1
|
Sekhavati Y, Prang TC, Strait D. A phylogenetic perspective on the evolution of early hominin foot morphology. J Hum Evol 2025; 203:103682. [PMID: 40334434 DOI: 10.1016/j.jhevol.2025.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025]
Abstract
Changes in foot morphology have played a crucial role in the evolution of bipedalism. Examining the evolution of pedal characters among hominins makes it possible to identify when and where key anatomical changes required for bipedalism evolved. This study uses ancestral character reconstruction to investigate foot morphology in the Homo + Pan last common ancestor and subsequent nodes in the hominin phylogeny. We explore the pattern of hominin foot evolution and examine the presence of terrestrial and arboreal adaptations at hominin ancestral nodes. In this study, we analyzed 62 discrete pedal characters hypothesized to be functionally significant. Our likelihood-based approach supports the hypothesis of a Pan-like last common ancestor of humans and chimpanzees. The earliest foot synapomorphies in hominins are related to foot and ankle eversion and midtarsal stability. These results are consistent with the hypothesis that lateral midfoot stability might have evolved before medial midfoot stability. Moreover, several homoplasies were inferred across different taxa, particularly related to features hypothesized to reflect joint mobility and the longitudinal arch. Finally, the Paranthropus and the Australopithecus africanus + Australopithecus sediba clades evolved arboreal characteristics, suggesting adaptations for arboreality. Overall, the results demonstrate how pedal characters evolved in hominins from an African ape-like ancestor.
Collapse
Affiliation(s)
- Yeganeh Sekhavati
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| | - Thomas Cody Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA; Palaeo-Research Institute, University of Johannesburg, Cnr Kingsway and University Road Auckland Park, PO Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
2
|
Toussaint SLD, D'Amato V, Desmidt J, Berthet M, Quintard B, Druelle F. Functional and behavioral variation in intrinsic hand and foot digit proportions in primates. J Hum Evol 2025; 203:103679. [PMID: 40300462 DOI: 10.1016/j.jhevol.2025.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 05/01/2025]
Abstract
The relative elongation of the digits on the autopods has long been considered as an adaptation for an arboreal lifestyle shared by several tetrapods. In primates, this morphological adaptation constitutes one of the defining characters of the order and is correlated to their enhanced manual and pedal grasping capabilities. However, primates are highly diversified in terms of body mass and locomotor repertoire, and it remains unclear to what extent the elongation of proximal and intermediate phalanges relative to metapodials (i.e., the phalangeal index) correlates with body mass or grasping performances during arboreal locomotion. In this study, we tested the effect of body mass, grasping performance, and phylogeny on the manual and pedal phalangeal indexes in 58 species of nonhuman primates, including strepsirrhines, platyrrhines, and catarrhines. We computed a grasping score as a proxy for grasping performance based on the known locomotor repertoire of each species. We found that body mass negatively correlates with the intrinsic digit proportions of the hand, whereas the grasping score positively correlates with the intrinsic digit proportions of both the hand and foot. Our results highlight the different functional roles of the hand and foot in nonhuman primates. The hand is more influenced by changes in body size (allometric constraints), while the foot primarily functions to anchor to arboreal supports. Moreover, finger elongation appears most critical for enhancing grasping performance in species weighing over 5 kg as the general decrease in power-to-weight ratio and the specific postural adaptations in larger species likely increase locomotor constraints on the forelimb. By building a finer model of the morphofunctional complexes of the hand and foot in primates, linking phalangeal index, body mass, and locomotor repertoire, this comparative study will also help to better understand the evolution of autopodial adaptations in other arboreal models such as in rodents and marsupials.
Collapse
Affiliation(s)
- Séverine L D Toussaint
- UMR 7207, Centre de Recherche en Paléontologie-Paris, CNRS-MNHN-SU, 75005 Paris, France; AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany.
| | - Vincent D'Amato
- UMR 7194, Histoire Naturelle des Humanités Préhistoriques, CNRS-MNHN-UPVD, 75116 Paris, France
| | - Joanna Desmidt
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Benoît Quintard
- Zoological and Botanical Park of Mulhouse, 68100 Mulhouse, France
| | - François Druelle
- UMR 7194, Histoire Naturelle des Humanités Préhistoriques, CNRS-MNHN-UPVD, 75116 Paris, France; Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium; UMR 7268, Anthropologie bio-culturelle, Droit, Ethique et Santé, AMU-CNRS-EFS, 13015 Marseille, France
| |
Collapse
|
3
|
Williams SA, Wang X, Avilez MV, Fok L, Giraldo MV, Spear JK, Prang TC. A three-dimensional geometric morphometric study of Miocene ape lumbar vertebrae, with implications for hominoid locomotor evolution. J Hum Evol 2025; 201:103650. [PMID: 39999514 DOI: 10.1016/j.jhevol.2025.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025]
Abstract
Miocene apes represent snapshots in time of key transitions in hominoid evolution. While all extant apes are adapted to orthograde posture and suspensory behavior, many Miocene apes demonstrate evidence for pronogrady and habitual arboreal quadrupedalism or present 'mosaic' morphologies suggestive of locomotion and posture unlike any extant catarrhine. Here, we use three-dimensional geometric morphometrics to study penultimate lumbar vertebrae of extant anthropoids and those of three well-preserved Miocene apes: Ekembo nyanzae (KNM-MW 13142), Morotopithecus bishopi (UMP 67-28), and Pierolapithecus catalaunicus (IPS 21350-64), which have been interpreted as a pronograde arboreal quadruped, an orthograde suspensory or vertical climbing ape, and an orthograde vertical climber that was not adapted to suspensory behavior, respectively. Our results show that E. nyanzae shares three-dimensional shape space with terrestrial papionins, whereas M. bishopi and P. catalaunicus fall within overlapping morphospace shared by Ateles and hylobatids. Morotopithecus bishopi and P. catalaunicus share with hylobatids and brachiating atelids (Ateles and Brachyteles) well-established features such as dorsal lumbar transverse (costal) processes and a newly identified feature in this study, the presence of a convex pillar along the pars interarticularis that forms the lateral borders of the laminae. The latter feature is also shared with E. nyanzae. Together with their large body size estimates, we interpret these results to indicate that E. nyanzae was primarily a pronograde quadruped that may have been semiterrestrial rather than strictly arboreal, while M. bishopi and P. catalaunicus were adapted to both orthogrady and forelimb-dominated climbing and suspension.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA.
| | - Xue Wang
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Monica V Avilez
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Lillian Fok
- Department of Statistical and Data Sciences, Smith College, Northampton, MA 01063, USA
| | - Maria V Giraldo
- Department of Biology, City College of New York, New York, NY 10031, USA
| | - Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Lawrence AB, Hammond AS, Ward CV. Acetabular orientation, pelvic shape, and the evolution of hominin bipedality. J Hum Evol 2025; 200:103633. [PMID: 39765141 DOI: 10.1016/j.jhevol.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 03/09/2025]
Abstract
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.L. 288-1, KSD-VP-1/1), Australopithecus africanus (Sts 14), Australopithecus sediba (MH2), and Homo neanderthalensis (Kebara 2). We measured the three-dimensional orientation of the acetabulum on in silico models of individual hipbones aligned to the median plane by registering models to landmark coordinates on articulated pelves. Humans and fossil hominins both possess significantly more ventrally opening acetabula than other extant anthropoids, which exhibit laterally facing acetabula. The orientation of the hominin acetabulum was essentially humanlike by at least 3.6 Ma, well before the appearance of other unique features in the pelvis of Homo that may be associated with long-distance walking or running, thermoregulation, parturition, and larger body size in this genus. These results suggest that the ventral orientation of the acetabulum is a key component in the suite of pelvic characteristics related to habitual bipedality in hominins and should be considered in future analyses of hominin pelvic morphology.
Collapse
Affiliation(s)
- Austin B Lawrence
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Braun DR, Carvalho S, Kaplan RS, Beardmore-Herd M, Plummer T, Biro D, Matsuzawa T. Stone selection by wild chimpanzees shares patterns with Oldowan hominins. J Hum Evol 2025; 199:103625. [PMID: 39721333 DOI: 10.1016/j.jhevol.2024.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
The use of broad tool repertoires to increase dietary flexibility through extractive foraging behaviors is shared by humans and their closest living relatives (chimpanzees, Pan troglodytes). However, comparisons between tool use in ancient human ancestors (hominins) and chimpanzees are limited by differences in their toolkits. One feature shared by primate and hominin toolkits is rock selection based on physical properties of the stones and the targets of foraging behaviors. Here, we document the selectivity patterns of stone tools used by wild chimpanzees to crack nuts at Bossou, Guinea, through controlled experiments that introduce rocks unknown to this population. Experiments incorporate specific rock types because previous studies document hominin selection of these lithologies at Kanjera South 2 Ma. We investigate decisions made by chimpanzees when selecting stones that vary in their mechanical properties-features not directly visible to the individual. Results indicate that the selection of anvils and hammers is linked to task-specific mechanical properties. Chimpanzees select harder stones for hammers and softer stones for anvils, indicating an understanding of specific properties for distinct functions. Selectivity of rock types suggests that chimpanzees assess the appropriate materials for functions by discriminating these 'invisible' properties. Adults identify mechanical properties through individual learning, and juveniles often reused the tools selected by adults. Selection of specific rock types may be transmitted through the reuse of combinations of rocks. These patterns of stone selection parallel what is documented for Oldowan hominins. The processes identified in this experiment provide insights into the discrete nature of hominin rock selection patterns in Plio-Pleistocene stone artifact production.
Collapse
Affiliation(s)
- D R Braun
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA; Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - S Carvalho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, United Kingdom; Interdisciplinary Center for Archaeology and the Evolution of Human Behavior, University of Algarve, Portugal.
| | - R S Kaplan
- Department of Anthropology and Geography, Colorado State University, 1787 Campus Delivery, Fort Collins, CO, 80523, USA
| | - M Beardmore-Herd
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, United Kingdom; Interdisciplinary Center for Archaeology and the Evolution of Human Behavior, University of Algarve, Portugal
| | - T Plummer
- Department of Anthropology, Queens College, CUNY, Flushing, NY, USA; The CUNY Graduate Center, New York, NY, USA; New York Consortium for Evolutionary Anthropology, New York, NY, USA; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
| | - D Biro
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - T Matsuzawa
- Department of Pedagogy, Chubu Gakuin University, Gifu, 504-0837, Japan; College of Life Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
6
|
Spear JK. Phylogenetic comparative analysis of suspensory adaptations in primates. J Hum Evol 2025; 198:103616. [PMID: 39591816 DOI: 10.1016/j.jhevol.2024.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
The evolution of suspensory locomotion in primates has been of great interest to biological anthropologists since the early 20th century due to the contentious hypothesis that suspension in hominoids may have been a preadaptation for bipedalism. Studies of fossil hominoids regularly look for traits (or lack thereof) indicative of suspension, but many fossils exhibit potentially confusing mosaics of traits, and there is ongoing debate regarding whether certain traits are truly associated with suspension or whether they might more accurately represent allometric trends, developmental byproducts, or adaptation to cautious climbing. Here, I test the association between 27 morphological traits and forelimb suspension in extant primates using phylogenetically informed comparative methods, a broad comparative sample (nearly 1500 individuals representing 74 genera), and a systematic review of behavioral literature. I find that clavicle length, olecranon length, mediolateral scapula breadth (but not craniocaudal height), and glenoid and scapula spine angle are all strongly associated with suspension. The association is strongest for clavicle and olecranon lengths when the 'suspensory' category is highly exclusive, whereas it is strongest for scapula breadth, glenoid angle, and spine angle when the category is highly inclusive (i.e., also including taxa that use only limited amounts of suspension). Humeral head height above the greater tuberosity appears to be associated with nonquadrupedal locomotion generally rather than suspension specifically. Insertions for the biceps and deltoid muscles are significantly more distal in suspensory taxa only when size-standardized by a body size proxy, not when standardized by the length of the load arm. Overall, a majority of hypothesized traits are not actually associated with suspension in a phylogenetic comparative context. Morphological adaptations that do characterize suspension are expressed in a mosaic fashion that depends on the degree of suspension practiced, other behaviors used, and evolutionary history. Most of these traits may be related to an enhanced range of motion at the shoulder.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
7
|
Sandel AA, Scott JE, Kamilar JM. Primate Behavior and the Importance of Comparative Studies in Biological Anthropology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70009. [PMID: 40071872 DOI: 10.1002/ajpa.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 12/21/2024] [Indexed: 04/02/2025]
Abstract
Biological anthropology seeks to understand humans from an evolutionary perspective. Namely, what makes humans different from other animals, and how did we get this way? Many relevant traits are physical, but many others are behavioral. For example, when and why did our species develop complex cognition, enduring bonds, and intense cooperation? Given the importance of behavior, biological anthropologists have a long history of turning to our primate relatives to generate hypotheses about the evolutionary processes shaping humans. Indeed, primate behavior is foundational to our field. But not all biological anthropologists appreciate the value of primate behavior for understanding human evolution. Beyond lip service in introductory paragraphs and grant proposals, many primatologists do not make explicit how their work is relevant to human evolution. In this review, we have three main goals: (1) emphasize how comparative studies of primate behavior are crucial to biological anthropology; (2) outline how primatologists and biological anthropologists can improve their work by avoiding common problems that arise when making such comparisons; and (3) provide a primer on the concepts and methods underlying comparative analyses of traits. We provide examples to highlight these points related to cognition, sociality, and diet. We conclude with several recommendations including (1) detailed, high-quality studies of behavior that allow for appropriate comparisons within and across species; (2) using primates as a "gateway clade" and expanding our research to any relevant taxa; and (3) careful attention to the ethical implications of making comparisons to other primates given racist tropes and a history of eugenics.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jason M Kamilar
- Department of Anthropology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
8
|
Ito A, Oishi M, Endo H, Hirasaki E, Ogihara N. A cadaveric study of wrist-joint moments in chimpanzees and orangutans with implications for the evolution of knuckle-walking. J Hum Evol 2024; 197:103600. [PMID: 39471655 DOI: 10.1016/j.jhevol.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024]
Abstract
Understanding the mechanism underlying the evolution of knuckle-walking in African great apes but not in humans may provide important implications about the origin and evolution of human bipedal locomotion. In this study, aiming to reveal possible structural adaptations of the chimpanzee's forearm and hand musculature related to knuckle-walking, we measure the passive elastic moment of the chimpanzee's and orangutan's wrist as it was rotated into extension, immobilizing the metacarpophalangeal joint at three different positions: extended (as in knuckle-walking), flexed (as in fist-walking), and an intermediate position. Our findings demonstrate that when the metacarpophalangeal joints are extended, the rigidity of the wrist joint in the extended direction increases. This increased rigidity is attributed to the passive elongation and force generation of digital flexor muscles, which are relatively short in chimpanzees. Consequently, this enhanced wrist-joint rigidity contributes to the stability and energetically efficient transmission of propulsive force to the ground during the stance phase. Overall, our study supports the hypothesis that knuckle-walking is an adaptation to terrestrial locomotion for an ancestor characterized by the restricted capacity for wrist extension owing to the relatively shorter tendons of digital flexor muscles.
Collapse
Affiliation(s)
- Akimasa Ito
- Laboratory of Human Evolutionary Biomechanics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Motoharu Oishi
- Laboratory of Anatomy, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 4848506, Japan
| | - Naomichi Ogihara
- Laboratory of Human Evolutionary Biomechanics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Arlegi M, Lorenzo C. Evolutionary selection and morphological integration in the hand of modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25024. [PMID: 39228137 DOI: 10.1002/ajpa.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To enhance our understanding of the evolutionary dynamics of the modern human hand by analyzing the degree of integration and ability to respond to selection pressures of each phalanx and metacarpal bone. MATERIALS AND METHODS The sample comprised 96 adult individuals, both female and male, from Euro-American, Afro-American, and European populations. We collected 10 linear measurements from the 19 metacarpals and proximal, middle, and distal phalanges that constitute the five digits of the hand. Using these data, we constructed variance/covariance matrices to quantify the degree of integration and assess the hand ability to respond to selective pressures. RESULTS Distal phalanges are the most evolvable and flexible elements, while being the least integrated and constrained. The thumb is similarly integrated as the second and third rays, while medial rays (fourth and fifth digits) are more integrated. However, the thumb presents different integration and response to selection patterns. No significant relationship was found between functionality and the indices of selection and integration. Finally, the correlation between hand and foot indices yielded significant results for conditional evolvability and flexibility. DISCUSSION The findings suggest different evolutionary trajectories for the metacarpal and distal phalanx in the modern human thumb, likely reflecting varying functional and developmental pressures. The first metacarpal, characterized by high flexibility and low evolvability, appears to have reached a stable, optimal morphology, under stabilizing selection. In contrast, the distal phalanx seems to have undergone directional evolution, suggesting specialization for a specific function. Comparisons between hands and feet suggest that these structures evolve differently under directional selection but similarly under stabilizing selection.
Collapse
Affiliation(s)
- Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Carlos Lorenzo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| |
Collapse
|
10
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Piel AK. Sex differences in positional behavior of chimpanzees (Pan troglodytes schweinfurthii) living in the dry and open habitat of Issa Valley, Tanzania. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25007. [PMID: 39056239 DOI: 10.1002/ajpa.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Many early fossil hominins are associated with savanna-mosaic paleohabitats, and high sexual dimorphism that may reflect differences in positional behavior between sexes. However, reconstructions of hominin behavior and the selective pressures they faced in an open habitat are limited by a lack of studies of extant apes living in contemporary, analogous habitats. Here, we describe adult chimpanzee positional behavior in the savanna-mosaic habitat of the Issa Valley, Tanzania, to test whether Issa chimpanzees show larger sex-differences in positional behavior than their forest-dwelling counterparts. MATERIALS AND METHODS We quantified and compared adult locomotor and postural behavior across sexes (6 females, 7 males) in the riparian forest (closed) and miombo woodland (open) vegetation types at Issa Valley (13,743 focal observations). We then compared our results to published data of chimpanzee communities living in more forested habitats. RESULTS Issa females and males both spent less time arboreally in open vegetation and showed similar locomotor and postural behavior on the same substrates, notably using a high level of suspensory locomotion when arboreal. Females were, however, more arboreal than males during locomotor behavior, as well as compared with females from other communities. Issa males behaved similarly to males from other communities. CONCLUSION Results suggest that open habitats do not elicit less arboreal behaviors in either sex, and may even select for suspensory locomotion to effectively navigate an open canopy. An open habitat may, however, increase sex differences in positional behavior by driving female arboreality. We suggest this is because of higher energetic demands and predator pressures associated with open vegetation, which are likely exaggerated for reproducing females. These results have implications for the interpretation of how sexual dimorphism may influence reconstructions of hominin positional behavior.
Collapse
Affiliation(s)
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fiona A Stewart
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Alex K Piel
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
11
|
Kunze J, Harvati K, Hotz G, Karakostis FA. Humanlike manual activities in Australopithecus. J Hum Evol 2024; 196:103591. [PMID: 39366305 DOI: 10.1016/j.jhevol.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 10/06/2024]
Abstract
The evolution of the human hand is a topic of great interest in paleoanthropology. As the hand can be involved in a vast array of activities, knowledge regarding how it was used by early hominins can yield crucial information on the factors driving biocultural evolution. Previous research on early hominin hands focused on the overall bone shape. However, while such approaches can inform on mechanical abilities and the evolved efficiency of manipulation, they cannot be used as a definite proxy for individual habitual activity. Accordingly, it is crucial to examine bone structures more responsive to lifetime biomechanical loading, such as muscle attachment sites or internal bone architecture. In this study, we investigate the manual entheseal patterns of Australopithecus afarensis, Australopithecus africanus, and Australopithecus sediba through the application of the validated entheses-based reconstruction of activity method. Using a comparative sample of later Homo and three great ape genera, we analyze the muscle attachment site proportions on the thumb, fifth ray, and third intermediate phalanx to gain insight into the habitual hand use of Australopithecus. We use a novel statistical procedure to account for the effects of interspecies variation in overall size and ray proportions. Our results highlight the importance of certain muscles of the first and fifth digits for humanlike hand use. In humans, these muscles are required for variable in-hand manipulation and are activated during stone-tool production. The entheses of A. sediba suggest muscle activation patterns consistent with a similar suite of habitual manual activities as in later Homo. In contrast, A. africanus and A. afarensis display a mosaic entheseal pattern that combines indications of both humanlike and apelike manipulation. Overall, these findings provide new evidence that some australopith species were already habitually engaging in humanlike manipulation, even if their manual dexterity was likely not as high as in later Homo.
Collapse
Affiliation(s)
- Jana Kunze
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany.
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany
| | - Gerhard Hotz
- Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland
| | - Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland.
| |
Collapse
|
12
|
Fragaszy DM, Kelty-Stephen DG, Mangalam M. How bipedalism shapes humans' actions with hand tools. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230152. [PMID: 39155723 PMCID: PMC11391300 DOI: 10.1098/rstb.2023.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 08/20/2024] Open
Abstract
The task for an embodied cognitive understanding of humans' actions with tools is to elucidate how the human body, as a whole, supports the perception of affordances and dexterous action with objects in relation to other objects. Here, we focus on the relationship between humans' actions with handheld tools and bipedal posture. Posture plays a pivotal role in shaping animals' perception and action dynamics. While humans stand and locomote bipedally, other primates predominantly employ quadrupedal postures and locomotion, relying on both hands and feet to support the body. Drawing upon evidence from evolutionary biology, developmental psychology and performance studies, we elucidate the influence of bipedalism on our actions with objects and on our proficiency in using tools. We use the metaphor of cascades to capture the dynamic, nonlinear transformations in morphology and behaviour associated with posture and the use of tools across evolutionary and developmental timescales. Recent work illustrates the promise of multifractal cascade analysis to reveal nonlinear, cross-scale interactions across the entire body in real-time, supporting the perception of affordances for actions with tools. Cascade analysis enriches our comprehension of real-time performance and facilitates exploration of the relationships among whole-body coordination, individual development, and evolutionary processes.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY 12561, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska, Omaha, NE 68182, USA
| |
Collapse
|
13
|
Spear JK. Reduced limb integration characterizes primate clades with diverse locomotor adaptations. J Hum Evol 2024; 194:103567. [PMID: 39068699 DOI: 10.1016/j.jhevol.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
14
|
Rowan J, Wood B. Dart and the Taung juvenile: making sense of a century-old record of hominin evolution in Africa. Biol Lett 2024; 20:20240185. [PMID: 39045658 PMCID: PMC11267397 DOI: 10.1098/rsbl.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The announcement in 1925 by Raymond Dart of the discovery of the Taung juvenile's skull in a quarry in sub-Saharan Africa is deservedly a classic publication in the history of palaeoanthropology. Dart's paper-which designated Taung as the type specimen of the early hominin species Australopithecus africanus-provided the first fossil evidence supporting Charles Darwin's 1871 prediction that Africa was where the human lineage originated. The Taung juvenile's combination of ape and human characteristics eventually led to a paradigm shift in our understanding of human evolution. This contribution focuses on the milieu in which Dart's paper appeared (i.e. what was understood in 1925 about human evolution), the fossil evidence as set out by Dart, his interpretation of how a species represented by a fossilized juvenile's skull fitted within prevailing narratives about human evolution and the significance of the fossil being found in an environment inferred to be very different from that occupied by living apes. We also briefly review subsequent fossil finds that have corroborated the argument Dart made for having discovered evidence of a hitherto unknown close relative of humans, and summarize our current understanding of the earliest stages of human evolution and its environmental context.
Collapse
Affiliation(s)
- John Rowan
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, UK
| | - Bernard Wood
- CASHP, Department of Anthropology, George Washington University, Washington, DC20052, USA
| |
Collapse
|
15
|
Vilos GA, Vilos AG, Burbank F. Bipedalism and the dawn of uterine fibroids. Hum Reprod 2024; 39:454-463. [PMID: 38300232 DOI: 10.1093/humrep/deae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
The high prevalence and burden of uterine fibroids in women raises questions about the origin of these benign growths. Here, we propose that fibroids should be understood in the context of human evolution, specifically the advent of bipedal locomotion in the hominin lineage. Over the ≥7 million years since our arboreal ancestors left their trees, skeletal adaptations ensued, affecting the pelvis, limbs, hands, and feet. By 3.2 million years ago, our ancestors were fully bipedal. A key evolutionary advantage of bipedalism was the freedom to use hands to carry and prepare food and create and use tools which, in turn, led to further evolutionary changes such as brain enlargement (encephalization), including a dramatic increase in the size of the neocortex. Pelvic realignment resulted in narrowing and transformation of the birth canal from a simple cylinder to a convoluted structure with misaligned pelvic inlet, mid-pelvis, and pelvic outlet planes. Neonatal head circumference has increased, greatly complicating parturition in early and modern humans, up to and including our own species. To overcome the so-called obstetric dilemma provoked by bipedal locomotion and encephalization, various compensatory adaptations have occurred affecting human neonatal development. These include adaptations limiting neonatal size, namely altricial birth (delivery of infants at an early neurodevelopmental stage, relative to other primates) and mid-gestation skeletal growth deceleration. Another key adaptation was hyperplasia of the myometrium, specifically the neomyometrium (the outer two-thirds of the myometrium, corresponding to 90% of the uterine musculature), allowing the uterus to more forcefully push the baby through the pelvis during a lengthy parturition. We propose that this hyperplasia of smooth muscle tissue set the stage for highly prevalent uterine fibroids. These fibroids are therefore a consequence of the obstetric dilemma and, ultimately, of the evolution of bipedalism in our hominin ancestors.
Collapse
Affiliation(s)
- George A Vilos
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angelos G Vilos
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Fred Burbank
- Salt Creek International Women's Health Foundation, San Clemente, CA, USA
| |
Collapse
|
16
|
Cebeiro A, Key A. Captive bonobos (Pan paniscus) apply precision grips when using flaked stone tools. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24759. [PMID: 37218536 DOI: 10.1002/ajpa.24759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Current evidence suggests that flaked stone tool technologies did not emerge until ~3.3-2.6 million-years-ago (Ma). It is often hypothesized that early hominin (principally Ardipithecus and early Australopithecus) manual anatomy may have prevented an earlier emergence, as the forceful precision grips essential to flake tool-use may have been ineffectively performed by these species. Marzke, Marchant, McGrew, and Reece (2015) observed potentially forceful pad-to-side precision grips being recruited by wild chimpanzees (Pan troglodytes) during feeding behaviors, indicating that Pan-like manual anatomy, and therefore potentially early hominin anatomy, may be capable of effectively securing flake stone tools during their use. MATERIALS AND METHODS Here, we report on the grips recruited by four captive, human-trained, bonobos (Pan paniscus) during the use of stone and organic tools, including flake stone tools during cutting behaviors. RESULTS It is revealed that pad-to-side precision grips are frequently recruited by these bonobos when securing stone flakes during cutting actions. In some instances, high forces could have been resisted and applied by the thumb and fingers. DISCUSSION While our analyzes are preliminary and limited to captive individuals, and Pan is not suggested to secure flakes with the same efficacy as Homo or Australopithecus, it points to early hominins potentially being able to perform the precision grips required to use flake stone tools. In turn, the ability to gain tangible benefits from the effective use of flake tools (i.e., gain energetic returns from processing food resources) may have been - at least anatomically - possible in early Australopithecus and other pre-Early Stone Age hominin species. In turn, hominin manual anatomy may not be a leading restriction on the emergence of the earliest stone tool technologies.
Collapse
Affiliation(s)
- Adela Cebeiro
- Department of Anthropology, New York University, New York, New York, USA
| | - Alastair Key
- Department of Archaeology, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Tanner SB, Bardo A, Davies TW, Dunmore CJ, Johnston RE, Owen NJ, Kivell TL, Skinner MM. Variation and covariation of external shape and cross-sectional geometry in the human metacarpus. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24866. [PMID: 37929663 PMCID: PMC10952563 DOI: 10.1002/ajpa.24866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Analyses of external bone shape using geometric morphometrics (GM) and cross-sectional geometry (CSG) are frequently employed to investigate bone structural variation and reconstruct activity in the past. However, the association between these methods has not been thoroughly investigated. Here, we analyze whole bone shape and CSG variation of metacarpals 1-5 and test covariation between them. MATERIALS AND METHODS We analyzed external metacarpal shape using GM and CSG of the diaphysis at three locations in metacarpals 1-5. The study sample includes three modern human groups: crew from the shipwrecked Mary Rose (n = 35 metacarpals), a Pre-industrial group (n = 50), and a Post-industrial group (n = 31). We tested group differences in metacarpal shape and CSG, as well as correlations between these two aspects of metacarpal bone structure. RESULTS GM analysis demonstrated metacarpus external shape variation is predominately related to changes in diaphyseal width and articular surface size. Differences in external shape were found between the non-pollical metacarpals of the Mary Rose and Pre-industrial groups and between the third metacarpals of the Pre- and Post-industrial groups. CSG results suggest the Mary Rose and Post-industrial groups have stronger metacarpals than the Pre-industrial group. Correlating CSG and external shape showed significant relationships between increasing external robusticity and biomechanical strength across non-pollical metacarpals (r: 0.815-0.535; p ≤ 0.05). DISCUSSION Differences in metacarpal cortical structure and external shape between human groups suggest differences in the type and frequency of manual activities. Combining these results with studies of entheses and kinematics of the hand will improve reconstructions of manual behavior in the past.
Collapse
Affiliation(s)
- Samuel B. Tanner
- School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Ameline Bardo
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- UMR 7194 ‐ Histoire Naturelle de l'Homme Préhistorique (HNHP)CNRS‐Muséum National d'Histoire NaturelleParisFrance
| | - Thomas W. Davies
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | | | - Richard E. Johnston
- Advanced Imaging of Materials (AIM) Facility, Faculty of Science and Engineering, Bay CampusSwansea UniversitySwanseaUK
| | - Nicholas J. Owen
- Applied Sports Technology Exercise and Medicine Research Centre (A‐STEM), School of Engineering and Applied Sciences, Bay CampusSwansea UniversitySwanseaUK
| | - Tracy L. Kivell
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | | |
Collapse
|
18
|
Prang TC. The relative size of the calcaneal tuber reflects heel strike plantigrady in African apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24865. [PMID: 38058279 DOI: 10.1002/ajpa.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES The positional repertoire of the human-chimpanzee last common ancestor is critical for reconstructing the evolution of bipedalism. African apes and humans share a heel strike plantigrade foot posture associated with terrestriality. Previous research has established that modern humans have a relatively large and intrinsically robust calcaneal tuber equipped to withstand heel strike forces associated with bipedal walking and running. However, it is unclear whether African apes have a relatively larger calcaneal tuber than non-heel-striking primates, and how this trait might have evolved among anthropoids. Here, I test the hypothesis that heel-striking primates have a relatively larger calcaneal tuber than non-heel-striking primates. METHODS The comparative sample includes 331 individuals and 53 taxa representing hominoids, cercopithecoids, and platyrrhines. Evolutionary modeling was used to test for the effect of foot posture on the relative size of the calcaneal tuber in a phylogenetic framework that accounts for adaptation and inertia. Bayesian evolutionary modeling was used to identify selective regime shifts in the relative size of the calcaneal tuber among anthropoids. RESULTS The best fitting evolutionary model was a Brownian motion model with regime-dependent trends characterized by relatively large calcaneal tubers among African apes and humans. Evolutionary modeling provided support for an evolutionary shift toward a larger calcaneal tuber at the base of the African ape and human clade. CONCLUSIONS The results of this study support the view that African apes and humans share derived traits related to heel strike plantigrady, which implies that humans evolved from a semi-terrestrial quadrupedal ancestor.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Mika A, Lierenz J, Smith A, Buchanan B, Walker RS, Eren MI, Bebber MR, Key A. Hafted technologies likely reduced stone tool-related selective pressures acting on the hominin hand. Sci Rep 2023; 13:15582. [PMID: 37730739 PMCID: PMC10511494 DOI: 10.1038/s41598-023-42096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
The evolution of the hominin hand has been widely linked to the use and production of flaked stone tool technologies. After the earliest handheld flake tools emerged, shifts in hominin hand anatomy allowing for greater force during precision gripping and ease when manipulating objects in-hand are observed in the fossil record. Previous research has demonstrated how biometric traits, such as hand and digit lengths and precision grip strength, impact functional performance and ergonomic relationships when using flake and core technologies. These studies are consistent with the idea that evolutionary selective pressures would have favoured individuals better able to efficiently and effectively produce and use flaked stone tools. After the advent of composite technologies during the Middle Stone Age and Middle Palaeolithic, fossil evidence reveals differences in hand anatomy between populations, but there is minimal evidence for an increase in precision gripping capabilities. Furthermore, there is little research investigating the selective pressures, if any, impacting manual anatomy after the introduction of hafted composite stone technologies ('handles'). Here we investigated the possible influence of tool-user biometric variation on the functional performance of 420 hafted Clovis knife replicas. Our results suggest there to be no statistical relationships between biometric variables and cutting performance. Therefore, we argue that the advent of hafted stone technologies may have acted as a 'performance equaliser' within populations and removed (or reduced) selective pressures favouring forceful precision gripping capabilities, which in turn could have increased the relative importance of cultural evolutionary selective pressures in the determination of a stone tool's performance.
Collapse
Affiliation(s)
- Anna Mika
- Department of Archaeology, University of Cambridge, Cambridge, CB2 3DZ, UK.
- Department of Anthropology, Kent State University, Kent, OH, 44224, USA.
| | - Julie Lierenz
- Department of Anthropology, Kent State University, Kent, OH, 44224, USA
- Department of Anthropology, Ohio State University, Columbus, OH, 43210, USA
| | - Andrew Smith
- Department of Anthropology, Kent State University, Kent, OH, 44224, USA
| | - Briggs Buchanan
- Department of Anthropology, University of Tulsa, Tulsa, OK, 74104, USA
| | - Robert S Walker
- Department of Anthropology, University of Missouri, Columbia, 65211, USA
| | - Metin I Eren
- Department of Anthropology, Kent State University, Kent, OH, 44224, USA
- Department of Archaeology, Cleveland Museum of Natural History, Cleveland, OH, 44106, USA
| | - Michelle R Bebber
- Department of Anthropology, Kent State University, Kent, OH, 44224, USA
| | - Alastair Key
- Department of Archaeology, University of Cambridge, Cambridge, CB2 3DZ, UK
| |
Collapse
|
20
|
Fannin LD, Joy MS, Dominy NJ, McGraw WS, DeSilva JM. Downclimbing and the evolution of ape forelimb morphologies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230145. [PMID: 37680499 PMCID: PMC10480693 DOI: 10.1098/rsos.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The forelimbs of hominoid primates (apes) are decidedly more flexible than those of monkeys, especially at the shoulder, elbow and wrist joints. It is tempting to link the greater mobility of these joints to the functional demands of vertical climbing and below-branch suspension, but field-based kinematic studies have found few differences between chimpanzees and monkeys when comparing forelimb excursion angles during vertical ascent (upclimbing). There is, however, a strong theoretical argument for focusing instead on vertical descent (downclimbing), which motivated us to quantify the effects of climbing directionality on the forelimb kinematics of wild chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys). We found that the shoulders and elbows of chimpanzees and sooty mangabeys subtended larger joint angles during bouts of downclimbing, and that the magnitude of this difference was greatest among chimpanzees. Our results cast new light on the functional importance of downclimbing, while also burnishing functional hypotheses that emphasize the role of vertical climbing during the evolution of apes, including the human lineage.
Collapse
Affiliation(s)
- Luke D. Fannin
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| | - Mary S. Joy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
21
|
Dickinson E, Young MW, Flaim ND, Sawiec A, Granatosky MC. A functional framework for interpreting phalangeal form. J R Soc Interface 2023; 20:20230251. [PMID: 37582408 PMCID: PMC10427194 DOI: 10.1098/rsif.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Across tetrapods, the proportional lengths of the manual and pedal phalanges are highly constrained, following a generalized blueprint of shortening in a proximodistal gradient. Despite this, several lineages of both mammals (e.g. sloths, bats and colugos) and birds (e.g. raptors, parrots and woodpeckers) have broken this pattern, shortening the proximal phalanx while elongating more distal elements. As yet, no unifying explanation for this convergence has been empirically evaluated. This study combines a comparative phylogenetic assessment of phalangeal morphology across mammals and birds with a novel bioinspired robotics approach to explicitly test functional hypotheses relating to these morphotypes. We demonstrate that shortening the proximal phalanx allows taxa to maximize forces produced at the proximal interphalangeal joint, while elongation of subsequent elements maintains total ray length-ensuring arboreal species can still enclose large-diameter supports. Within suspensory and vertically clinging mammals, we additionally observe a secondary adaptation towards maximizing grip strength: namely increasing the height of the trochleae to increase the moment arm of digital flexor muscles that cross the joint. Together, our analyses highlight that numerous tetrapod lineages independently converged upon this morphotype to maximize proximal gripping strength, an adaptation to support specialized hunting and locomotor behaviours.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Melody W. Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Nicholas D. Flaim
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksander Sawiec
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
22
|
Meyer MR, Jung JP, Spear JK, Araiza IF, Galway-Witham J, Williams SA. Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids. J Hum Evol 2023; 179:103355. [PMID: 37003245 DOI: 10.1016/j.jhevol.2023.103355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Because the ulna supports and transmits forces during movement, its morphology can signal aspects of functional adaptation. To test whether, like extant apes, some hominins habitually recruit the forelimb in locomotion, we separate the ulna shaft and ulna proximal complex for independent shape analyses via elliptical Fourier methods to identify functional signals. We examine the relative influence of locomotion, taxonomy, and body mass on ulna contours in Homo sapiens (n = 22), five species of extant apes (n = 33), two Miocene apes (Hispanopithecus and Danuvius), and 17 fossil hominin specimens including Sahelanthropus, Ardipithecus, Australopithecus, Paranthropus, and early Homo. Ulna proximal complex contours correlate with body mass but not locomotor patterns, while ulna shafts significantly correlate with locomotion. African apes' ulna shafts are more robust and curved than Asian apes and are unlike other terrestrial mammals (including other primates), curving ventrally rather than dorsally. Because this distinctive curvature is absent in orangutans and hylobatids, it is likely a function of powerful flexors engaged in wrist and hand stabilization during knuckle-walking, and not an adaptation to climbing or suspensory behavior. The OH 36 (purported Paranthropus boisei) and TM 266 (assigned to Sahelanthropus tchadensis) fossils differ from other hominins by falling within the knuckle-walking morphospace, and thus appear to show forelimb morphology consistent with terrestrial locomotion. Discriminant function analysis classifies both OH 36 and TM 266 with Pan and Gorilla with high posterior probability. Along with its associated femur, the TM 266 ulna shaft contours and its deep, keeled trochlear notch comprise a suite of traits signaling African ape-like quadrupedalism. While implications for the phylogenetic position and hominin status of S. tchadensis remain equivocal, this study supports the growing body of evidence indicating that S. tchadensis was not an obligate biped, but instead represents a late Miocene hominid with knuckle-walking adaptations.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA 91737, USA.
| | - Jason P Jung
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Isabella Fx Araiza
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Julia Galway-Witham
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| |
Collapse
|
23
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Drummond-Clarke RC. Bringing trees back into the human evolutionary story: recent evidence from extant great apes. Commun Integr Biol 2023; 16:2193001. [PMID: 36969387 PMCID: PMC10038020 DOI: 10.1080/19420889.2023.2193001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Hypotheses have historically linked the emergence and evolution of defining human characteristics such as bipedal walking to ground-dwelling, envisioning our earliest ancestors as living in treeless savannahs (i.e. the traditional savannah hypothesis). However, over the last two decades, evidence from the fossil record combined with comparative studies of extant apes have challenged this hypothesis, instead favoring the importance of arboreality during key phases of hominin evolutionary history. Here we review some of these studies, including a recent study of savannah chimpanzees that provides the first model of how bipedalism could have been adaptive as an arboreal locomotor behavior in early hominins, even after the forests receded during the early Miocene-Pliocene transition. We suggest that whilst a shift to exploiting open habitats catalyzed hominin divergence from great apes, adaptations to arboreal living have been key in shaping what defines humans today, in counter to the traditional savannah hypothesis. Future comparative studies within and between great ape species will be instrumental to understanding variation in arboreality in extant apes, and thus the processes shaping human evolution over the last 3-7 million years.
Collapse
Affiliation(s)
- Rhianna C. Drummond-Clarke
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut für Zoologie und Evolutionsforschung, Friedrich Schiller Universität Jena, Jena, Germany
- CONTACT Rhianna C. Drummond-Clarke Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| |
Collapse
|
26
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Humle T, Piel AK. Wild chimpanzee behavior suggests that a savanna-mosaic habitat did not support the emergence of hominin terrestrial bipedalism. SCIENCE ADVANCES 2022; 8:eadd9752. [PMID: 36516260 PMCID: PMC9750136 DOI: 10.1126/sciadv.add9752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bipedalism, a defining feature of the human lineage, is thought to have evolved as forests retreated in the late Miocene-Pliocene. Chimpanzees living in analogous habitats to early hominins offer a unique opportunity to investigate the ecological drivers of bipedalism that cannot be addressed via the fossil record alone. We investigated positional behavior and terrestriality in a savanna-mosaic community of chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania as the first test in a living ape of the hypothesis that wooded, savanna habitats were a catalyst for terrestrial bipedalism. Contrary to widely accepted hypotheses of increased terrestriality selecting for habitual bipedalism, results indicate that trees remained an essential component of the hominin adaptive niche, with bipedalism evolving in an arboreal context, likely driven by foraging strategy.
Collapse
Affiliation(s)
| | - Tracy L. Kivell
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Fiona A. Stewart
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tatyana Humle
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alex K. Piel
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
27
|
King GE. Baboon perspectives on the ecology and behavior of early human ancestors. Proc Natl Acad Sci U S A 2022; 119:e2116182119. [PMID: 36279425 PMCID: PMC9659385 DOI: 10.1073/pnas.2116182119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than 70 y researchers have looked to baboons (monkeys of the genus Papio) as a source of hypotheses about the ecology and behavior of early hominins (early human ancestors and their close relatives). This approach has undergone a resurgence in the last decade as a result of rapidly increasing knowledge from experimental and field studies of baboons and from archeological and paleontological studies of hominins. The result is a rich array of analogies, scenarios, and other stimuli to thought about the ecology and behavior of early hominins. The main intent here is to illustrate baboon perspectives on early hominins, with emphasis on recent developments. This begins with a discussion of baboons and hominins as we know them currently and explains the reasons for drawing comparisons between them. These include occupation of diverse environments, combination of arboreal and terrestrial capabilities, relatively large body size, and sexual dimorphism. The remainder of the paper illustrates the main points with a small number of examples drawn from diverse areas of interest: diet (grasses and fish), danger (leopards and crocodiles), social organization (troops and multilevel societies), social relationships (male-male, male-female, female-female), communication (possible foundations of language), cognition (use of social information, comparison of self to others), and bipedalism (a speculative developmental hypothesis about the neurological basis). The conclusion is optimistic about the future of baboon perspectives on early hominins.
Collapse
Affiliation(s)
- Glenn E. King
- Department of History and Anthropology, Monmouth University, West Long Branch, NJ 07764
| |
Collapse
|
28
|
Komza K, Viola B, Netten T, Schroeder L. Morphological integration in the hominid midfoot. J Hum Evol 2022; 170:103231. [PMID: 35940157 DOI: 10.1016/j.jhevol.2022.103231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Abstract
The calculation of morphological integration across living apes and humans may provide important insights into the potential influence of integration on evolutionary trajectories in the hominid lineage. Here, we quantify magnitudes of morphological integration among and within elements of the midfoot in great apes and humans to examine the link between locomotor differences and trait covariance. We test the hypothesis that the medial elements of the great ape foot are less morphologically integrated with one another compared to humans based on their abducted halluces, and aim to determine how adaptations for midfoot mobility/stiffness and locomotor specialization influence magnitudes of morphological integration. The study sample is composed of all cuneiforms, the navicular, the cuboid, and metatarsals 1-5 of Homo sapiens (n = 80), Pan troglodytes (n = 63), Gorilla gorilla (n = 39), and Pongo sp. (n = 41). Morphological integration was quantified using the integration coefficient of variation of interlandmark distances organized into sets of a priori-defined modules. Magnitudes of integration across these modules were then compared against sets of random traits from the whole midfoot. Results show that all nonhuman apes have less integrated medial elements, whereas humans have highly integrated medial elements, suggesting a link between hallucal abduction and reduced levels of morphological integration. However, we find considerable variation in magnitudes of morphological integration across metatarsals 2-5, the intermediate and lateral cuneiform, the cuboid, and navicular, emphasizing the influence of functional and nonfunctional factors in magnitudes of integration. Lastly, we find that humans and orangutans show the lowest overall magnitudes of integration in the midfoot, which may be related to their highly specialized functions, and suggest a link between strong diversifying selection and reduced magnitudes of morphological integration.
Collapse
Affiliation(s)
- Klara Komza
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada.
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Teagan Netten
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, Department of Anthropology, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
29
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Rosen KH, Jones CE, DeSilva JM. Bipedal locomotion in zoo apes: Revisiting the hylobatian model for bipedal origins. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e12. [PMID: 37588936 PMCID: PMC10426021 DOI: 10.1017/ehs.2022.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bipedal locomotion is a hallmark of being human. Yet the body form from which bipedalism evolved remains unclear. Specifically, the positional behaviour (i.e. orthograde vs. pronograde) and the length of the lumbar spine (i.e. long and mobile vs. short and stiff) of the last common ancestor (LCA) of the African great apes and humans require further investigation. While fossil evidence would be the most conclusive, the paucity of hominid fossils from 5-10 million years ago makes this field of research challenging. In their absence, extant primate anatomy and behaviour may offer some insight into the ancestral body form from which bipedalism could most easily evolve. Here, we quantify the frequency of bipedalism in a large sample (N = 496) of zoo-housed hominoids and cercopithecines. Our results show that while each studied species of ape and monkey can move bipedally, hylobatids are significantly more bipedal and engage in bipedal locomotion more frequently and for greater distances than any other primate sampled. These data support hypotheses of an orthograde, long-backed and arboreal LCA, which is consistent with hominoid fossils from the middle-to-late Miocene. If true, knuckle-walking evolved in parallel in Pan and Gorilla, and the human body form, particularly the long lower back and orthograde posture, is conserved.
Collapse
Affiliation(s)
- Kyle H. Rosen
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| | - Caroline E. Jones
- Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| |
Collapse
|
31
|
Wennemann SE, Lewton KL, Orr CM, Almécija S, Tocheri MW, Jungers WL, Patel BA. A geometric morphometric approach to investigate primate proximal phalanx diaphysis shape. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:581-602. [PMID: 35755956 PMCID: PMC9231826 DOI: 10.1002/ajpa.24460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. 100 landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including Generalized Procrustes Analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.
Collapse
Affiliation(s)
- Sophie E. Wennemann
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi L. Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Caley M. Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA,Department of Anthropology, University of Colorado Denver, Denver, CO 80217, USA
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA,New York Consortium in Evolutionary Primatology, New York, NY, USA,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Matthew W. Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada,Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - William L. Jungers
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA,Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Biren A. Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Biren A. Patel, 1333 San Pablo Street, BMT 404, Keck School of Medicine, University of Southern California, Los Angeles CA, 90033, USA;
| |
Collapse
|
32
|
van Heteren AH, Friess M, Détroit F, Balzeau A. Covariation of proximal finger and toe phalanges in Homo sapiens: A novel approach to assess covariation of serially corresponding structures. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:471-488. [PMID: 36787692 DOI: 10.1002/ajpa.24439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES As hands and feet are serially repeated corresponding structures in tetrapods, the morphology of fingers and toes is expected to covary due to a shared developmental origin. The present study focuses on the covariation of the shape of proximal finger and toe phalanges of adult Homo sapiens to determine whether covariation is different in the first ray relative to the others, as its morphology is also different. MATERIAL AND METHODS Proximal phalanges of 76 individuals of unknown sex (Muséum national d'Histoire naturelle, Paris, and the Natural History Museum, London) were digitized using a surface scanner. Landmarks were positioned on 3D surface models of the phalanges. Generalized Procrustes analysis and two-block partial least squares (PLS) analyses were conducted. A novel landmark-based geometric morphometric approach focusing on covariation is based on a PCoA of the angles between PLS axes in morphospace. The results can be statistically evaluated. RESULTS The difference in PCo scores between the first and the other rays indicates that the integration between the thumb and the big toe is different from that between the lateral rays of the hand and foot. DISCUSSION We speculate that the results are possibly the evolutionary consequence of differential selection pressure on the big toe relative to the other toes related to the rise of bipedalism, which is proposed to have emerged very early in the hominin clade. In contrast, thumb morphology and its precision grip never ceased undergoing changes, suggesting less acute selection pressures related to the evolution of the precision grip.
Collapse
Affiliation(s)
- Anneke H van Heteren
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Martin Friess
- Éco-Anthropologie, UMR 7206, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Université de Paris, Paris, 75016, France
| | - Florent Détroit
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Antoine Balzeau
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France.,Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium
| |
Collapse
|
33
|
Giuliano C, Stewart FA, Piel AK. Chimpanzee (Pan troglodytes schweinfurthii) grouping patterns in an open and dry savanna landscape, Issa Valley, western Tanzania. J Hum Evol 2022; 163:103137. [DOI: 10.1016/j.jhevol.2021.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
|
34
|
Prang TC. New analyses of the Ardipithecus ramidus foot provide additional evidence of its African ape–like affinities: A reply to. J Hum Evol 2022; 164:103135. [DOI: 10.1016/j.jhevol.2021.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
|
35
|
Everett MC, Elliott MC, Gaynor D, Hill AC, Syeda SM, Casana J, Zipfel B, DeSilva JM, Dominy NJ. Mechanical loading of primate fingers on vertical rock surfaces. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mechanical loading of finger bones (phalanges) can induce angular curvature, which benefits arboreal primates by dissipating forces and economising the recruitment of muscles during climbing. The recent discovery of extremely curved phalanges in a hominin, Homo naledi, is puzzling, for it suggests life in an arboreal milieu, or, alternatively, habitual climbing on vertical rock surfaces. The importance of climbing rock walls is attested by several populations of baboons, one of which uses a 7-m vertical surface to enter and exit Dronkvlei Cave, De Hoop Nature Reserve, South Africa. This rock surface is an attractive model for estimating the probability of extreme mechanical loading on the phalanges of rock-climbing primates. Here we use three-dimensional photogrammetry to show that 82–91% of the climbable surface would generate high forces on the flexor tendon pulley system and severely load the phalanges of baboons and H. naledi. If such proportions are representative of vertical rock surfaces elsewhere, it may be sufficient to induce stress-mitigating curvature in the phalanges of primates.
Collapse
Affiliation(s)
- Michael C. Everett
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Marina C. Elliott
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - David Gaynor
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Austin C. Hill
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samar M. Syeda
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jesse Casana
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
36
|
Williams SA, Prang TC, Meyer MR, Nalley TK, Van Der Merwe R, Yelverton C, García-Martínez D, Russo GA, Ostrofsky KR, Spear J, Eyre J, Grabowski M, Nalla S, Bastir M, Schmid P, Churchill SE, Berger LR. New fossils of Australopithecus sediba reveal a nearly complete lower back. eLife 2021; 10:70447. [PMID: 34812141 PMCID: PMC8610421 DOI: 10.7554/elife.70447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column (‘pyramidal configuration’). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis (‘hypolordosis’) similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2’s nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba. One of the defining features of humans is our ability to walk comfortably on two legs. To achieve this, our skeletons have evolved certain physical characteristics. For example, the lower part of the human spine has a forward curve that supports an upright posture; whereas the lower backs of chimpanzees and other apes – which walk around on four limbs and spend much of their time in trees – lack this curvature. Studying the fossilized back bones of ancient human remains can help us to understand how we evolved these features, and whether our ancestors moved in a similar way. Australopithecus sediba was a close-relative of modern humans that lived about two million years ago. In 2008, fossils from an adult female were discovered at a cave site in South Africa called Malapa. However, the fossils of the lower back region were incomplete, so it was unclear whether the female – referred to as Malapa Hominin 2 (MH2) – had a forward-curving spine and other adaptations needed to walk on two legs. Here, Williams et al. report the discovery of new A. sediba fossils from Malapa. The new fossils are mainly bones from the lower back, and they fit together with the previously discovered MH2 fossils, providing a nearly complete lower spine. Analysis of the fossils suggested that MH2 would have had an upright posture and comfortably walked on two legs, and the curvature of their lower back was similar to modern females. However, other aspects of the bones’ shape suggest that as well as walking, A. sediba probably spent a significant amount of time climbing in trees. The findings of Williams et al. provide new insights in to our evolutionary history, and ultimately, our place in the natural world around us. Our lower back is prone to injury and pain associated with posture, pregnancy and exercise (or lack thereof). Therefore, understanding how the lower back evolved may help us to learn how to prevent injuries and maintain a healthy back.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States.,Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas Cody Prang
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, United States
| | - Thierra K Nalley
- Western University of Health Sciences, College of Osteopathic Medicine of the Pacific, Department of Medical Anatomical Sciences, Pomona, United States
| | - Renier Van Der Merwe
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Yelverton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Chiropractic, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Daniel García-Martínez
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, United States
| | - Kelly R Ostrofsky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, United States
| | - Jeffrey Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Jennifer Eyre
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,Department of Anthropology, Bryn Mawr College, Bryn Mawr, United States
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shahed Nalla
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Markus Bastir
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Peter Schmid
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Steven E Churchill
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, United States
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Bowland LA, Scott JE, Kivell TL, Patel BA, Tocheri MW, Orr CM. Homo naledi pollical metacarpal shaft morphology is distinctive and intermediate between that of australopiths and other members of the genus Homo. J Hum Evol 2021; 158:103048. [PMID: 34340120 DOI: 10.1016/j.jhevol.2021.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.
Collapse
Affiliation(s)
- Lucyna A Bowland
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jill E Scott
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, 80217, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa
| | - Tracy L Kivell
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa; School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, ON, P7K 1L8, Canada; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, 80217, USA.
| |
Collapse
|
38
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
39
|
Brown JG. Ticks, Hair Loss, and Non-Clinging Babies: A Novel Tick-Based Hypothesis for the Evolutionary Divergence of Humans and Chimpanzees. Life (Basel) 2021; 11:435. [PMID: 34066043 PMCID: PMC8150933 DOI: 10.3390/life11050435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human straight-legged bipedalism represents one of the earliest events in the evolutionary split between humans (Homo spp.) and chimpanzees (Pan spp.), although its selective basis is a mystery. A carrying-related hypothesis has recently been proposed in which hair loss within the hominin lineage resulted in the inability of babies to cling to their mothers, requiring mothers to walk upright to carry their babies. However, a question remains for this model: what drove the hair loss that resulted in upright walking? Observers since Darwin have suggested that hair loss in humans may represent an evolutionary strategy for defence against ticks. The aim of this review is to propose and evaluate a novel tick-based evolutionary hypothesis wherein forest fragmentation in hominin paleoenvironments created conditions that were favourable for tick proliferation, selecting for hair loss in hominins and grooming behaviour in chimpanzees as divergent anti-tick strategies. It is argued that these divergent anti-tick strategies resulted in different methods for carrying babies, driving the locomotor divergence of humans and chimpanzees.
Collapse
|