1
|
Manu R, Veldkamp E, Eryenyu D, Corre MD, van Straaten O. Nitrogen and potassium limit fine root growth in a humid Afrotropical forest. Sci Rep 2024; 14:13154. [PMID: 38849444 PMCID: PMC11161472 DOI: 10.1038/s41598-024-63684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (N)-phosphorus (P)-potassium (K) addition experiment consisting 32 40 × 40 m plots (eight treatments × four replicates) in Uganda to investigate which (if any) nutrient limits fine root growth. After two years of observations, added N rapidly decreased fine root biomass by up to 36% in the first and second years of the experiment. Added K decreased fine root biomass by 27% and fine root production by 30% in the second year. These rapid reductions in fine root growth highlight a scaled-back carbon investment in the costly maintenance of large fine root network as N and K limitations become alleviated. No fine root growth response to P addition was observed. Fine root turnover rate was not significantly affected by nutrient additions but tended to be higher in N added than non-N added treatments. These results suggest that N and K availability may restrict the ecosystem's capacity for CO2 assimilation, with implications for ecosystem productivity and resilience to climate change.
Collapse
Affiliation(s)
- Raphael Manu
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany.
| | - Edzo Veldkamp
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany
| | - David Eryenyu
- Budongo Conservation Field Station, Masindi, Uganda
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
- Royal Zoological Society of Scotland (Edinburgh Zoo), Edinburgh, Scotland
| | - Marife D Corre
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
2
|
Wang B, Xu G, Li Z, Cheng Y, Gu F, Xu M, Zhang Y. Carbon pools in forest systems and new estimation based on an investigation of carbon sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121124. [PMID: 38733838 DOI: 10.1016/j.jenvman.2024.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Forests, the ancient wooden giants, are both symbols of natural beauty and reservoirs of carbon stocks. The current climate crisis has created an urgent need for an in-depth study of forest ecosystems and carbon stocks. Based on forest inventory data from field surveys and four bioclimatic zones [Zone 1 (Z1, humid forest), Zone 2 (Z2, semi-humid forest), Zone 3 (Z3, semi-humid to semi-arid forest-grassland), and Zone 4 (Z4, semi-arid typical grassland)], two methods [Method 1 (M1) and Method 2 (M2)] were used to estimate carbon stocks in forest ecosystems in Shaanxi Province, China, and explored the spatial patterns of carbon pools and potential influences. The total forest ecosystem carbon pool amounted to 520.80 Tg C, of which 53.60% was stored aboveground, 17.16% belowground, and 29.24% in soil (depth of 0-10 cm). Spatially, there were marked north-south gradients in both biomass (Z2 > Z3 > Z1 > Z4) and soil organic carbon densities (Z1 > Z2 > Z3 > Z4). The differences between aboveground and belowground biomass carbon density across broadleaf, needle-leaf, and broadleaf and needle-leaf mixed forest were not pronounced, while soil organic carbon density had the order of broadleaf (18.38 Mg C/ha) > needle-leaf (11.29 Mg C/ha) > broadleaf and needle-leaf mixed forest (10.33 Mg C/ha). Under an ideal scenario that excludes external factors, mainly forest growth, the sequestration potential of forest biomass by 2032 was estimated by M1 as 85.43 Tg, and by M2 to be substantially higher at 176.21 Tg. As of 2062, M1 estimated 155.97 Tg of sequestration potential for forest biomass. The spatial patterns of forest biomass and soil carbon density were closely related to climatic factors, and these relationships allowed the spatial division into two distinct climatic regions. Moreover, biomass carbon density was significantly correlated with the normalized difference vegetation index, soil silt, and elevation. This study provides key information for promoting the strategic shift from light-green to deep-green forest systems in Shannxi Province and updates the estimation methods of forest ecosystems' carbon pools based on field surveys.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China
| | - Guoce Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China.
| | - Zhanbin Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China
| | - Yuting Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China; Geology and Environment, Xi'an University of Science and Technology, Xi' An, 710048, Shaanxi, China
| | - Fengyou Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China
| | - Mingzhu Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China
| | - Yixin Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' An, 710048, Shaanxi, China
| |
Collapse
|
3
|
Zheng Y, Du S, Sun W, Feng C, Su Q. Spatiotemporal patterns of net regional productivity and its causes throughout Ordos, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22038-22054. [PMID: 38400969 DOI: 10.1007/s11356-024-32368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
A comprehensive understanding of the terrestrial carbon sink is essential for proficient regional carbon management. However, previous studies predominantly relied on net ecosystem productivity (NEP) as an indicator of regional carbon sink, overlooking the impacts of carbon emissions from physical processes and carbon leakage associated with anthropogenic activities. In this study, net region productivity (NRP), a vital metric representing carbon sink dynamics in regional multi-landscape ecosystems, was employed to systematically analyze the patterns, trends, and causes of carbon sink in Ordos. The results revealed that spatially averaged NRP in Ordos was 70.334 g·m-2·a-1, indicating a carbon sink effect. The coefficient of variation of NRP was 68.035%, with a higher NRP in the southern region. Normalized difference vegetation index (NDVI) predominantly controlled the spatial heterogeneity of NRP in Ordos, while precipitation emerged as the primary climatic factor influencing spatial differences in NRP. Regional variations in the impact of environmental factors on NRP were evident. In most areas, NRP showed a notable increasing trend influenced by various factors. Specifically, the simultaneous rise in NDVI and improvements in hydrothermal conditions contributed to the gradual elevation of NRP, each with varying degrees of influence across Ordos and its sub-regions.
Collapse
Affiliation(s)
- Yurong Zheng
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Shouhang Du
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Wenbin Sun
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Cui Feng
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qing Su
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Zhang L, Li T, Wu J, Yang H. Global estimates of gap-free and fine-scale CO 2 concentrations during 2014-2020 from satellite and reanalysis data. ENVIRONMENT INTERNATIONAL 2023; 178:108057. [PMID: 37385159 DOI: 10.1016/j.envint.2023.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Carbon dioxide (CO2) is a crucial greenhouse gas with substantial effects on climate change. Satellite-based remote sensing is a commonly used approach to detect CO2 with high precision but often suffers from extensive spatial gaps. Thus, the limited availability of data makes global carbon stocktaking challenging. In this paper, a global gap-free column-averaged dry-air mole fraction of CO2 (XCO2) dataset with a high spatial resolution of 0.1° from 2014 to 2020 is generated by the deep learning-based multisource data fusion, including satellite and reanalyzed XCO2 products, satellite vegetation index data, and meteorological data. Results indicate a high accuracy for 10-fold cross-validation (R2 = 0.959 and RMSE = 1.068 ppm) and ground-based validation (R2 = 0.964 and RMSE = 1.010 ppm). Our dataset has the advantages of high accuracy and fine spatial resolution compared with the XCO2 reanalysis data as well as that generated from other studies. Based on the dataset, our analysis reveals interesting findings regarding the spatiotemporal pattern of CO2 over the globe and the national-level growth rates of CO2. This gap-free and fine-scale dataset has the potential to provide support for understanding the global carbon cycle and making carbon reduction policy, and it can be freely accessed at https://doi.org/10.5281/zenodo.7721945.
Collapse
Affiliation(s)
- Lingfeng Zhang
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China
| | - Tongwen Li
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Guangzhou, China.
| | - Jingan Wu
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Guangzhou, China
| | - Hongji Yang
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
5
|
Zhang Z, Cescatti A, Wang YP, Gentine P, Xiao J, Guanter L, Huete AR, Wu J, Chen JM, Ju W, Peñuelas J, Zhang Y. Large diurnal compensatory effects mitigate the response of Amazonian forests to atmospheric warming and drying. SCIENCE ADVANCES 2023; 9:eabq4974. [PMID: 37235657 DOI: 10.1126/sciadv.abq4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Photosynthesis and evapotranspiration in Amazonian forests are major contributors to the global carbon and water cycles. However, their diurnal patterns and responses to atmospheric warming and drying at regional scale remain unclear, hindering the understanding of global carbon and water cycles. Here, we used proxies of photosynthesis and evapotranspiration from the International Space Station to reveal a strong depression of dry season afternoon photosynthesis (by 6.7 ± 2.4%) and evapotranspiration (by 6.1 ± 3.1%). Photosynthesis positively responds to vapor pressure deficit (VPD) in the morning, but negatively in the afternoon. Furthermore, we projected that the regionally depressed afternoon photosynthesis will be compensated by their increases in the morning in future dry seasons. These results shed new light on the complex interplay of climate with carbon and water fluxes in Amazonian forests and provide evidence on the emerging environmental constraints of primary productivity that may improve the robustness of future projections.
Collapse
Affiliation(s)
- Zhaoying Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Yuxiu Postdoctoral Institute, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | | | - Ying-Ping Wang
- CSIRO, Oceans and Atmosphere, Private Bag 1, Aspendale, Victoria 3195, Australia
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Luis Guanter
- Research Institute of Water and Environmental Engineering (IIAMA), Department of Applied Physics, Polytechnic University of Valencia, Valencia, Spain
| | - Alfredo R Huete
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Weimin Ju
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Josep Peñuelas
- CSIC, Global ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Yongguang Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
- International Joint Carbon Neutrality Laboratory, Nanjing University, Nanjing, Jiangsu 210023 China
| |
Collapse
|
6
|
Bordin KM, Esquivel-Muelbert A, Klipel J, Picolotto RC, Bergamin RS, da Silva AC, Higuchi P, Capellesso ES, Marques MCM, Souza AF, Müller SC. No relationship between biodiversity and forest carbon sink across the subtropical Brazilian Atlantic Forest. Perspect Ecol Conserv 2023. [DOI: 10.1016/j.pecon.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
7
|
Cheng F, Tian J, He J, He H, Liu G, Zhang Z, Zhou L. The spatial and temporal distribution of China’s forest carbon. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
IntroductionChina’s forests have sequestrated a significant amount of carbon over the past two decades. However, it is not clear whether China’s forests will be able to continue to have as much carbon sequestration potential capacity in the future.MethodsIn order to research China’s forest carbon storage and carbon sequestration potential capacities at spatial and temporal scales, we built a digital forest model for each province of China using the data from The China Forest Resources Report (2014– 2018) and calculated the carbon storage capacity and sequestration potential capacity of each province with the current management practices without considering natural successions.ResultsThe results showed that the current forest carbon storage is 10.0 Pg C, and the carbon sequestration potential in the next 40 years (from year 2019 to 2058) will be 5.04 Pg C. Since immature forests account for the majority of current forests, the carbon sequestration capacity of the forest was also high (0.202 Pg C year−1). However, the forest carbon storage reached the maximum with the increase of stand maturity. At this time, if scenarios such as afforestation and reforestation, human and natural disturbances, and natural succession are not considered, the carbon sequestration capacity of forests will continue to decrease. After 90 years, all stands will develop into mature and over-mature forests, and the forest carbon sequestration capacity is 0.008 Pg year−1; and the carbon sequestration rate is ~4% of what it is nowadays. The change trend of forest carbon in each province is consistent with that of the country. In addition, considering the large forest coverage area in China, the differences in tree species and growing conditions, the forest carbon storage and carbon sequestration capacities among provinces were different. The growth rate of carbon density in high-latitude provinces (such as Heilongjiang, Jilin, and Inner Mongolia) was lower than that in the south (Guangdong, Guangxi, or Hunan), but the forest carbon potential was higher.DiscussionPlanning and implementing targeted forest management strategies is the key to increasing forest carbon storage and extending the service time of forest carbon sinks in provinces. In order to reach the national carbon neutrality goals, we recommend that each province have an informative strategic forest management plan.
Collapse
|
8
|
Huang Y, Sun W, Qin Z, Zhang W, Yu Y, Li T, Zhang Q, Wang G, Yu L, Wang Y, Ding F, Zhang P. The role of China's terrestrial carbon sequestration 2010-2060 in offsetting energy-related CO 2 emissions. Natl Sci Rev 2022; 9:nwac057. [PMID: 35992243 PMCID: PMC9385465 DOI: 10.1093/nsr/nwac057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Energy consumption dominates annual CO2 emissions in China. It is essential to significantly reduce CO2 emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions cannot be underestimated. Natural climate solutions (NCS), including improvements in terrestrial carbon sequestration, represent readily deployable options to offset anthropogenic greenhouse gas emissions. However, the extent to which China's terrestrial carbon sequestration in the future, especially when target-oriented managements (TOMs) are implemented, can help to mitigate energy-related CO2 emissions is far from certain. By synthesizing available findings and using several parameter-sparse empirical models that have been calibrated and/or fitted against contemporary measurements, we assessed China's terrestrial carbon sequestration over 2010-2060 and its contribution to offsetting national energy-related CO2 emissions. We show that terrestrial C sequestration in China will increase from 0.375 ± 0.056 (mean ± standard deviation) Pg C yr-1 in the 2010s to 0.458 ± 0.100 Pg C yr-1 under RCP2.6 and 0.493 ± 0.108 Pg C yr-1 under the RCP4.5 scenario in the 2050s, when TOMs are implemented. The majority of carbon sequestration comes from forest, accounting for 67.8-71.4% of the total amount. China's terrestrial ecosystems can offset 12.2-15.0% and 13.4-17.8% of energy-related peak CO2 emissions in 2030 and 2060, respectively. The implementation of TOMs contributes 11.9% of the overall terrestrial carbon sequestration in the 2020s and 23.7% in the 2050s. The most likely strategy to maximize future NCS effectiveness is a full implementation of all applicable cost-effective NCS pathways in China. Our findings highlight the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions and put forward future needs in the context of carbon neutrality.
Collapse
Affiliation(s)
- Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhangcai Qin
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqiang Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tingting Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qing Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Guocheng Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lingfei Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yijie Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
Liboni LB, Cezarino LO, Alves MFR, Chiappetta Jabbour CJ, Venkatesh VG. Translating the environmental orientation of firms into sustainable outcomes: the role of sustainable dynamic capability. REVIEW OF MANAGERIAL SCIENCE 2022. [PMCID: PMC9315326 DOI: 10.1007/s11846-022-00549-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Emerging social and environmental demands drive organisations to seek management capabilities to reach sustainability outcomes. Despite relative efforts, there is still a need for works that empirically address the main antecedents and outcomes of sustainable dynamic capabilities (SDC). Focusing on the case of Brazil, we examine the mediating effect of SDC between environmental orientation and firm performance related to green innovation, green competitive advantage and environmental adaptability and find that SDC significantly mediates the effect of environmental orientation on green innovation. However, mediation between environmental orientation and green competitive advantage only obtains partial support. SDC and environmental adaptability do not present significative correlation, opening new discussions about adaptability as a direct consequence of SDC. These results contribute to the design of green innovation and green competitive advantage strategies as positive drivers of sustainability outcomes.
Collapse
Affiliation(s)
- Lara Bartocci Liboni
- Western University, Ivey Business School, Canada; University of Sao Paulo, São Paulo, Brazil
| | | | | | - Charbel José Chiappetta Jabbour
- EMLYON Business School, France; Affiliate Professor at University of Lincoln, Lincoln International Business School, Lyon-Ecully, France
| | | |
Collapse
|
10
|
Phenological Shifts of the Deciduous Forests and Their Responses to Climate Variations in North America. FORESTS 2022. [DOI: 10.3390/f13071137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forests play a vital role in sequestering carbon dioxide from the atmosphere. Vegetation phenology is sensitive to climate changes and natural environments. Exploring the patterns in phenological events of the forests can provide useful insights for understanding the dynamics of vegetation growth and their responses to climate variations. Deciduous forest in North America is an important part of global forests. Here we apply time-series remote sensing imagery to map the critical dates of vegetation phenological events, including the start of season (SOS), end of season (EOS), and growth length (GL) of the deciduous forests in North America during the past two decades. The findings show that the SOS and EOS present considerable spatial and temporal variations. Earlier SOS, delayed EOS, and therefore extended GL are detected in a large part of the study area from temporal trend analysis over the years, though the magnitude of the trend varies at different locations. The phenological events are found to correlate to the environmental factors and the impact on the vegetation phenology from the factors is location-dependent. The findings confirm that the phenology of the deciduous forests in North America is updated such as advanced SOS and delayed EOS in the last two decades and the climate variations are likely among the driving forces for the updates. Considering that previous studies warn that shifts in vegetation phenology could reverse the role of forests as net emitters or net sinks, we suggest that forest management should be strengthened to forests that experience significant changes in the phenological events.
Collapse
|
11
|
Functional susceptibility of tropical forests to climate change. Nat Ecol Evol 2022; 6:878-889. [PMID: 35577983 DOI: 10.1038/s41559-022-01747-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.
Collapse
|
12
|
Winkler H, Lecocq F, Lofgren H, Vilariño MV, Kartha S, Portugal-Pereira J. Examples of shifting development pathways: lessons on how to enable broader, deeper, and faster climate action. CLIMATE ACTION 2022. [PMCID: PMC9753078 DOI: 10.1007/s44168-022-00026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To respond to the climate crisis, we need to accelerate system transformations at a pace, scale, and breadth not seen before. This means that it is urgent to shift development pathways towards net zero greenhouse gas emissions, even while progressing towards other sustainable development objectives. This paper argues that accelerated mitigation can not only benefit from policies that are outside the domain of conventional emission-focused mitigation policies but require such policies. We refer to this process as shifting development pathways towards sustainability. Here, we explore what enabling conditions make such shifts possible. We develop a framework to select examples of shifts — in realms such as educational access, housing access, fiscal arrangements, and institutional reform. We analyse them against key enablers. Our findings suggest that countries could learn from what has worked elsewhere, though context matters. Some enablers are more widely applicable, including finance, long-term vision, and focus on sustainable development objectives. Multiple enablers, integrated policy packages, and involvement of a broad range of actors help achieve multiple objectives. Some enablers may yield results in the near term, while others take time to yield results. Based on our analysis, we suggest that climate mitigation requires an “all of economy, all of society” approach.
Collapse
Affiliation(s)
- Harald Winkler
- Policy Research in International Services and Manufacturing, School of Economics, and associate at African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Franck Lecocq
- Centre International de Recherche sur l’Environnement et le Développement (CIRED), Université Paris-Saclay, AgroParisTech, CNRS, Ecole des Ponts ParisTech, CIRAD, EHESS, Nogent-sur-Marne, 94130, France
| | | | | | - Sivan Kartha
- Stockholm Environment Institute, 11 Curtis Avenue, Somerville, MA 02144-1224 USA
| | - Joana Portugal-Pereira
- CENERGIA/PPE/COPPE, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- IDMEC, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centre for Environmental Policy, Imperial College London, London, UK
| |
Collapse
|