1
|
Cheng Y, Magnard R, Langdon AJ, Lee D, Janak PH. Chronic Ethanol Exposure Produces Persistent Impairment in Cognitive Flexibility and Decision Signals in the Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.10.584332. [PMID: 38585868 PMCID: PMC10996555 DOI: 10.1101/2024.03.10.584332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lack of cognitive flexibility is a hallmark of substance use disorders and has been associated with drug-induced synaptic plasticity in the dorsomedial striatum (DMS). Yet the possible impact of altered plasticity on real-time striatal neural dynamics during decision-making is unclear. Here, we identified persistent impairments induced by chronic ethanol (EtOH) exposure on cognitive flexibility and striatal decision signals. After a substantial withdrawal period from prior EtOH vapor exposure, male, but not female, rats exhibited reduced adaptability and exploratory behavior during a dynamic decision-making task. Reinforcement learning models showed that prior EtOH exposure enhanced learning from rewards over omissions. Notably, neural signals in the DMS related to the decision outcome were enhanced, while those related to choice and choice-outcome conjunction were reduced, in EtOH-treated rats compared to the controls. These findings highlight the profound impact of chronic EtOH exposure on adaptive decision-making, pinpointing specific changes in striatal representations of actions and outcomes as underlying mechanisms for cognitive deficits.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Robin Magnard
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Angela J Langdon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daeyeol Lee
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Zanvyl Krieger Mind/Brain Institute, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Patricia H Janak
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Yang L, Fang LZ, Lynch MR, Xu CS, Hahm HJ, Zhang Y, Heitmeier MR, Costa VD, Samineni VK, Creed MC. Transcriptomic landscape of mammalian ventral pallidum at single-cell resolution. SCIENCE ADVANCES 2024; 10:eadq6017. [PMID: 39661664 PMCID: PMC11633743 DOI: 10.1126/sciadv.adq6017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used single-nucleus RNA sequencing and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neurotransmitter receptors that could be targeted within specific VP cell types for functional investigations.
Collapse
Affiliation(s)
- Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Z. Fang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle R. Lynch
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- NINDS Neuroscience Postbaccalaureate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Chang S. Xu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah J. Hahm
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yufen Zhang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Monique R. Heitmeier
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent D. Costa
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| | - Vijay K. Samineni
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Meaghan C. Creed
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Abstract
The ways in which sensory stimuli acquire motivational valence through association with other stimuli is one of the simplest forms of learning. Although we have identified many brain nuclei that play various roles in reward processing, a significant gap remains in understanding how valence encoding transforms through the layers of sensory processing. To address this gap, we carried out a comparative investigation of the mouse anteromedial olfactory tubercle (OT), and the ventral pallidum (VP) - 2 connected nuclei of the basal ganglia which have both been implicated in reward processing. First, using anterograde and retrograde tracing, we show that both D1 and D2 neurons of the anteromedial OT project primarily to the VP and minimally elsewhere. Using two-photon calcium imaging, we then investigated how the identity of the odor and reward contingency of the odor are differently encoded by neurons in either structure during a classical conditioning paradigm. We find that VP neurons robustly encode reward contingency, but not identity, in low-dimensional space. In contrast, the OT neurons primarily encode odor identity in high-dimensional space. Although D1 OT neurons showed larger responses to rewarded odors than other odors, consistent with prior findings, we interpret this as identity encoding with enhanced contrast. Finally, using a novel conditioning paradigm that decouples reward contingency and licking vigor, we show that both features are encoded by non-overlapping VP neurons. These results provide a novel framework for the striatopallidal circuit in which a high-dimensional encoding of stimulus identity is collapsed onto a low-dimensional encoding of motivational valence.
Collapse
Affiliation(s)
- Donghyung Lee
- University of California San Diego, Department of Neurobiology, School of Biological SciencesSan DiegoUnited States
| | - Nathan Lau
- University of California San Diego, Department of Neurobiology, School of Biological SciencesSan DiegoUnited States
| | - Lillian Liu
- University of California San Diego, Department of Neurobiology, School of Biological SciencesSan DiegoUnited States
| | - Cory M Root
- University of California San Diego, Department of Neurobiology, School of Biological SciencesSan DiegoUnited States
| |
Collapse
|
4
|
Yang L, Fang LZ, Lynch MR, Xu CS, Hahm H, Zhang Y, Heitmeier MR, Costa V, Samineni VK, Creed MC. Transcriptomic landscape of mammalian ventral pallidum at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595793. [PMID: 38826431 PMCID: PMC11142225 DOI: 10.1101/2024.05.24.595793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used snRNA-seq and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neuro receptors that could be targeted within specific VP cell types for functional investigations. Teaser Genetic identity of ventral pallidum cell types is conserved across rodents and primates at the transcriptional level.
Collapse
|
5
|
Lee D, Lau N, Liu L, Root CM. Transformation of valence signaling in a striatopallidal circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551547. [PMID: 37577586 PMCID: PMC10418236 DOI: 10.1101/2023.08.01.551547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The ways in which sensory stimuli acquire motivational valence through association with other stimuli is one of the simplest forms of learning. Though we have identified many brain nuclei that play various roles in reward processing, a significant gap remains in understanding how valence encoding transforms through the layers of sensory processing. To address this gap, we carried out a comparative investigation of the anteromedial olfactory tubercle (OT), and the ventral pallidum (VP) - 2 connected nuclei of the basal ganglia which have both been implicated in reward processing. First, using anterograde and retrograde tracing, we show that both D1 and D2 neurons of the anteromedial OT project primarily to the VP and minimally elsewhere. Using 2-photon calcium imaging, we then investigated how the identity of the odor and reward contingency of the odor are differently encoded by neurons in either structure during a classical conditioning paradigm. We find that VP neurons robustly encode reward contingency, but not identity, in low-dimensional space. In contrast, the OT neurons primarily encode odor identity in high-dimensional space. Although D1 OT neurons showed larger responses to rewarded odors than other odors, consistent with prior findings, we interpret this as identity encoding with enhanced contrast. Finally, using a novel conditioning paradigm that decouples reward contingency and licking vigor, we show that both features are encoded by non-overlapping VP neurons. These results provide a novel framework for the striatopallidal circuit in which a high-dimensional encoding of stimulus identity is collapsed onto a low-dimensional encoding of motivational valence.
Collapse
|
6
|
Hernández-Jaramillo A, Illescas-Huerta E, Sotres-Bayon F. Ventral Pallidum and Amygdala Cooperate to Restrain Reward Approach under Threat. J Neurosci 2024; 44:e2327232024. [PMID: 38631914 PMCID: PMC11154850 DOI: 10.1523/jneurosci.2327-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.
Collapse
Affiliation(s)
| | - Elizabeth Illescas-Huerta
- Institute of Cell Physiology - Neuroscience, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Francisco Sotres-Bayon
- Institute of Cell Physiology - Neuroscience, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Faget L, Oriol L, Lee WC, Zell V, Sargent C, Flores A, Hollon NG, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. Nat Commun 2024; 15:4233. [PMID: 38762463 PMCID: PMC11102457 DOI: 10.1038/s41467-024-48340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew Flores
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
8
|
Cid-Jofré V, Bahamondes T, Zúñiga Correa A, Ahumada Arias I, Reyes-Parada M, Renard GM. Psychostimulants and social behaviors. Front Pharmacol 2024; 15:1364630. [PMID: 38725665 PMCID: PMC11079219 DOI: 10.3389/fphar.2024.1364630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Mounting evidence from animal models and human studies indicates that psychostimulants can significantly affect social behaviors. This is not surprising considering that the neural circuits underlying the regulation and expression of social behaviors are highly overlapped with those targeted by psychostimulants, which in most cases have strong rewarding and, consequently, addictive properties. In the present work, we provide an overview regarding the effects of illicit and prescription psychostimulants, such as cocaine, amphetamine-type stimulants, methylphenidate or modafinil, upon social behaviors such as social play, maternal behavior, aggression, pair bonding and social cognition and how psychostimulants in both animals and humans alter them. Finally, we discuss why these effects can vary depending on numerous variables such as the type of drug considered, acute versus long-term use, clinical versus recreational consumption, or the presence or absence of concomitant risk factors.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Tamara Bahamondes
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Agustina Zúñiga Correa
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ivalú Ahumada Arias
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
9
|
Castell L, Le Gall V, Cutando L, Petit CP, Puighermanal E, Makrini-Maleville L, Kim HR, Jercog D, Tarot P, Tassou A, Harrus AG, Rubinstein M, Nouvian R, Rivat C, Besnard A, Trifilieff P, Gangarossa G, Janak PH, Herry C, Valjent E. Dopamine D2 receptors in WFS1-neurons regulate food-seeking and avoidance behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110883. [PMID: 37858736 DOI: 10.1016/j.pnpbp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.
Collapse
Affiliation(s)
- Laia Castell
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Valentine Le Gall
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Laura Cutando
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Chloé P Petit
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Emma Puighermanal
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | | | - Ha-Rang Kim
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Daniel Jercog
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Pauline Tarot
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Adrien Tassou
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Régis Nouvian
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Cyril Rivat
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Antoine Besnard
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Pierre Trifilieff
- Université, Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux F-33000, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France; Institut Universitaire de France, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cyril Herry
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Emmanuel Valjent
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France.
| |
Collapse
|
10
|
Campbell RR, Lobo MK. Pallidal circuits drive addiction behavior. Trends Neurosci 2023; 46:S0166-2236(23)00228-X. [PMID: 39492310 DOI: 10.1016/j.tins.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Understanding the neural mechanisms that control addiction processes, including drug-seeking and relapse, is key to finding new targets for substance use disorder (SUD) pharmacotherapies and circuit-based therapies. Addictive drugs alter activity in distinct neural circuits that can lead to SUD symptoms, including compulsive drug craving and taking. This includes the pallidum, a region in the basal ganglia that acts as an integrator of associative, sensorimotor, and limbic information to shape motor responses, promote reward-learning, and regulate habit formation. Here, we review key findings that demonstrate the sub-regional and circuit-specific functions of the pallidum that drive addiction-related behaviors in rodents. We also highlight newly discovered mechanisms within distinct cell types and circuits of the pallidum that drive drug-seeking. Overall, this review serves to emphasize the importance of the pallidum in addiction processes and underscore the need for studying circuit-specific mechanisms in SUD research.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Luo YJ, Ge J, Chen ZK, Liu ZL, Lazarus M, Qu WM, Huang ZL, Li YD. Ventral pallidal glutamatergic neurons regulate wakefulness and emotion through separated projections. iScience 2023; 26:107385. [PMID: 37609631 PMCID: PMC10440712 DOI: 10.1016/j.isci.2023.107385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Insomnia is often comorbid with depression, but the underlying neuronal circuit mechanism remains elusive. Recently, we reported that GABAergic ventral pallidum (VP) neurons control wakefulness associated with motivation. However, whether and how other subtypes of VP neurons regulate arousal and emotion are largely unknown. Here, we report glutamatergic VP (VPVglut2) neurons control wakefulness and depressive-like behaviors. Physiologically, the calcium activity of VPVglut2 neurons was increased during both NREM sleep-to-wake transitions and depressive/anxiety-like behaviors in mice. Functionally, activation of VPVglut2 neurons was sufficient to increase wakefulness and induce anxiety/depressive-like behaviors, whereas inhibition attenuated both. Dissection of the circuit revealed that separated projections of VPVglut2 neurons to the lateral hypothalamus and lateral habenula promote arousal and depressive-like behaviors, respectively. Our results demonstrate a subtype of VP neurons is responsible for wakefulness and emotion through separated projections, and may provide new lines for the intervention of insomnia and depression in patients.
Collapse
Affiliation(s)
- Yan-Jia Luo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Ge
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Long Liu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ya-Dong Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China
| |
Collapse
|
12
|
Manzur HE, Vlasov K, Jhong YJ, Chen HY, Lin SC. The behavioral signature of stepwise learning strategy in male rats and its neural correlate in the basal forebrain. Nat Commun 2023; 14:4415. [PMID: 37479696 PMCID: PMC10362048 DOI: 10.1038/s41467-023-40145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Studies of associative learning have commonly focused on how rewarding outcomes are predicted by either sensory stimuli or animals' actions. However, in many learning scenarios, reward delivery requires the occurrence of both sensory stimuli and animals' actions in a specific order, in the form of behavioral sequences. How such behavioral sequences are learned is much less understood. Here we provide behavioral and neurophysiological evidence to show that behavioral sequences are learned using a stepwise strategy. In male rats learning a new association, learning started from the behavioral event closest to the reward and sequentially incorporated earlier events. This led to the sequential refinement of reward-seeking behaviors, which was characterized by the stepwise elimination of ineffective and non-rewarded behavioral sequences. At the neuronal level, this stepwise learning process was mirrored by the sequential emergence of basal forebrain neuronal responses toward each event, which quantitatively conveyed a reward prediction error signal and promoted reward-seeking behaviors. Together, these behavioral and neural signatures revealed how behavioral sequences were learned in discrete steps and when each learning step took place.
Collapse
Affiliation(s)
- Hachi E Manzur
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ksenia Vlasov
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - You-Jhe Jhong
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yen Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Scott A, Palmer D, Newell B, Lin I, Cayton CA, Paulson A, Remde P, Richard JM. Ventral Pallidal GABAergic Neuron Calcium Activity Encodes Cue-Driven Reward Seeking and Persists in the Absence of Reward Delivery. J Neurosci 2023; 43:5191-5203. [PMID: 37339880 PMCID: PMC10342224 DOI: 10.1523/jneurosci.0013-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023] Open
Abstract
Reward-seeking behavior is often initiated by environmental cues that signal reward availability. This is a necessary behavioral response; however, cue reactivity and reward-seeking behavior can become maladaptive. To better understand how cue-elicited reward seeking becomes maladaptive, it is important to understand the neural circuits involved in assigning appetitive value to rewarding cues and actions. Ventral pallidum (VP) neurons are known to contribute to cue-elicited reward-seeking behavior and have heterogeneous responses in a discriminative stimulus (DS) task. The VP neuronal subtypes and output pathways that encode distinct aspects of the DS task remain unknown. Here, we used an intersectional viral approach with fiber photometry to record bulk calcium activity in VP GABAergic (VP GABA) neurons in male and female rats as they learned and performed the DS task. We found that VP GABA neurons are excited by reward-predictive cues but not neutral cues and that this response develops over time. We also found that this cue-evoked response predicts reward-seeking behavior and that inhibiting this VP GABA activity during cue presentation decreases reward-seeking behavior. Additionally, we found increased VP GABA calcium activity at the time of expected reward delivery, which occurred even on trials when reward was omitted. Together, these findings suggest that VP GABA neurons encode reward expectation, and calcium activity in these neurons encodes the vigor of cue-elicited reward seeking.SIGNIFICANCE STATEMENT VP circuitry is a major driver of cue-evoked behaviors. Previous work has found that VP neurons have heterogenous responses and contributions to reward-seeking behavior. This functional heterogeneity is because of differences of neurochemical subtypes and projections of VP neurons. Understanding the heterogenous responses among and within VP neuronal cell types is a necessary step in further understanding how cue-evoked behavior becomes maladaptive. Our work explores the canonical GABAergic VP neuron and how the calcium activity of these cells encodes components of cue-evoked reward seeking, including the vigor and persistence of reward seeking.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dakota Palmer
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Iris Lin
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christelle A Cayton
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paige Remde
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Faget L, Oriol L, Lee WC, Sargent C, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548750. [PMID: 37502884 PMCID: PMC10369949 DOI: 10.1101/2023.07.12.548750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ventral pallidum (VP) contains GABA and glutamate (Glut) neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the cell-type-specific mechanisms by which VP projections to VTA drive behavior. Here, we found that both VP GABA and Glut neurons were activated during approach to reward or delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine (DA) and glutamate neurons. Remarkably, this cell-type-specific recruitment was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP Glut neurons activated VTA GABA, as well as DA and Glut neurons, despite driving aversion. However, VP Glut neurons evoked DA in reward-associated ventromedial nucleus accumbens (NAc), but reduced DA in aversion-associated dorsomedial NAc. These findings show how heterogeneous VP cell types can engage VTA cell types to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
15
|
Cawthon CR, Blonde GD, Nisi AV, Bloomston HM, Krubitski B, le Roux CW, Spector AC. Chronic Semaglutide Treatment in Rats Leads to Daily Excessive Concentration-Dependent Sucrose Intake. J Endocr Soc 2023; 7:bvad074. [PMID: 37388574 PMCID: PMC10306276 DOI: 10.1210/jendso/bvad074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/01/2023] Open
Abstract
Context The glucagon-like peptide-1 receptor (GLP-1R) agonist semaglutide (SEMA) produces 15% weight loss when chronically administered to humans with obesity. Methods In 2 separate experiments, rats received daily injections of either vehicle (VEH) or SEMA starting at 7 µg/kg body weight (BW) and increasing over 10 days to the maintenance dose (70 µg/kg-BW), emulating clinical dose escalation strategies. Results During dose escalation and maintenance, SEMA rats reduced chow intake and bodyweight. Experiment 2 meal pattern analysis revealed that meal size, not number, mediated these SEMA-induced changes in chow intake. This suggests SEMA affects neural processes controlling meal termination and not meal initiation. Two-bottle preference tests (vs water) began after 10 to 16 days of maintenance dosing. Rats received either an ascending sucrose concentration series (0.03-1.0 M) and 1 fat solution (Experiment 1) or a 4% and 24% sucrose solution in a crossover design (Experiment 2). At lower sucrose concentrations, SEMA-treated rats in both experiments drank sometimes >2× the volume consumed by VEH controls; at higher sucrose concentrations (and 10% fat), intake was similar between treatment groups. Energy intake of SEMA rats became similar to VEH rats. This was unexpected because GLP-1R agonism is thought to decrease the reward and/or increase the satiating potency of palatable foods. Despite sucrose-driven increases in both groups, a significant bodyweight difference between SEMA- and VEH-treated rats remained. Conclusion The basis of the SEMA-induced overconsumption of sucrose at lower concentrations relative to VEH controls remains unclear, but the effects of chronic SEMA treatment on energy intake and BW appear to depend on the caloric sources available.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - A Valentina Nisi
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Haley M Bloomston
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Belle Krubitski
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Carel W le Roux
- Diabetes Complications Research Center, Conway Institute, School of Medicine, University College Dublin, Dublin, D04 C1P1, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
16
|
Creed MC, Loureiro M, Lüscher C. Invariant inhibition to calculate prediction errors? Trends Neurosci 2023; 46:257-259. [PMID: 36707259 DOI: 10.1016/j.tins.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
The ventral tegmental area (VTA) has a pivotal role in motivated behavior. Much of the research on the VTA has focused on the mesocorticolimbic dopamine projections and their role in the computation of a 'reward prediction error' (RPE) for reward-guided learning. In a recent study, Zhou et al. report that VTA GABA neurons, the axons of which innervate the ventral pallidum (VP), have a unique role in signaling reward value to the basal ganglia and guiding reward seeking.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Anesthesiology, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; Department of Neuroscience, Washington University in St Louis, St Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA; Pain Center, Washington University in St Louis, St Louis, MO, USA
| | - Michaël Loureiro
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| |
Collapse
|
17
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, Ma D, Wang H, Yang Q, Chen Z, Liu D, Qiu S, Wang X, Wang D, Wang X, Ren B, Liu Q, Chen T, Shi X, Yao H, Xu C, Li CT, Sun Y, Li A, Luo Q, Gong H, Xu N, Yan J. Single-neuron projectome of mouse prefrontal cortex. Nat Neurosci 2022; 25:515-529. [PMID: 35361973 DOI: 10.1038/s41593-022-01041-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yanhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danyi Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoqiao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yangang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China. .,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
19
|
Staníková D, Krajčovičová L, Demková L, Forišek-Paulová P, Slobodová L, Vitariušová E, Tichá L, Ukropcová B, Staník J, Ukropec J. Food preferences and thyroid hormones in children and adolescents with obesity. Front Psychiatry 2022; 13:962949. [PMID: 35935441 PMCID: PMC9354398 DOI: 10.3389/fpsyt.2022.962949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Thyroid hormones profoundly affect energy metabolism but their interrelation with food preference, which might contribute to childhood obesity development, are much less understood. In this study, we investigated if thyroid hormone levels are associated with specific modulation of food preference and potentially linked to the level of obesity in children and adolescents. METHODS Interrelations between food preference and peripheral thyroid activity were examined in a population of 99 non-obese and 101 obese children and adolescents (12.8 ± 3.6 years of age, 111/89 F/M) randomly selected from the patients of the Obesity and Metabolic Disease Out-patient Research Unit at National Institute for Children's Diseases in Bratislava in a period between December 2017 and March 2020. RESULTS Children and adolescents with obesity had a lower preference for food rich in high sucrose and high-complex carbohydrates, while the preference for protein and fat-containing food and that for dietary fibers did not differ between obese and nonobese. In adolescents with obesity, free thyroxine (FT4) correlated positively with the preference for a high protein and high fat-rich diet, irrespective of the fatty acid unsaturation level. Moreover, FT4 correlated negatively with the preference for dietary fibers, which has been also exclusively found in obese adolescents. Individuals with obesity with higher FT4 levels had higher systemic levels of AST and ALT than the population with lower FT4. Multiple regression analysis with age, sex, BMI-SDS, and FT4 as covariates revealed that FT4 and male gender are the major predictors of variability in the preference for a diet high in protein, fat, and monounsaturated fatty acids. FT4 was the sole predictor of the preference for a diet containing saturated and polyunsaturated fatty acids as well as for a diet low in fiber. CONCLUSION The link between free thyroxin levels and dietary preference for food rich in fat and protein is present exclusively in individuals with obesity. Higher serum FT4 was linked with elevated AST and ALT in children and adolescents with obesity, and FT4 was the best predictor for preference for food rich in fat and low in fiber. This may indicate that FT4 could contribute to the development of childhood obesity and its complications by modulating food preference.
Collapse
Affiliation(s)
- Daniela Staníková
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Lea Krajčovičová
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Linda Demková
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Petronela Forišek-Paulová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Slobodová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Vitariušová
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Lubica Tichá
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Barbara Ukropcová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Medical Faculty of Comenius University, Institute of Pathophysiology, Bratislava, Slovakia
| | - Juraj Staník
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia.,Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
20
|
Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev 2021; 131:373-386. [PMID: 34562544 DOI: 10.1016/j.neubiorev.2021.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/12/2023]
Abstract
The ventral pallidum (VP) is central to the reinforcing effects across a variety of drugs and relapse to drug seeking. Emerging studies from animal models of reinstatement reveal a complex neurobiology of the VP that contributes to different aspects of relapse to drug seeking. This review builds on classical understanding of the VP as part of the final common pathway of relapse but also discusses the properties of the VP as an independent structure. These include VP neural anatomical subregions, cellular heterogeneity, circuitry, neurotransmitters and peptides. Collectively, this review provides a current understanding of the VP from molecular to circuit level architecture that contributes to both the appetitive and aversive symptoms of drug addiction. We show the complex neurobiology of the VP in drug seeking, emphasizing its critical role in addiction, and review strategic approaches that target the VP to reduce relapse rates.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem. P.O. Box 12271, Jerusalem, 9112102, Israel
| | - Asheeta A Prasad
- School of Psychology, UNSW Sydney, NSW, 2052, Australia; Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|