1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Guo Y, Wang X, Zhang L, Zhou X, Wang S, Jiang L, Chen H. From Dry to Wet, the Nature Inspired Strong Attachment Surfaces and Their Medical Applications. ACS NANO 2025; 19:9684-9708. [PMID: 40051147 PMCID: PMC11924587 DOI: 10.1021/acsnano.4c17864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Strong attachment in complicated human body environments is of great importance for precision medicine especially with the rapid growth of minimal invasive surgery and flexible electronics. Natural organisms with highly evolved feet or claws can easily climb in complex environments from dry to wet and even underwater, providing significant inspiration for strong attachment research. This review summarizes the strong attachment behaviors of natural creatures in varied environments such as the gecko, tree frog, and octopus. Their attachment surfaces' complex micronano structures and material properties exhibit evolutionary adaptations that enable them to transition across dry, wet, and underwater environments, highlighting the intricate mechanism of interfacial micronano dynamic behaviors. The interfacial liquid/air media regulation and contact stress adjustment from the coupling effects of surface structures and materials have been concluded as key factors in natural strong attachments. With the bioinspired strong attachment surface design, manufacturing methods including mold-assisted replication, nano 3D printing, self-assembly and field induced molding have been discussed. Finally, applications of bioinspired surfaces in low damage surgical instruments, tissue repair and flexible electronics have been demonstrated.
Collapse
Affiliation(s)
- Yurun Guo
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 102206, China
| | - Xiaobo Wang
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 102206, China
| | - Liwen Zhang
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 102206, China
| | - Xinzhao Zhou
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 102206, China
| | - Shutao Wang
- Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huawei Chen
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 102206, China
- Beijing
Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102206, China
| |
Collapse
|
3
|
Wang J, Li L, Wu Y, Liu Y. Design and Application of Antifouling Bio-Coatings. Polymers (Basel) 2025; 17:793. [PMID: 40292673 PMCID: PMC11945268 DOI: 10.3390/polym17060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Antifouling coatings stand out as one of the highly efficient ways to mitigate surface contamination. Traditional antifouling coatings have a major drawback: they rely on highly toxic and environmentally hazardous compounds. These substances not only lead to ecological harm but also disrupt the natural equilibrium of ecosystems. Consequently, in recent years, eco-friendly antifouling bio-coatings have emerged. This review focuses on the mechanisms and processes underlying contaminant adhesion, laying a solid foundation for grasping the principles of antifouling coating design. It further elaborates on the general strategies for developing bio-based antifouling solutions, highlighting their potential across a wide array of applications. Finally, this review carefully analyzes the current challenges confronted by antifouling bio-coatings and puts forward future development directions. Through a comprehensive overview, we aim to expand the influence of bio-based antifouling technologies, promote the further application of bio-based antifouling coatings in marine antifouling and medical antifouling fields, and provide examples for the establishment of environmental protection policies.
Collapse
Affiliation(s)
| | | | | | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (L.L.); (Y.W.)
| |
Collapse
|
4
|
Linghu C, Wu R, Chen Y, Huang Y, Seo YJ, Li H, Wang G, Gao H, Hsia KJ. Long-term adhesion durability revealed through a rheological paradigm. SCIENCE ADVANCES 2025; 11:eadt3957. [PMID: 40085718 PMCID: PMC11908507 DOI: 10.1126/sciadv.adt3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
The question of how long an object can adhere to a surface has intrigued scientists for centuries. Traditional studies focus on rapid crack-propagation detachment and account only for short-term adhesion governed by interfacial-viscoelastic dissipation, failing to explain long-term phenomena like sudden detachment after prolonged adherence and to predict corresponding adhesion lifetimes. Here, we investigate the long-term adhesion through a rheological paradigm using both theory and experiment. By considering both the bulk rheology and interfacial viscoelasticity mechanisms, we show that long-term adhesion durability is governed by the competition between them. This understanding leads to accurate lifetime predictions, which we validate through experiments. In addition, our study reveals a previously undocumented, counterintuitive phenomenon unique to long-term adhesion: the expansion of the contact area under tensile forces, in contrast to short-term adhesion in which the contact area always shrinks during detachment. This research fills a critical gap in adhesion physics.
Collapse
Affiliation(s)
- Changhong Linghu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rui Wu
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuqing Chen
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yulin Huang
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Young-Jae Seo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Guannan Wang
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
5
|
Shao Y, Li M, Tian H, Zhao F, Xu J, Hou H, Zhang Z, Wang D, Chen X, Li W, Yan H, Shao J. Gecko-Inspired Intelligent Adhesive Structures for Rough Surfaces. RESEARCH (WASHINGTON, D.C.) 2025; 8:0630. [PMID: 40007620 PMCID: PMC11850978 DOI: 10.34133/research.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Biomimetic dry adhesive structures, inspired by geckos' climbing abilities, have attracted research attention in recent years. However, achieving superior adhesion on a rough surface remains an important challenge, which limits practical applications. Conventional bionic adhesion methods perform well on smooth surfaces, but adhesion strength drastically decreases on rough surfaces due to the reduced contact area. Generally, various adhesive structures have been proposed to increase the contact area without assessing adhesion states, against obtaining good performance on rough surfaces. If an intelligent adhesive approach could be introduced on rough surfaces, it would be beneficial for promoting the development of gecko-inspired adhesives. However, existing adhesive structures with the sensing function usually utilize the adhesive function to support the sensing function, i.e., a sensor with an adhesive function; for other few structures, the sensing function supports adhesion, but they do not focus on improving adhesion performance on rough surfaces. Inspired by the synergistic effect of a kinematic system during the crawling process of geckos, this study proposes an intelligent adhesive structure for rough surfaces. The proposed structure combines a hierarchical bionic dry adhesive structure based on gecko paw microhairs with a flexible capacitive sensor unit. Experimental observations and analytical modeling demonstrate that incorporating mushroom-shaped bionic dry adhesive structures with inclined support micropillars can reduce interface contact stiffness, notably enhancing adhesion on rough surfaces while allowing real-time monitoring of contact states. Moreover, this innovative smart adhesive structure facilitates morphology sensing of contact interfaces, presenting potential advancements in bionic adhesion for morphology sensing applications.
Collapse
Affiliation(s)
- Yawen Shao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Miao Li
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Fabo Zhao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
| | - Jian Xu
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongrong Hou
- Caihong Display Devices Company Limited, Xianyang, China
| | - Zhijun Zhang
- Caihong Display Devices Company Limited, Xianyang, China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| | - Wenjun Li
- Caihong Display Devices Company Limited, Xianyang, China
| | - Hongjian Yan
- Caihong Display Devices Company Limited, Xianyang, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an, China
- Frontier Institute of Science and Technology (FIST),
Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Hu Z, He X, Teng L, Zeng X, Zhu S, Dong Y, Zeng Z, Zheng Q, Sun X. Adhesion Mechanism, Applications, and Challenges of Ocular Tissue Adhesives. Int J Mol Sci 2025; 26:486. [PMID: 39859199 PMCID: PMC11765468 DOI: 10.3390/ijms26020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Corneal injury is prevalent in ophthalmology, with mild cases impacting vision and severe cases potentially resulting in permanent blindness. In clinical practice, standard treatments for corneal injury involve transplantation surgery combined with pharmacological therapy. However, surgical sutures exhibit several limitations, which can be overcome using tissue adhesives. With recent advances in biomedical materials, the use of ophthalmic tissue adhesives has expanded beyond wound closure, including tissue filling and drug delivery. Furthermore, the use of tissue adhesives has demonstrated promising outcomes in drug delivery, ophthalmic disease diagnosis, and biological scaffolds. This study briefly introduces common adhesion mechanisms and their applications in ophthalmology, aiming to increase interest in tissue adhesives and clinical ophthalmic treatment.
Collapse
Affiliation(s)
- Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Xinyuan He
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiangyu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Simian Zhu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Yu Dong
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiaomin Sun
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
7
|
Hu X, Li B, Xu Z, Ma YH, Han X, Hu L, Wang C, Wang N, Xu J, Sheng Z, Lu X. Molecular Structures of Poly(methyl methacrylate) at Different Buried Interfaces Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21291-21300. [PMID: 39316696 DOI: 10.1021/acs.langmuir.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Silica or calcium fluoride (CaF2) substrate-supported poly(methyl methacrylate) (PMMA) thin films as insulating layers are commonly used in photoelectric/photovoltaic devices to improve the efficiency or stability of these devices. However, a comparative investigation of molecular structures at buried PMMA/silica and PMMA/CaF2 interfaces under thermal stimuli remains unexplored. In this study, we qualitatively and quantitatively revealed different molecular orderings and orientations of PMMA at two interfaces before and after annealing using sum frequency generation (SFG) vibrational spectroscopy. SFG vibrations were carefully assigned by using various deuterated PMMAs. SFG results indicated that, at the buried PMMA/silica interface, the side OCH3 groups were prone to lie down before annealing and tended to stand up after annealing. In contrast, the case was the opposite at the buried PMMA/CaF2 interface. The relative hydrophobicity/hydrophilicity of the two substrates and the developed hydrogen bonds upon annealing at the buried PMMA/silica interface, which is absent at the CaF2 surface, are believed to be the driving forces for different interfacial molecular structures. This study benefits the molecular-level understanding of the interfacial local structural relaxation of polymers at buried interfaces and the rational design of photoelectric/photovoltaic devices from the molecular level.
Collapse
Affiliation(s)
- Xintong Hu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bolin Li
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Linhua Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ningfang Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jinsheng Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Rossi D, Dong Y, Paradkar R, Chen X, Wu Y, Mohler C, Kuo TC, Chen Z. Quantifying Chemical Reactions and Interfacial Properties at Buried Polymer/Polymer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12689-12696. [PMID: 38842226 DOI: 10.1021/acs.langmuir.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Maleic anhydride (MAH)-modified polymers are used as tie layers for binding dissimilar polymers in multilayer polymer films. The MAH chemistry which promotes adhesion is well characterized in the bulk; however, only recently has the interfacial chemistry been studied. Sum frequency generation vibrational spectroscopy (SFG) is an interfacial spectroscopy technique which provides detailed information on interfacial chemical reactions, species, and molecular orientations and has been essential for characterizing the MAH chemistry in both nylon and ethyl vinyl alcohol copolymer (EVOH) model systems and coextruded multilayer films. Here, we further characterize the interfacial chemistry between MAH-modified polyethylene tie layers and both EVOH and nylon by investigating the model systems over a range of MAH concentrations. We can detect the interfacial chemical reaction products between MAH and the barrier layer at MAH concentrations of ≥0.022 wt % for nylon and ≥0.077 wt % for EVOH. Additionally, from the concentration-dependent reaction reactant/product SFG peak positions and the product imide or ester/acid C═O group tilt angles extracted from the polarization-dependent SFG spectra, we quantitatively observe concentration-dependent changes to both the interfacial chemistry and interfacial structure. The interfacial chemistry and molecular orientation as a function of MAH concentration are well correlated with the adhesion strength, providing important quantitative information for the future design of MAH-modified tie layers for a variety of important applications.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Dong
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Yuchen Wu
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Tzu-Chi Kuo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Wang W, An Z, Wang Z, Wang S. Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chemistry 2024; 30:e202304349. [PMID: 38308610 DOI: 10.1002/chem.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Supramolecular reversible adhesives have garnered significant attention due to their potential applications in various fields. These adhesives exhibit remarkable properties such as reversible adhesion, self-healing, and high flexibility. This concept aims to present a comprehensive overview of the current research progress in developing supramolecular reversible adhesives. Firstly, the fundamentals of supramolecular chemistry and the principles underlying the design and synthesis of reversible adhesive systems are discussed. Next, the concept focuses on characterizing the reversible adhesion strength of supramolecular adhesive systems that have been developed. The adhesion performance of supramolecular reversible adhesives is summarized, highlighting their unique characteristics and promising applications. Finally, the challenges and future perspectives in the field of supramolecular reversible adhesives are discussed. The comprehensive overview provided in this concept aims to inspire further research and innovation in this exciting field.
Collapse
Affiliation(s)
- Wenbo Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zixin An
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
10
|
Kasper JY, Laschke MW, Koch M, Alibardi L, Magin T, Niessen CM, del Campo A. Actin-templated Structures: Nature's Way to Hierarchical Surface Patterns (Gecko's Setae as Case Study). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303816. [PMID: 38145336 PMCID: PMC10933612 DOI: 10.1002/advs.202303816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Indexed: 12/26/2023]
Abstract
The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable. Here the morphogenesis of gecko setae using skin samples from the Bibron´s gecko (Chondrodactylus bibronii) is studied. Gecko setae develop as specialized apical differentiation structures at a distinct cell-cell layer interface within the skin epidermis. A primary role for F-actin and microtubules as templating structural elements is necessary for the development of setae's hierarchical morphology, and a stabilization role of keratins and corneus beta proteins is identified. Setae grow from single cells in a bottom layer protruding into four neighboring cells in the upper layer. The resulting multicellular junction can play a role during shedding by facilitating fracture of the cell-cell interface and release of the high aspect ratio setae. The results contribute to the understanding of setae regeneration and may inspire future concepts to bioengineer self-renewable patterned adhesive surfaces.
Collapse
Affiliation(s)
- Jennifer Y. Kasper
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University66421HomburgGermany
| | - Marcus Koch
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Lorenzo Alibardi
- Comparative AnatomyDepartment of BiologyUniversity of Bologna& Comparative Histolab40126BolognaItaly
| | - Thomas Magin
- Division of Cell and Developmental BiologyInstitute of BiologyLeipzig University04103LeipzigGermany
| | - Carien M. Niessen
- Department Cell Biology of the SkinCologne Excellence Cluster for Stress Responses in Ageing‐associated diseases (CECAD)Center for Molecular Medicine Cologne (CMMC)University Hospital CologneUniversity of Cologne50931CologneGermany
| | - Aránzazu del Campo
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
- Chemistry DepartmentSaarland University66123SaarbrueckenGermany
| |
Collapse
|
11
|
Liu Y, Wang H, Li J, Li P, Li S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics (Basel) 2024; 9:149. [PMID: 38534834 DOI: 10.3390/biomimetics9030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
The gecko can achieve flexible climbing on various vertical walls and even ceilings, which is closely related to its unique foot adhesion system. In the past two decades, the mechanism of the gecko adhesion system has been studied in-depth, and a verity of gecko-inspired adhesives have been proposed. In addition to its strong adhesion, its easy detachment is also the key to achieving efficient climbing locomotion for geckos. A similar controllable adhesion characteristic is also key to the research into artificial gecko-inspired adhesives. In this paper, the structures, fabrication methods, and applications of gecko-inspired controllable adhesives are summarized for future reference in adhesive development. Firstly, the controllable adhesion mechanism of geckos is introduced. Then, the control mechanism, adhesion performance, and preparation methods of gecko-inspired controllable adhesives are described. Subsequently, various successful applications of gecko-inspired controllable adhesives are presented. Finally, future challenges and opportunities to develop gecko-inspired controllable adhesive are presented.
Collapse
Affiliation(s)
- Yanwei Liu
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Wang
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jiangchao Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Pengyang Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shujuan Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
12
|
Li J, Yin F, Tian Y. Biomimetic Structure and Surface for Grasping Tasks. Biomimetics (Basel) 2024; 9:144. [PMID: 38534829 DOI: 10.3390/biomimetics9030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and surfaces (wedge-shaped surface, suction cup surface and thorn claw surface) for grasping scenarios. Initially, progress in gecko-inspired wedge-shaped adhesive surfaces is reviewed, encompassing the underlying mechanisms that involve tuning the contact area and peeling behavior. The applications of grippers utilizing this adhesive technology are also discussed. Subsequently, the suction force mechanisms and applications of surfaces inspired by octopus and remora suction cups are outlined. Moreover, this paper introduces the applications of robots incorporating the principles of beetle-inspired and bird-inspired thorn claw structures. Lastly, inspired by remoras' adhesive discs, a composite biomimetic adhesive surface is proposed. It integrates features from wedge-shaped, suction cup, and claw thorn surfaces, potentially surpassing the adaptability of basic bioinspired surfaces. This surface construction method offers a potential avenue to enhance adhesion capabilities with superior adaptability to surface roughness and curvature.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Fujie Yin
- Xingjian College, Tsinghua University, Beijing 100084, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Sivasundarampillai J, Youssef L, Priemel T, Mikulin S, Eren ED, Zaslansky P, Jehle F, Harrington MJ. A strong quick-release biointerface in mussels mediated by serotonergic cilia-based adhesion. Science 2023; 382:829-834. [PMID: 37972188 DOI: 10.1126/science.adi7401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
The mussel byssus stem provides a strong and compact mechanically mismatched biointerface between living tissue and a nonliving biopolymer. Yet, in a poorly understood process, mussels can simply jettison their entire byssus, rebuilding a new one in just hours. We characterized the structure and composition of the byssus biointerface using histology, confocal Raman mapping, phase contrast-enhanced microcomputed tomography, and advanced electron microscopy, revealing a sophisticated junction consisting of abiotic biopolymer sheets interdigitated between living extracellular matrix. The sheet surfaces are in intimate adhesive contact with billions of motile epithelial cilia that control biointerface strength and stem release through their collective movement, which is regulated neurochemically. We posit that this may involve a complex sensory pathway by which sessile mussels respond to environmental stresses to release and relocate.
Collapse
Affiliation(s)
- Jenaes Sivasundarampillai
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucia Youssef
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Sydney Mikulin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - E Deniz Eren
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin Berlin, Berlin 14197, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Tan L, Chen Y, Fu W, Tian J, Wang Y, Li X, Zhou Y, Xia S, Liang M, Zou H. Bioinspired Microadhesives with Greatly Enhanced Reversible Adhesion Fabricated by Synthesized Silicone Elastomer with Increasing Phenyl Contents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13068-13075. [PMID: 37678181 DOI: 10.1021/acs.langmuir.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We present a facile chemical method for fabricating bioinspired microadhesives with significant improved reversible adhesion strength. Four kinds of polysiloxane with gradient varying phenyl contents were synthesized and used to fabricate microadhesives. The chemical structures and mechanical properties, as well as surface properties of the four microadhesives, were confirmed and characterized by ATR-FTIR, DSC, XPS, low-field NMR, tensile tests, and SEM, respectively. The macroadhesion test results revealed that phenyl contents showed remarkable and positive impacts on the macroadhesion performance of microadhesives. The pull-off adhesion strength of microadhesives with 90% phenyl content (0.851 N/cm2) was nearly 300% higher than that of pure PDMS (0.309 N/cm2). The macroadhesion mechanism analysis demonstrates that a larger bulk energy dissipation caused by massive π-π interaction, as well as the hydrophobic interaction and van der Waals forces at the interface synergistically resulted in a significant enhancement of the adhesion performance. Our results demonstrate the remarkable impact of chemical structures on the adhesion of microadhesives, and it is conducive to the further improvement of adhesion properties of bioinspired microadhesives.
Collapse
Affiliation(s)
- Lei Tan
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yukun Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Wenxin Fu
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinfeng Tian
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaohui Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yilin Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shuang Xia
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Mei Liang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Tan W, Zhang C, Wang R, Fu Y, Chen Q, Yang Y, Wang W, Zhang M, Xi N, Liu L. Uncover rock-climbing fish's secret of balancing tight adhesion and fast sliding for bioinspired robots. Natl Sci Rev 2023; 10:nwad183. [PMID: 37560444 PMCID: PMC10408705 DOI: 10.1093/nsr/nwad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
The underlying principle of the unique dynamic adaptive adhesion capability of a rock-climbing fish (Beaufortia kweichowensis) that can resist a pull-off force of 1000 times its weight while achieving simultaneous fast sliding (7.83 body lengths per second (BL/S)) remains a mystery in the literature. This adhesion-sliding ability has long been sought for underwater robots. However, strong surface adhesion and fast sliding appear to contradict each other due to the need for high surface contact stress. The skillfully balanced mechanism of the tight surface adhesion and fast sliding of the rock-climbing fish is disclosed in this work. The Stefan force (0.1 mN/mm2) generated by micro-setae on pectoral fins and ventral fins leads to a 70 N/m2 adhesion force by conforming the overall body of the fish to a surface to form a sealing chamber. The pull-off force is neutralized simultaneously due to the negative pressure caused by the volumetric change of the chamber. The rock-climbing fish's micro-setae hydrodynamic interaction and sealing suction cup work cohesively to contribute to low friction and high pull-off-force resistance and can therefore slide rapidly while clinging to the surface. Inspired by this unique mechanism, an underwater robot is developed with incorporated structures that mimic the functionality of the rock-climbing fish via a micro-setae array attached to a soft self-adaptive chamber, a setup which demonstrates superiority over conventional structures in terms of balancing tight underwater adhesion and fast sliding.
Collapse
Affiliation(s)
- Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang 110122, China
| | - Qin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610042, China
| | - Yongliang Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Mingjun Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ning Xi
- Emerging Technologies Institute, Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
16
|
Wang F, Wu Y, Nestler B. Wetting Effect on Patterned Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210745. [PMID: 36779433 DOI: 10.1002/adma.202210745] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Indexed: 05/10/2023]
Abstract
A droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie-Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie-Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Yanchen Wu
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany
| |
Collapse
|
17
|
Eslami H, Materzok T, Müller-Plathe F. Molecular Structure and Dynamics in Wet Gecko β-Keratin. ACS Biomater Sci Eng 2023; 9:257-268. [PMID: 36525337 DOI: 10.1021/acsbiomaterials.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular dynamics simulations are performed to investigate the molecular picture of water sorption in gecko keratin and the influence of relative humidity (RH) on the local structure and dynamics in water-swollen keratin. At low RHs, water sorption occurs through hydrogen bonding of water with the hydrophilic groups of keratin. At high RHs (>80%), additional water molecules connect to the first "layer" of amide-connected water molecules (multimolecular sorption) through hydrogen bonds, giving rise to a sigmoidal shape of the sorption isotherm. This causes the formation of large chain-like clusters surrounding the hydrophilic groups of keratin, which upon a further increase of the RH form a percolating water network. An examination of the dynamics of water molecules sorbed in keratin demonstrates that there are two states, bound and free, for water. The dynamics of water in these states depends on the RH. At low RHs, large-scale translational motions of tightly bound water molecules to keratin are needed to remake the entire hydration shell of the keratin. At high RHs (>80%), the water molecules more quickly exchange between the two states. The center-of-mass mean-square displacement of water molecules indicates a hopping motion of water molecules in the keratin solvation shell. The hopping mechanism is more pronounced at RHs < 80%. At higher RHs, water translation through water clusters (water network) dominates. We have observed two regimes for the dependence of dynamical properties on the RH: a regime of gradual increase of the dynamics over 10% < RH < 80% and a regime of drastic dynamic acceleration at RH > 80%. The latter regime begins exactly where the water uptake and the volume swelling also increase much more and where a drastic change in the elastic properties of gecko keratin has been observed. A nearly linear relation between the relaxation times for all dynamical processes and the water content of gecko keratin is observed.
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| |
Collapse
|
18
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Xia S, Chen Y, Fu W, Tian J, Zhou Y, Sun Y, Cao R, Zou H, Liang M. A humidity-resistant bio-inspired microfibrillar adhesive fabricated using a phenyl-rich polysiloxane elastomer for reliable skin patches. J Mater Chem B 2022; 10:9179-9187. [PMID: 36341761 DOI: 10.1039/d2tb01955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steady adhesion under varying humidity conditions is fundamentally challenging due to the barrier of interfacial water molecules. Here, we demonstrate a humidity-resistant gecko-inspired microfibrillar adhesive fabricated by using a specific phenyl-rich polysiloxane. In contrast with the great decline of macroadhesion with increasing humidity for the typical polydimethylsiloxane (PDMS) microfibrillar adhesives, strong macroadhesion of a microfibrillar adhesive fabricated using synthetic phenyl-rich polysiloxane maintains adhesion well across a wide relative humidity range (1% to 95%). Moreover, the pull-off strength is increased by 500% compared to that of phenyl-absent PDMS microfibrillar adhesives at extremely high humidity. Mechanism analysis demonstrates that the synergistic interplay of strong interfacial hydrophobicity leading to dry contact and bulk energy dissipation through massive aromatic π-π interactions contributes greatly to the reliable and strong humidity macroadhesion. The present results provide a better understanding of humidity macroadhesion as well as application potential for microfibrillar adhesives, which are proven to be reliable skin adhesive patches for long-term health-care that have to be exposed to varying humidity conditions of the skin surface.
Collapse
Affiliation(s)
- Shuang Xia
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yukun Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Wenxin Fu
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinfeng Tian
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yilin Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yini Sun
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Ruoxuan Cao
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Mei Liang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Orndorf N, Garner AM, Dhinojwala A. Polar bear paw pad surface roughness and its relevance to contact mechanics on snow. J R Soc Interface 2022; 19:20220466. [PMID: 36321372 PMCID: PMC9627446 DOI: 10.1098/rsif.2022.0466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2023] Open
Abstract
Microscopic papillae on polar bear paw pads are considered adaptations for increased friction on ice/snow, yet this assertion is based on a single study of one species. The lack of comparative data from species that exploit different habitats renders the ecomorphological associations of papillae unclear. Here, we quantify the surface roughness of the paw pads of four species of bear over five orders of magnitude by calculating their surface roughness power spectral density. We find that interspecific variation in papillae base diameter can be explained by paw pad width, but that polar bear paw pads have 1.5 times taller papillae and 1.3 times more true surface area than paw pads of the American black bear and brown bear. Based on friction experiments with three-dimensional printed model surfaces and snow, we conclude that these factors increase the frictional shear stress of the polar bear paw pad on snow by a factor of 1.3-1.5 compared with the other species. Absolute frictional forces, however, are estimated to be similar among species once paw pad area is accounted for, suggesting that taller papillae may compensate for frictional losses resulting from the relatively smaller paw pads of polar bears compared with their close relatives.
Collapse
Affiliation(s)
- Nathaniel Orndorf
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Austin M. Garner
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
21
|
Khani M, Materzok T, Eslami H, Gorb S, Müller-Plathe F. Water uptake by gecko β-keratin and the influence of relative humidity on its mechanical and volumetric properties. J R Soc Interface 2022; 19:20220372. [PMID: 36128704 PMCID: PMC9490342 DOI: 10.1098/rsif.2022.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
Grand canonical ensemble molecular dynamics simulations are done to calculate the water content of gecko β-keratin as a function of relative humidity (RH). For comparison, we experimentally measured the water uptake of scales of the skin of cobra Naja nigricollis. The calculated sigmoidal sorption isotherm is in good agreement with experiment. To examine the softening effect of water on gecko keratin, we have calculated the mechanical properties of dry and wet keratin samples, and we have established relations between the mechanical properties and the RH. We found that a higher RH causes a decrease in the Young's modulus, the yield stress, the yield strain, the stress at failure and an increase in the strain at failure of the gecko keratin. At low RHs (less than 80%), the change in the mechanical properties is small, with most of the changes occurring at higher RHs. The changes in the macroscopic properties of the keratin are explained by the action of sorbed water on the molecular scale. It causes keratin to swell, thereby increasing the distances between amino acids. This has a weakening effect on amino acid interactions and softens the keratin material. The effect is more pronounced at higher RHs.
Collapse
Affiliation(s)
- Marzieh Khani
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Stanislav Gorb
- Zoological Institute, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
22
|
Zou M, Liao C, Chen Y, Gan Z, Liu S, Liu D, Liu L, Wang Y. Measurement of Interfacial Adhesion Force with a 3D-Printed Fiber-Tip Microforce Sensor. BIOSENSORS 2022; 12:629. [PMID: 36005024 PMCID: PMC9406145 DOI: 10.3390/bios12080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 05/27/2023]
Abstract
With the current trend of device miniaturization, the measurement and control of interfacial adhesion forces are increasingly important in fields such as biomechanics and cell biology. However, conventional fiber optic force sensors with high Young’s modulus (>70 GPa) are usually unable to measure adhesion forces on the micro- or nano-Newton level on the surface of micro/nanoscale structures. Here, we demonstrate a method for interfacial adhesion force measurement in micro/nanoscale structures using a fiber-tip microforce sensor (FTMS). The FTMS, with microforce sensitivity of 1.05 nm/μN and force resolution of up to 19 nN, is fabricated using femtosecond laser two-photon polymerization nanolithography to program a clamped-beam probe on the end face of a single-mode fiber. As a typical verification test, the micronewton-level contact and noncontact adhesion forces on the surfaces of hydrogels were measured by FTMS. In addition, the noncontact adhesion of human hair was successfully measured with the sensor.
Collapse
Affiliation(s)
- Mengqiang Zou
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Chen
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zongsong Gan
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shen Liu
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Liu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Yiping Wang
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
23
|
Palecek AM, Garner AM, Klittich MR, Stark AY, Scherger JD, Bernard C, Niewiarowski PH, Dhinojwala A. An investigation of gecko attachment on wet and rough substrates leads to the application of surface roughness power spectral density analysis. Sci Rep 2022; 12:11556. [PMID: 35798824 PMCID: PMC9262901 DOI: 10.1038/s41598-022-15698-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.
Collapse
Affiliation(s)
- Amanda M Palecek
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA. .,Department of Biology, The University of Akron, Akron, OH, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Mena R Klittich
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA.,Avery Dennison, Oegstgeest, The Netherlands
| | - Alyssa Y Stark
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Jacob D Scherger
- Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Craig Bernard
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
24
|
Rasmussen MH, Holler KR, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biol Lett 2022; 18:20220093. [PMID: 35857888 PMCID: PMC9256082 DOI: 10.1098/rsbl.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.
Collapse
Affiliation(s)
| | | | - Joe E. Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Daniel A. Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Song Y, Weng Z, Yuan J, Zhang L, Wang Z, Dai Z, Full RJ. Incline-dependent adjustments of toes in geckos inspire functional strategies for biomimetic manipulators. BIOINSPIRATION & BIOMIMETICS 2022; 17:046010. [PMID: 35390775 DOI: 10.1088/1748-3190/ac6557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Geckos show versatility by rapidly maneuvering on diverse complex terrain because they benefit from their distributed, setae-covered toes and thus have the ability to generate reliable and adaptive attachment. Significant attention has been paid to their adhesive microstructures (setae), but the effectiveness of the gecko's adaptive attachment at the level of toes and feet remains unclear. In order to better understand the geckos' attachment, we first focused on the deployment of toes while challenging geckos to locomote on varying inclines. When the slope angle was less than 30°, their feet mainly interacted with the substrate using the bases of the toes and generated anisotropic frictional forces. As the slope angle increased to 90°, the participation of the toe bases was reduced. Instead, the setae contribution increased for the middle three toes of the front feet and for the first three toes of the hind feet. As the incline changed from vertical to inverted, the adhesive contribution of the toes of the front feet became more equal, whereas the effective adhesion contact of the hind feet gradually shifted to the toes oriented rearwards. Second, a mathematical model was established and then suggested the potential advantages of distributed control among the toes to regulate foot force. Finally, a physical foot model containing five compliant, adjustable toes was constructed and validated the discoveries with regard to the animals. Using the gecko toes' control strategies, the artificial foot demonstrated diverse behavior regulating attachment forces. The success of the foot prototype not only tested our understanding of the mechanism of biological attachment, but also provided a demonstration for the design and control of gecko-inspired attachment devices, grippers and other manipulators.
Collapse
Affiliation(s)
- Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Zhiyuan Weng
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Linghao Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Robert J Full
- Department of Integrative Biology, University of California, Berkeley, Valley Life Science Building, Berkeley, CA 94702, United States of America
| |
Collapse
|
26
|
Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. SOFT MATTER 2022; 18:3447-3464. [PMID: 35470362 DOI: 10.1039/d2sm00265e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of adhesion has revealed a significant impact on numerous applications such as wound healing, drug delivery, electrically conductive adhesive, dental adhesive, and wood industry. Nanotechnology has continued to be the primary means to achieve adhesion. Among them, biological systems based on the unique structure of the nano-levels have developed excellent adhesion capabilities after billions of years of evolution and natural selection. Therefore, the research on bionic adhesion inspired by biological systems has gradually emerged. This review firstly focuses on the mechanism of adhesion, and secondly reports the effects of different nanomaterials on adhesion properties. Then based on the structure of mussels, geckos, tree frogs, octopuses, and other organisms, the research progress of biomimetic nanotechnology to achieve adhesion is summarized. Finally, the applications, challenges, and future directions of nanotechnology in new adhesive materials are provided.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
- School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
27
|
Sudersan P, Kappl M, Pinchasik BE, Butt HJ, Endlein T. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles. J Exp Biol 2021; 224:jeb242852. [PMID: 34581416 PMCID: PMC8545753 DOI: 10.1242/jeb.242852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022]
Abstract
Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thomas Endlein
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|