly enhances our understanding of genomic drivers of symbiosis that underlie metazoan evolution and diversification.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA.
| | | | - Sarah Lemer
- University of Guam Marine Laboratory, Guam, USA
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Lisa Kirkendale
- Collections and Research, Western Australian Museum, Perth, WA, Australia
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Eriksson SY, Matz MV, Vize PD, Rosser NL. Whole Genome Sequencing Reveals Genetic Differences Between Symbiodiniaceae Populations Among Reproductively and Geographically Isolated Acropora Colonies in Western Australia. Ecol Evol 2025; 15:e70771. [PMID: 39758704 PMCID: PMC11695670 DOI: 10.1002/ece3.70771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
Significant genetic differentiation between Symbiodiniaceae populations in coral hosts can be induced by a range of factors including geography, latitude, depth, temperature and light utilisation. The conventional method of measuring Symbiodiniaceae diversity involving the ITS2 region of rDNA has several limitations, stemming from insufficient genetic resolution and the multi-copy nature of the marker. This could be improved by using higher throughput whole genome sequencing to identify fine-scale population genetic differences and provide new insight into factors influencing coral-Symbiodiniaceae associations. The aim of this study was to investigate the genetic diversity of Symbiodiniaceae populations using low-coverage whole genome sequencing in sympatric populations of Acropora cf. secale and allopatric populations of Acropora millepora that reproduce in different seasons in Western Australia. Genetic diversity of Symbiodiniaceae populations in these two species was examined using principal coordinates analysis and permutational analysis of variance. This analysis revealed that while all colonies were dominated by Cladocopium, there was a significant genetic difference between Symbiodiniaceae populations in both species. In A. millepora, this variation could be due to the latitudinal variation between populations or differences in reproductive seasonality, but in sympatric populations of A. cf. secale, genetic differences between Symbiodiniaceae populations were clearly aligned with the reproductive seasonality of the coral host. The use of whole genome sequencing improved the sensitivity to detect Symbiodiniaceae genetic population structure between coral populations, which increases our ability to identify genetic and potentially functional differences associated with variation in Symbiodiniaceae populations.
Collapse
Affiliation(s)
- Sanna Y. Eriksson
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Climate Change Cluster (C3)University of Technology SydneyBroadwayNew South WalesAustralia
| | - Mikhail V. Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | - Peter D. Vize
- Xenbase, Departments of Biological Sciences and Computer ScienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Natalie L. Rosser
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| |
Collapse
|
9
|
Armstrong KC, Lippert M, Hanson E, Nestor V, Cornwell B, Walker NS, Golbuu Y, Palumbi SR. Fine-Scale Geographic Variation of Cladocopium in Acropora hyacinthus Across the Palauan Archipelago. Ecol Evol 2024; 14:e70650. [PMID: 39691438 PMCID: PMC11650750 DOI: 10.1002/ece3.70650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Symbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10-100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer-yet ecologically and evolutionarily relevant-scales. Here, we mapped short reads from 271 holobiont genome libraries of individual Acropora hyacinthus colonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure. Utilizing this low-pass method, we assayed over 13,000 bases from every individual, enabling us to discern genetic variation at a finer geographic scale than previously reported at the population level. We identified five common Cladocopium chloroplast SNP profiles present across Palau, with symbiont structure varying between Northern, mid-lagoon, and Southern regions, and inshore-offshore gradients. Although symbiont populations within reefs typically contained significant genetic diversity, we also observed genetic structure between some nearby reefs. To explore whether coral hosts retain their symbionts post-transplantation, we experimentally moved 79 corals from their native reefs to transplant sites with both different and similar chloroplast SNP profiles. Over 12 months, we observed 12 instances where transplanted corals changed profiles, often transitioning to a profile present in adjacent corals. Symbiont genetic structure between reefs suggests either low dispersal of symbionts or environmental selection against dispersers, both resulting in the potential for significant adaptive differentiation across reef environments. The extent to which local corals and their symbionts are co-adapted to environments on a reef-by-reef scale is currently poorly known. Chloroplast sequences offer an additional tool for monitoring symbiont genetics and coral-symbiont interactions when assisted migration is used in restoration.
Collapse
Affiliation(s)
- Katrina C. Armstrong
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Erik Hanson
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Brendan Cornwell
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
10
|
Fiesinger A, Buitrago-López C, Sharaf A, Cárdenas A, Voolstra CR. A draft genome assembly of the reef-building coral Acropora hemprichii from the central Red Sea. Sci Data 2024; 11:1288. [PMID: 39592588 PMCID: PMC11599867 DOI: 10.1038/s41597-024-04080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Coral reef ecosystems are under threat from climate change. Thus, active interventions to spur coral conservation/restoration are critical to support reef survival, greatly informed by a molecular understanding of resilience. The genus Acropora is a species-rich and globally prevalent reef builder that has experienced dramatic declines in the Caribbean. Here we generated a draft genome of the common coral Acropora hemprichii from the central Red Sea, one of the warmest water bodies in the world. We assembled the genome using 10x Chromium sequencing with subsequent scaffolding using a reference genome and Illumina short-read sequencing contigs. The A. hemprichii genome has an assembly size of 495.6 Mb confirmed using physical size estimation, of which 247.8 Mb (50%) are repeats. The scaffold N50 is 1.38 Mb with 99.6% of BUSCO genes identified (93.7% complete, 5.9% fragmented), providing a set of 26,865 protein-coding genes. The Red Sea A. hemprichii reference genome provides a valuable resource for studies aiming to decode the genomic architecture of resilience, e.g. through comparative analyses with other Acropora genomes.
Collapse
Affiliation(s)
- Anna Fiesinger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carol Buitrago-López
- General Organization for the Conservation of Coral Reefs and Turtles in the Red Sea (Shams), Jeddah, Saudi Arabia
| | - Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, 20016, USA
| | | |
Collapse
|
11
|
Lamb AM, Peplow LM, Harrison PL, Humphrey CA, Latini L, McCutchan GA, van Oppen MJH. Coral recruits demonstrate thermal resilience. PeerJ 2024; 12:e18273. [PMID: 39553712 PMCID: PMC11566514 DOI: 10.7717/peerj.18273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
Marine heatwaves are becoming more frequent during summer and pose a significant threat to coral reef ecosystems. Restoration efforts have the potential to support native coral populations and guard them against some degree of environmental change, while global action against climate change takes place. Interspecific hybridization is one approach through which resilient coral stock could be generated for restoration. Here we compared the performance of Acropora kenti and A. loripes hybrid and purebred coral recruits under a simulated thermal stress event. A. kenti eggs were successfully fertilized by A. loripes sperm to produce 'KL' hybrids, but no 'LK' hybrids could be produced from A. loripes eggs and A. kenti sperm. Despite corals in the elevated treatment accruing thermal stress (>12 degree heating weeks over 2 months) known to result in mass bleaching, both purebred and hybrid recruits showed no signs of stress under the simulated temperature regime, based on the performance indicators survivorship, size, color (a proxy of bleaching), and photochemical efficiency of photosystem II. Comparisons between the hybrids and purebreds studied here must be interpreted with caution because hybrid sample sizes were small. The hybrids did not outperform both of their purebred counterparts for any metrics studied here, demonstrating that there are limitations to the extent to which interspecific hybridization may boost the performance of coral stock. In general, the purebred A. loripes recruits performed best under both ambient and elevated conditions. The performance of the KL hybrid corals was similar to the maternal parental species, A. kenti, or not significantly different to either parental purebred species. The Symbiodiniaceae communities of the KL hybrids were characteristic of their maternal counterparts and may have underpinned the performance differences between the A. kenti/KL hybrid and A. loripes recruits.
Collapse
Affiliation(s)
- Annika M. Lamb
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, James Cook University of North Queensland, Townsville, Queensland, Australia
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Lesa M. Peplow
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Peter L. Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, New South Wales, Australia
| | - Craig A. Humphrey
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lorenzo Latini
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Guy A. McCutchan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
13
|
Locatelli NS, Baums IB. Genomes of the Caribbean reef-building corals Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608299. [PMID: 39229226 PMCID: PMC11370458 DOI: 10.1101/2024.08.21.608299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Corals populations worldwide are declining rapidly due to elevated ocean temperatures and other human impacts. The Caribbean harbors a high number of threatened, endangered, and critically endangered coral species compared to reefs of the larger Indo-Pacific. The reef corals of the Caribbean are also long diverged from their Pacific counterparts and may have evolved different survival strategies. Most genomic resources have been developed for Pacific coral species which may impede our ability to study the changes in genetic composition of Caribbean reef communities in response to global change. To help fill the gap in genomic resources, we used PacBio HiFi sequencing to generate the first genome assemblies for three Caribbean, reef-building corals, Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. We also explore the genomic novelties that shape scleractinian genomes. Notably, we find abundant gene duplications of all classes (e.g., tandem and segmental), especially in S. siderea. This species has one of the largest genomes of any scleractinian coral (822Mb) which seems to be driven by repetitive content and gene family expansion and diversification. As the genome size of S. siderea was double the size expected of stony corals, we also evaluated the possibility of an ancient whole genome duplication using Ks tests and found no evidence of such an event in the species. By presenting these genome assemblies, we hope to develop a better understanding of coral evolution as a whole and to enable researchers to further investigate the population genetics and diversity of these three species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer, Heerstraße 231, 26129 Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
14
|
Zhang J, Schneller NM, Field MA, Chan CX, Miller DJ, Strugnell JM, Riginos C, Bay L, Cooke I. Chromosomal inversions harbour excess mutational load in the coral, Acropora kenti, on the Great Barrier Reef. Mol Ecol 2024; 33:e17468. [PMID: 39046252 DOI: 10.1111/mec.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.
Collapse
Affiliation(s)
- Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadja M Schneller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matt A Field
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
15
|
Gong S, Liang J, Xu L, Wang Y, Li J, Jin X, Yu K, Zhang Y. Diel transcriptional responses of coral-Symbiodiniaceae holobiont to elevated temperature. Commun Biol 2024; 7:882. [PMID: 39030351 PMCID: PMC11271600 DOI: 10.1038/s42003-024-06542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Coral exhibits diel rhythms in behavior and gene transcription. However, the influence of elevated temperature, a key factor causing coral bleaching, on these rhythms remains poorly understood. To address this, we examined physiological, metabolic, and gene transcription oscillations in the Acropora tenuis-Cladocopium sp. holobiont under constant darkness (DD), light-dark cycle (LD), and LD with elevated temperature (HLD). Under LD, the values of photosystem II efficiency, reactive oxygen species leakage, and lipid peroxidation exhibited significant diel oscillations. These oscillations were further amplified during coral bleaching under HLD. Gene transcription analysis identified 24-hour rhythms for specific genes in both coral and Symbiodiniaceae under LD. Notably, these rhythms were disrupted in coral and shifted in Symbiodiniaceae under HLD. Importantly, we identified over 20 clock or clock-controlled genes in this holobiont. Specifically, we suggested CIPC (CLOCK-interacting pacemaker-like) gene as a core clock gene in coral. We observed that the transcription of two abundant rhythmic genes encoding glycoside hydrolases (CBM21) and heme-binding protein (SOUL) were dysregulated by elevated temperature. These findings indicate that elevated temperatures disrupt diel gene transcription rhythms in the coral-Symbiodiniaceae holobiont, affecting essential symbiosis processes, such as carbohydrate utilization and redox homeostasis. These disruptions may contribute to the thermal bleaching of coral.
Collapse
Affiliation(s)
- Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xuejie Jin
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
16
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
17
|
Marzonie MR, Nitschke MR, Bay LK, Bourne DG, Harrison HB. Symbiodiniaceae diversity varies by host and environment across thermally distinct reefs. Mol Ecol 2024; 33:e17342. [PMID: 38584356 DOI: 10.1111/mec.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.
Collapse
Affiliation(s)
- Magena R Marzonie
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Hugo B Harrison
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Townsville, Queensland, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Poquita-Du RC, Huang D, Todd PA. Genome-wide analysis to uncover how Pocillopora acuta survives the challenging intertidal environment. Sci Rep 2024; 14:8538. [PMID: 38609456 PMCID: PMC11015029 DOI: 10.1038/s41598-024-59268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.
Collapse
Affiliation(s)
- Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Danwei Huang
- Lee Kong Chian Natural History Museum and Tropical Marine Science Institute, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, S3 Level 2, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
19
|
Messer LF, Bourne DG, Robbins SJ, Clay M, Bell SC, McIlroy SJ, Tyson GW. A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience. Nat Commun 2024; 15:2902. [PMID: 38575584 PMCID: PMC10995205 DOI: 10.1038/s41467-024-46905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.
Collapse
Affiliation(s)
- Lauren F Messer
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan Clay
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Sara C Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
20
|
Lin G, Gao D, Yang P, Liu S, Sun D, Lin X. Editorial: Linking microbial-driven key processes with carbon and nitrogen cycling in estuarine, coastal, and the nearshore areas. Front Microbiol 2024; 15:1382148. [PMID: 38562475 PMCID: PMC10982486 DOI: 10.3389/fmicb.2024.1382148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dengzhou Gao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Ping Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Shuting Liu
- Department of Environmental and Sustainability Sciences, Kean University, Union, NJ, United States
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xianbiao Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Young BD, Williamson OM, Kron NS, Andrade Rodriguez N, Isma LM, MacKnight NJ, Muller EM, Rosales SM, Sirotzke SM, Traylor-Knowles N, Williams SD, Studivan MS. Annotated genome and transcriptome of the endangered Caribbean mountainous star coral (Orbicella faveolata) using PacBio long-read sequencing. BMC Genomics 2024; 25:226. [PMID: 38424480 PMCID: PMC10905781 DOI: 10.1186/s12864-024-10092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.
Collapse
Affiliation(s)
- Benjamin D Young
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Natalia Andrade Rodriguez
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Lys M Isma
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicholas J MacKnight
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Stephanie M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | | | - Michael S Studivan
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
23
|
Popovic I, Bergeron LA, Bozec YM, Waldvogel AM, Howitt SM, Damjanovic K, Patel F, Cabrera MG, Wörheide G, Uthicke S, Riginos C. High germline mutation rates, but not extreme population outbreaks, influence genetic diversity in a keystone coral predator. PLoS Genet 2024; 20:e1011129. [PMID: 38346089 PMCID: PMC10861045 DOI: 10.1371/journal.pgen.1011129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Lewontin's paradox, the observation that levels of genetic diversity (π) do not scale linearly with census population size (Nc) variation, is an evolutionary conundrum. The most extreme mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are unknown. Here, we provide the first germline mutation rate (μ) estimate for a marine invertebrate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-coverage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates of Nc in Australia's Great Barrier Reef to jointly examine the determinants of π in populations undergoing extreme Nc fluctuations. The A. cf. solaris mean μ was 9.13 x 10-09 mutations per-site per-generation (95% CI: 6.51 x 10-09 to 1.18 x 10-08), exceeding estimates for other invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-expected Ne (~70,000-180,000) and low Ne/Nc values (0.0047-0.048) indicated weak influences of population outbreaks on long-term π. Our findings are consistent with elevated μ evolving in response to reduced Ne and generation time length, with important implications for explaining high mutational loads and the determinants of genetic diversity in marine invertebrate taxa.
Collapse
Affiliation(s)
- Iva Popovic
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Lucie A. Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Samantha M. Howitt
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Frances Patel
- Australian Institute of Marine Science, Townsville, Australia
| | | | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
24
|
Meziere Z, Popovic I, Prata K, Ryan I, Pandolfi J, Riginos C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol Appl 2024; 17:e13644. [PMID: 38283599 PMCID: PMC10818133 DOI: 10.1111/eva.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Understanding how biodiversity originates and is maintained are fundamental challenge in evolutionary biology. Speciation is a continuous process and progression along this continuum depends on the interplay between evolutionary forces driving divergence and forces promoting genetic homogenisation. Coral reefs are broadly connected yet highly heterogeneous ecosystems, and divergence with gene flow at small spatial scales might therefore be common. Genomic studies are increasingly revealing the existence of closely related and sympatric taxa within taxonomic coral species, but the extent to which these taxa might still be exchanging genes and sharing environmental niches is unclear. In this study, we sampled extensively across diverse habitats at multiple reefs of the Great Barrier Reef (GBR) and comprehensively examined genome-wide diversity and divergence histories within and among taxa of the Stylophora pistillata species complex. S. pistillata is one of the most abundant and well-studied coral species, yet we discovered five distinct taxa, with wide geographic ranges and extensive sympatry. Demographic modelling showed that speciation events have occurred with gene flow and that taxa are at different stages along a divergence continuum. We found significant correlations between genetic divergence and specific environmental variables, suggesting that niche partitioning may have played a role in speciation and that S. pistillata taxa might be differentially adapted to different environments. Conservation actions rely on estimates of species richness, population sizes and species ranges, which are biased if divergent taxa are lumped together. As coral reefs are rapidly degrading due to climate change, our study highlights the importance of recognising evolutionarily distinct and differentially adapted coral taxa to improve conservation and restoration efforts aiming at protecting coral genetic diversity.
Collapse
Affiliation(s)
- Zoe Meziere
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Katharine Prata
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Isobel Ryan
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - John Pandolfi
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
25
|
Leiva C, Pérez-Portela R, Lemer S. Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO 2 seeps. Commun Biol 2023; 6:769. [PMID: 37481685 PMCID: PMC10363134 DOI: 10.1038/s42003-023-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Collapse
Affiliation(s)
- Carlos Leiva
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA
| |
Collapse
|
26
|
Noel B, Denoeud F, Rouan A, Buitrago-López C, Capasso L, Poulain J, Boissin E, Pousse M, Da Silva C, Couloux A, Armstrong E, Carradec Q, Cruaud C, Labadie K, Lê-Hoang J, Tambutté S, Barbe V, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Allemand D, Planes S, Gilson E, Zoccola D, Wincker P, Voolstra CR, Aury JM. Pervasive tandem duplications and convergent evolution shape coral genomes. Genome Biol 2023; 24:123. [PMID: 37264421 DOI: 10.1186/s13059-023-02960-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.
Collapse
Affiliation(s)
- Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Alice Rouan
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | | | - Laura Capasso
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Sylvie Tambutté
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | | | - Guillaume Iwankow
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Sarah Romac
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire Des Sciences du Climat Et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de La Mer de Villefranche Sur Mer, Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-Sur-Mer, 06230, France
- Institut Universitaire de France, Paris, 75231, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Department of Human Genetics, CHU Nice, Nice, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
27
|
Palumbi SR, Walker NS, Hanson E, Armstrong K, Lippert M, Cornwell B, Nestor V, Golbuu Y. Small-scale genetic structure of coral populations in Palau based on whole mitochondrial genomes: Implications for future coral resilience. Evol Appl 2023; 16:518-529. [PMID: 36793699 PMCID: PMC9923468 DOI: 10.1111/eva.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
The ability of local populations to adapt to future climate conditions is facilitated by a balance between short range dispersal allowing local buildup of adaptively beneficial alleles, and longer dispersal moving these alleles throughout the species range. Reef building corals have relatively low dispersal larvae, but most population genetic studies show differentiation only over 100s of km. Here, we report full mitochondrial genome sequences from 284 tabletop corals (Acropora hyacinthus) from 39 patch reefs in Palau, and show two signals of genetic structure across reef scales from 1 to 55 km. First, divergent mitochondrial DNA haplotypes exist in different proportions from reef to reef, causing PhiST values of 0.02 (p = 0.02). Second, closely related sequences of mitochondrial Haplogroups are more likely to be co-located on the same reefs than expected by chance alone. We also compared these sequences to prior data on 155 colonies from American Samoa. In these comparisons, many Haplogroups in Palau were disproportionately represented or absent in American Samoa, and inter-regional PhiST = 0.259. However, we saw three instances of identical mitochondrial genomes between locations. Together, these data sets suggest two features of coral dispersal revealed by occurrence patterns in highly similar mitochondrial genomes. First, the Palau-American Samoa data suggest that long distance dispersal in corals is rare, as expected, but that it is common enough to deliver identical mitochondrial genomes across the Pacific. Second, higher than expected co-occurrence of Haplogroups on the same Palau reefs suggests greater retention of coral larvae on local reefs than predicted by many current oceanographic models of larval movement. Increased attention to local scales of coral genetic structure, dispersal, and selection may help increase the accuracy of models of future adaptation of corals and of assisted migration as a reef resilience intervention.
Collapse
Affiliation(s)
- Stephen R. Palumbi
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaii Institute of Marine Biology, University of HawaiiHonoluluHawaiiUSA
| | - Erik Hanson
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Katrina Armstrong
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Brendan Cornwell
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | | |
Collapse
|
28
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
29
|
Zhang J, Richards ZT, Adam AAS, Chan CX, Shinzato C, Gilmour J, Thomas L, Strugnell JM, Miller DJ, Cooke I. Evolutionary responses of a reef-building coral to climate change at the end of the last glacial maximum. Mol Biol Evol 2022; 39:msac201. [PMID: 36219871 PMCID: PMC9578555 DOI: 10.1093/molbev/msac201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
- Collections and Research, Western Australian Museum, 49 Kew Street Welshpool, WA 6106, Australia
| | - Arne A S Adam
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo277-8564, Chiba, Japan
| | - James Gilmour
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
| | - Luke Thomas
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
- Oceans Graduate School, The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jan M Strugnell
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan 904-0495
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
30
|
Caruso C, Rocha de Souza M, Ruiz‐Jones L, Conetta D, Hancock J, Hobbs C, Hobbs C, Kahkejian V, Kitchen R, Marin C, Monismith S, Madin J, Gates R, Drury C. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i. Mol Ecol 2022; 31:5201-5213. [PMID: 35962751 PMCID: PMC9825948 DOI: 10.1111/mec.16655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kāne'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.
Collapse
Affiliation(s)
- Carlo Caruso
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | | | - Joshua Hancock
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | - Valerie Kahkejian
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Rebecca Kitchen
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Christian Marin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | - Joshua Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Ruth Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Crawford Drury
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| |
Collapse
|
31
|
Tsuchiya K, Zayasu Y, Nakajima Y, Arakaki N, Suzuki G, Satoh N, Shinzato C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol Ecol 2022; 31:5270-5284. [PMID: 36082782 DOI: 10.1111/mec.16665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.
Collapse
Affiliation(s)
- Kojin Tsuchiya
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuichi Nakajima
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
32
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Strader ME, Quigley KM. The role of gene expression and symbiosis in reef-building coral acquired heat tolerance. Nat Commun 2022; 13:4513. [PMID: 35922443 PMCID: PMC9349291 DOI: 10.1038/s41467-022-32217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting how reef-building corals will respond to accelerating ocean warming caused by climate change requires knowledge of how acclimation and symbiosis modulate heat tolerance in coral early life-history stages. We assayed transcriptional responses to heat in larvae and juveniles of 11 reproductive crosses of Acropora tenuis colonies along the Great Barrier Reef. Larvae produced from the warmest reef had the highest heat tolerance, although gene expression responses to heat were largely conserved by cross identity. Juvenile transcriptional responses were driven strongly by symbiosis - when in symbiosis with heat-evolved Symbiodiniaceae, hosts displayed intermediate expression between its progenitor Cladocopium and the more stress tolerant Durusdinium, indicating the acquisition of tolerance is a conserved evolutionary process in symbionts. Heat-evolved Symbiodiniaceae facilitated juvenile survival under heat stress, although host transcriptional responses to heat were positively correlated among those hosting different genera of Symbiodiniaceae. These findings reveal the relative contribution of parental environmental history as well as symbiosis establishment in coral molecular responses to heat in early life-history stages.
Collapse
Affiliation(s)
- Marie E Strader
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
34
|
Drury C, Bean NK, Harris CI, Hancock JR, Huckeba J, H CM, Roach TNF, Quinn RA, Gates RD. Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Commun Biol 2022; 5:486. [PMID: 35589814 PMCID: PMC9120509 DOI: 10.1038/s42003-022-03428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Coral holobionts are multi-species assemblages, which adds significant complexity to genotype-phenotype connections underlying ecologically important traits like coral bleaching. Small scale heterogeneity in bleaching is ubiquitous in the absence of strong environmental gradients, which provides adaptive variance needed for the long-term persistence of coral reefs. We used RAD-seq, qPCR and LC-MS/MS metabolomics to characterize host genomic variation, symbiont community and biochemical correlates in two bleaching phenotypes of the vertically transmitting coral Montipora capitata. Phenotype was driven by symbiosis state and host genetic variance. We documented 5 gene ontologies that were significantly associated with both the binary bleaching phenotype and symbiont composition, representing functions that confer a phenotype via host-symbiont interactions. We bred these corals and show that symbiont communities were broadly conserved in bulk-crosses, resulting in significantly higher survivorship under temperature stress in juveniles, but not larvae, from tolerant parents. Using a select and re-sequence approach, we document numerous gene ontologies selected by heat stress, some of which (cell signaling, antioxidant activity, pH regulation) have unique selection dynamics in larvae from thermally tolerant parents. These data show that vertically transmitting corals may have an adaptive advantage under climate change if host and symbiont variance interact to influence bleaching phenotype.
Collapse
Affiliation(s)
- Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Nina K Bean
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Casey I Harris
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joshua R Hancock
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joel Huckeba
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
- University of Amsterdam, Amsterdam, Netherlands
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
35
|
Thomas L, Underwood JN, Rose NH, Fuller ZL, Richards ZT, Dugal L, Grimaldi CM, Cooke IR, Palumbi SR, Gilmour JP. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. SCIENCE ADVANCES 2022; 8:eabl9185. [PMID: 35476443 PMCID: PMC9045720 DOI: 10.1126/sciadv.abl9185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.
Collapse
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Corresponding author.
| | - Jim N. Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Zachary L. Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zoe T. Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Collections and Research, Western Australian Museum, Welshpool, Australia
| | - Laurence Dugal
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Ira R. Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Stephen R. Palumbi
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, USA
| | - James P. Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| |
Collapse
|
36
|
Huerlimann R, Cowley JA, Wade NM, Wang Y, Kasinadhuni N, Chan CKK, Jabbari JS, Siemering K, Gordon L, Tinning M, Montenegro JD, Maes GE, Sellars MJ, Coman GJ, McWilliam S, Zenger KR, Khatkar MS, Raadsma HW, Donovan D, Krishna G, Jerry DR. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3 (BETHESDA, MD.) 2022; 12:6526390. [PMID: 35143647 PMCID: PMC8982415 DOI: 10.1093/g3journal/jkac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeff A Cowley
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Yinan Wang
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Chon-Kit Kenneth Chan
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kirby Siemering
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Matthew Tinning
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Juan D Montenegro
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Laboratory of Biodiversity and Evolutionary Genomics, Biogenomics-consultancy, KU Leuven, Leuven 3000, Belgium.,Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven 3000, Belgium
| | | | - Greg J Coman
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Sean McWilliam
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Kyall R Zenger
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mehar S Khatkar
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Herman W Raadsma
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Dallas Donovan
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Gopala Krishna
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Dean R Jerry
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
37
|
Matsuda SB, Chakravarti LJ, Cunning R, Huffmyer AS, Nelson CE, Gates RD, van Oppen MJH. Temperature-mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. GLOBAL CHANGE BIOLOGY 2022; 28:2006-2025. [PMID: 34957651 PMCID: PMC9303745 DOI: 10.1111/gcb.16057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Reef-building corals form nutritional symbioses with endosymbiotic dinoflagellates (Symbiodiniaceae), a relationship that facilitates the ecological success of coral reefs. These symbionts are mostly acquired anew each generation from the environment during early life stages ("horizontal transmission"). Symbiodiniaceae species exhibit trait variation that directly impacts the health and performance of the coral host under ocean warming. Here, we test the capacity for larvae of a horizontally transmitting coral, Acropora tenuis, to establish symbioses with Symbiodiniaceae species in four genera that have varying thermal thresholds (the common symbiont genera, Cladocopium and Durusdinium, and the less common Fugacium and Gerakladium). Over a 2-week period in January 2018, a series of both no-choice and four-way choice experiments were conducted at three temperatures (27, 30, and 31°C). Symbiont acquisition success and cell proliferation were measured in individual larvae. Larvae successfully acquired and maintained symbionts of all four genera in no-choice experiments, and >80% of larvae were infected with at least three genera when offered a four-way choice. Unexpectedly, Gerakladium symbionts increased in dominance over time, and at high temperatures outcompeted Durusdinium, which is regarded as thermally tolerant. Although Fugacium displayed the highest thermal tolerance in culture and reached similar cell densities to the other three symbionts at 31°C, it remained a background symbiont in choice experiments, suggesting host preference for other symbiont species. Larval survivorship at 1 week was highest in larvae associated with Gerakladium and Fugacium symbionts at 27 and 30°C, however at 31°C, mortality was similar for all treatments. We hypothesize that symbionts that are currently rare in corals (e.g., Gerakladium) may become more common and widespread in early life stages under climate warming. Uptake of such symbionts may function as a survival strategy in the wild, and has implications for reef restoration practices that use sexually produced coral stock.
Collapse
Affiliation(s)
- Shayle B. Matsuda
- Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāne‘oheHawai‘iUSA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Ariana S. Huffmyer
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and EducationDepartment of Oceanography and Sea Grant College ProgramUniversity of Hawai‘i at MānoaHonoluluHawai‘iUSA
| | - Ruth D. Gates
- Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāne‘oheHawai‘iUSA
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
38
|
Prata KE, Riginos C, Gutenkunst RN, Latijnhouwers KRW, Sánchez JA, Englebert N, Hay KB, Bongaerts P. Deep connections: divergence histories with gene flow in mesophotic
Agaricia
corals. Mol Ecol 2022; 31:2511-2527. [PMID: 35152496 PMCID: PMC9303685 DOI: 10.1111/mec.16391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Largely understudied, mesophotic coral ecosystems lie below shallow reefs (at >30 m depth) and comprise ecologically distinct communities. Brooding reproductive modes appear to predominate among mesophotic‐specialist corals and may limit genetic connectivity among populations. Using reduced representation genomic sequencing, we assessed spatial population genetic structure at 50 m depth in an ecologically important mesophotic‐specialist species Agaricia grahamae, among locations in the Southern Caribbean. We also tested for hybridisation with the closely related (but depth‐generalist) species Agaricia lamarcki, within their sympatric depth zone (50 m). In contrast to our expectations, no spatial genetic structure was detected between the reefs of Curaçao and Bonaire (~40 km apart) within A. grahamae. However, cryptic taxa were discovered within both taxonomic species, with those in A. lamarcki (incompletely) partitioned by depth and those in A. grahamae occurring sympatrically (at the same depth). Hybrid analyses and demographic modelling identified contemporary and historical gene flow among cryptic taxa, both within and between A. grahamae and A. lamarcki. These results (1) indicate that spatial connectivity and subsequent replenishment may be possible between islands of moderate geographic distances for A. grahamae, an ecologically important mesophotic species, (2) that cryptic taxa occur in the mesophotic zone and environmental selection along shallow to mesophotic depth gradients may drive divergence in depth‐generalists such as A. lamarcki, and (3) highlight that gene flow links taxa within this relativity diverse Caribbean genus.
Collapse
Affiliation(s)
- Katharine E. Prata
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
| | - Cynthia Riginos
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology University of Arizona Tuscon AZ USA
| | | | - Juan A. Sánchez
- Laboratorio de Biología Molecular Marina (BIOMMAR) Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Norbert Englebert
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Kyra B. Hay
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Pim Bongaerts
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
- Caribbean Research and Management of Biodiversity Foundation Willemstad, Curaçao
| |
Collapse
|
39
|
Qi Z, Diao X, Yang T, Zeng R, Wang H, Zhou H. Spatial and interspecific differences in coral-associated bacterial diversity in Hainan, China. MARINE POLLUTION BULLETIN 2022; 175:113321. [PMID: 35149312 DOI: 10.1016/j.marpolbul.2022.113321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Coral reefs are suffering from environmental change and anthropogenic disturbances. It is well known that microbes play an indispensable role in the stable state of coral reef health. Furthermore, the coral reef microbial database helps to understand the connections among microbiomes shifts and ecosystem stress. Hainan Province is the main coral reef distribution area in China. Therefore, targeted microbial reference information from Hainan, including several coral microbiomes, was generated by 16S rRNA gene sequencing in this study. This study focused on a small range of coral-associated bacterial information and found a relationship between microbes and the surrounding environment based on coral interspecific and environmental factors. Interestingly, compared with species, the differences of bacterial community structures are best explained by site. It seems that various environmental factors contribute more to the microbial structure of corals than interspecific influences.
Collapse
Affiliation(s)
- Zhao Qi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Science, Hainan Normal University, Haikou 571158, China.
| | - Tinghan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ruohan Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Ishii Y, Hatta M, Deguchi R, Kawata M, Maruyama S. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. ZOOLOGICAL LETTERS 2022; 8:4. [PMID: 35078542 PMCID: PMC8787945 DOI: 10.1186/s40851-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
For corals, metamorphosis from planktonic larvae to sedentary polyps is an important life event, as it determines the environment in which they live for a lifetime. Although previous studies on the reef-building coral Acropora have clarified a critical time point during metamorphosis when cells are committed to their fates, as defined by an inability to revert back to their previous states as swimming larvae (here referred to as the "point of no return"), the molecular mechanisms of this commitment to a fate remain unclear. To address this issue, we analyzed the transcriptomic changes before and after the point of no return by inducing metamorphosis of Acropora tenuis with Hym-248, a metamorphosis-inducing neuropeptide. Gene Ontology and pathway enrichment analysis of the 5893 differentially expressed genes revealed that G protein-coupled receptors (GPCRs) were enriched, including GABA receptor and Frizzled gene subfamilies, which showed characteristic temporal expression patterns. The GPCRs were then classified by comparison with those of Homo sapiens, Nematostella vectensis and Platynereis dumerilii. Classification of the differentially expressed genes into modules based on expression patterns showed that some modules with large fluctuations after the point of no return were biased toward functions such as protein metabolism and transport. This result suggests that in precommitted larvae, different types of GPCR genes function to ensure a proper environment, whereas in committed larvae, intracellular protein transport and proteolysis may cause a loss of the reversibility of metamorphosis as a result of cell differentiation.
Collapse
Affiliation(s)
- Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
| | - Masakado Kawata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Shinichiro Maruyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
41
|
Genetic approaches for increasing fitness in endangered species. Trends Ecol Evol 2022; 37:332-345. [PMID: 35027225 DOI: 10.1016/j.tree.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The global rate of wildlife extinctions is accelerating, and the persistence of many species requires conservation breeding programs. A central paradigm of these programs is to preserve the genetic diversity of the founder populations. However, this may preserve original characteristics that make them vulnerable to extinction. We introduce targeted genetic intervention (TGI) as an alternative approach that promotes traits that enable species to persist in the face of threats by changing the incidence of alleles that impact on fitness. The TGI toolkit includes methods with established efficacy in model organisms and agriculture but are largely untried for conservation, such as synthetic biology and artificial selection. We explore TGI approaches as a species-restoration tool for intractable threats including infectious disease and climate change.
Collapse
|
42
|
Rippe JP, Dixon G, Fuller ZL, Liao Y, Matz M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol Ecol 2021; 30:3468-3484. [PMID: 33894013 DOI: 10.1111/mec.15931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Collapse
Affiliation(s)
- John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
43
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|